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Abstract

A one-counter automatorconsists of a finite-state control operating on a single
counter ranging over the nonnegative integers; transitions of the automaton are
labelled from some finite alphabet, and may increment, decrement, or ignore the
counter value, possibly depending on whether or not the counter value is zero, but
may not decrement the counter when it is zero. The class of one-counter automata
is equivalent to the class of pushdown automata with a single stack symbol (apart
from a special bottom-of-stack marker). @ne-counter netis a one-counter
automaton which cannot test for zero: any transition which can be performed when
the counter is zero can equally be performed when the counter is non-zero. The
class of one-counter nets is equivalent to the class of labelled Petri nets with a
single unbounded place.

We show an effective construction of (a periodicity description of) the maximal
simulation relation for a given one-counter net. Then we demonstrate how to re-
ducesimulationproblems over one-counter nets to analogbisgmulationprob-

lems over one-counter automata. This requires a close analysis of a recent proof
of the decidability of the simulation relation over one-counter nets resulting in an
effective construction of (a semilinearity description of) the (maximal) simulation
relation. We use this to demonstrate the decidability of various problems, specif-
ically testing regularity and strong regularity of one-counter nets with respect to
simulation equivalence, and testing simulation equivalence between a one-counter
net and a deterministic pushdown automaton. Various obvious generalisations of
these problems are known to be undecidable.
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1 Introduction

In concurrency theory, processs typically defined to be a state inti@nsition systemwhich

is atripleT = (S, X, —) whereS is a set ofstates X is a set ofactions(assumed to bénitein

this paper) and-» C S x £ x S is atransition relation. We writes - t instead of(s, a, t) € —,

and we extend this notation in the natural way to elements ofA statet is reachablefrom

a states iff s = t for somew € L*. T isimage-finiteiff for all s € S anda € L the set
[t:s -3 t)is finite; T is deterministicif each such set is of size at most 1.

In this paper, we consider such processes generateshbycounter automatanonde-
terministic finite-state automata operating on a single counter variable ranging over the set
N of nonnegative integers. Formally this is a tuple = (Q,X,67,5~) whereQ is a fi-
nite set ofcontrol states X is a finite set ofactions andé= : Q x £ — P(Q x {0,1}),
5> : Q x X — P(Q x {—1,0,1}) aretransition functions (where?(A) denotes the set of
subsets ofA). 5~ represents the transitions which are enabled when the counter value is zero,
ando~ represents the transitions which are enabled when the counter value is paditisel
one-counter neiff Vq € Q,Va € X : 6=(q,a) C 67(q,a). To M we associate the (image-
finite) transition systermiy = (S, £, —), whereS = {p(n) : p € Q,n € N} and— is defined
as follows:

. o { n=0, and(p’,i) € 6=(p, a); or

p(n) = p'(n+i) iff
n>0, and(p’,1i) € 67 (p, a).

Note that any transition increments, decrements, or leaves unchanged the counter value; and a
decrementing transition is only possible if the counter value is positive. Also observe that when
n>0 the transitions op(n) do not depend on the actual valueraf Finally, note that a one-
countemetcan in a sense test if its counter is nonzero (that is, it can perform some transitions
only on the proviso that its counter is nonzero), but it cannot test in any sense if its counter is
zero.

As an example, we might tak® = {p}, £ = {a,z}, and take the only non-empty
transition function values to b& (p,a) = {(p,+1),(p,—1)}, 8~ (p,a) = {(p,+1)}, and
5=(p, z) ={(p, 0)}. This one-counter automaton gives rise to the infinite-state transition system
depicted in Fig. 1; if we eliminate theaction, then this would be a one-counter net. The class
of transition systems which are generated by one-counter nets is the same (up to isomorphism)
as that generated by the class of labelled Petri nets with (at most) one unbounded place. (This
is immediately clear if we consider Petri nets with arc weights 1; however, the correspondence
is true even with general arcweights, which we formally prove in the Appendix). The class
of transition systems which are generated by one-counter automata is the same (up to isomor-
phism) as that generated by the class of realtime pushdown automata with a single stack symbol
(apart from a special bottom-of-stack marker).

Given a transition systeni = (S, X, —), asimulation is a binary relatiorR C S x S
satisfying: whenevets,t) € R, if s > s’ thent > t' for somet’ with (s’,t') € R. s is
simulatedby t, writtens < t, iff (s,t) € R for some simulatiorR; ands andt aresimulation
equivalent written s = t, iff s < tandt < s. (The relation<, being the union of all
simulation relations, is in fact the maximal simulation relation higimulationis a symmetric
simulation relation, and andt arebisimulation equivalentor bisimilar, writtens ~ t, if they
are related by a bisimulation. Simulations and bisimulations can also be used to relate states of
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Figure 1. A one-counter automata process and a simulation-equivalent finite-state process.

differenttransition systems; formally, we can consider two transition systems to be a single one
by taking the disjoint union of their state sets.

There are various other equivalences over processes which have been studied within the
framework of concurrency theory; an overview and comparison of these is presented in [15].
Each has its specific advantages and disadvantages, and consequently none is universally ac-
cepted as the “best” one, although it seems that simulation and bisimulation equivalences
are of particular importance as their accompanying theory has been intensively developed.
Bisimilarity is especially mathematically tractable, having the best polynomial-time algorithms
over finite-state transition systems (while all language-based equivalences by comparison are
PSPACE-complete), and the only one which is decidable for various classes of infinite-state
systems such as context-free processes and commutative context-free processes (see [13] for a
survey of such results).

Let s be a state of a transition systemand ~ be an equivalence over the class of all
processes (that is, all states of all transition systems3.~-regular, or regular w.r.t. ~, iff
s ~ f for some staté of a finite-state transition system; afnd strongly~-regular, or strongly
regular w.r.t. =, iff only finitely many states, up tez, are reachable frors. For bisimilarity,
these two concepts coincide, but this is not true in general for other equivalences. For example,
the statep(0) of the infinite-state transition system depicted in Fig. Xis-regular, being
simulation equivalent to the state of the depicted finite-state system. However, it is not
strongly<=-regular (nor-regular) ap (i) £ p(j) whenevei < j. The conditions of regularity
and strong regularity say that a process can in some sense be finitely represented (up to the
equivalence): in the first case there is an equivalent finite-state process; and in the second
case the quotient of its state-space under the equivalence is finite. As all “reasonable” process
equivalences are preserved under their respective quotients [9] (that is, each state is equivalent
to its equivalence class in the automaton produced by collapsing equivalent states [2]), strong
regularity in fact guarantees the existence of a finite-state process whose state-space is the same
(up to the equivalence); this process provides a more robust description of the original process
as it preserves strictly more logical properties than a process which is just equivalent [10].

Finite descriptions of infinite-state processes are important from the point of view of auto-
matic formal verification. Verification tools typically work only for finite-state systems, and the
types of systems which they analyze, such as protocols, are typseatignticallyfinite-state.
However, these systems are often expresyatacticallyas infinite-state systems, for example
maintaining a count of how many unacknowledged messages have been sent, so it is advanta-
geous to develop algorithms which replace infinite-state processes with equivalent finite-state
systems (when they exist). Examples of such algorithms appear in [2, 4, 5, 9, 12]

In Section 2 we show an effective construction of (a periodicity description of) the max-
imal simulation relation for a given one-counter net. Then, in Section 3, we study the con-
nection between simulation and bisimulation relations, and demonstrate the decidability of the
<>=-regularity and strongg=-regularity problems foone-counter nets restricted form of Petri
nets; the<=-regularity problem is reduced to theregularity problem for the more general
class ofone-counter automatavhich is known to be decidable [3]. Note that tke-regularity



problem is known to be undecidable for general Petri nets [5] and an incomparable class of PA
processes [11]. Finally, we demonstrate how to decide simulation equivalence between (a pro-
cess related to) a one-counter net and (a process related to) a deterministic pushdown automaton.
Here note that simulation equivalence between a (nondeterministic) one-counter automaton and
a deterministic one-counter automaton (i.e., a special deterministic pushdown automaton) can
be demonstrated to be undecidable [7].

2 Simulation on One-Counter Nets

In this section we fix a one-counter net with control statgyetnd present an algorithm which
constructs a (simple) description of the set

S = {{(p(m),an)) : p,a€e Q, mneN, p(m)=<q(n)}

i.e., the maximal simulation relation on the transition system associated to theSnedn
be viewed as a collection 0@ *> subsets oNxN: to eachp,q € Q we associateS,, ) =
{(m,n) : p(m) < gq(n)}. Observe that ifp(m) < q(n) thenp(m’) < q(n') for all
m’'<m andn’>n since the sef(p(m’), q(n')) : p(m) < q(n) for somem>m’,n<n’}isa
simulation relation.

By a colouring we mean a functiorC : (QxQ) — (NxN)—{black white}, where we
write the function applications &, 4) (m, n). We further stipulate that a colouring must sat-
isfy the following monotonicity condition: ifC, o (m, n)=black thenC,, 4, (m', n')=black
for all m'<m andn’>n. With this proviso, eaclC, o is determined by thérontier func-
tion fﬁ,m : N — N U {w] defined by: f(ﬁ,m(n) = min{m : Cy,q (m,n)=white}; we
put f((%,q>(n)2w if Cp,q) (m, n)=black for allm. Note that this function is nondecreasing,
ie., eachstepf%jm (n+1) — f%o,q>(“) is nonnegative. Whefi, y(n) € N, we call the pair
(fm,q)(n),m) afrontier point and the set of all frontier points constitutes trantier (in Cy, ).

We useG to denote the following distinguished colouring:

_ [ black if p(m) =< q(n);
Cp.) (M, 1) —{ white, if p(m) £ q(n).

The observation abouf from above confirms that this is a valid colouring, i.e., that the re-
quired monotonicity condition holds. We us$g , to denote the frontier function dk, ),
and we understand the teriingntier functionandfrontier to be related td& when not specified
otherwise.

The following “Belt Theorem” gives a crucial fact about frontiers; bysdt we mean the set
of points of the (first quadrant of the) plane lying between two parallel lines.

Belt Theorem. Every frontier lies within a belt with nonnegative rational or infinite slope.

This theorem is central for the decidability of simulation over one-counter nets. It was proven
in [6] by a combination of short and intuitive arguments; the theorem is also present (though
not so explicitly) in [1] but the proof outlined there is formidable.

Note that if, for a frontier functiorf, f(n)=w for somen then the respective frontier is
finite and lies within a horizontal belt (i.e., with slope 0). Otherwfigas a functiorN — N)
is almost linear, though its ste;éﬁ(nH )—f(n)) need not be constant. Nevertheless, we shall
show thatf is periodig i.e., from somen, a finite sequence of steps is repeated forever; and
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moreover, itgperiodicity descriptior—i.e., ny, the sequence of steps to be repeated, and the
values off(n) for all n<ny,—can be effectively computed, yielding the simple description of
the setS. (Note that the decision algorithms in both [1] and [6] only approximate thé set
or equivalently the colourinds, to a sufficient level to answer the relevant question; effective
constructability of the functionf,, o, does not follow from there.)

We now show how the frontier functionf, y can be stepwise approximated. First
we say that a pointm,n) (in NxN) is locally correct in a colouring C iff the follow-
ing holds for allp,q € Q: if Cy, g (m,n)=black andp(m) % p'(m’) then there is
qn) = q'(n’) with Cpr qy(m',n')=black. Note that the local correctness of a point
(m,n) depends only on the restriction @f to the neighbourhoodof (m,n), i.e., to the set
{{m/;n') : Im'—m|<1, In'—n|<1}; this follows from the fact that a transition in a one-counter
net can change the counter value by at most 1. We sagtissk-admissiblewherek € NU{w},
iff each point{m,n) with m,n < k is locally correct inC. In particular, note that is w-
admissible.

The functionG* : (QxQ) — (NxN)—{black white} defined by

G]((Dm(

is easily seen to belaadmissible colouring, and is in fact theaximal (i.e., maximally-black
k-admissiblecolouring; furthermore, the maximab-admissible colouringz® is clearly G.
For k € N, we denote the frontier function dﬂ‘gpm by f‘<<pyq>, and note that the range of

m,n) = black iff Cy, ¢, (m,n) = black for somek-admissible colouring

f‘gpyq> is{0,1,...,k—1}U{w} and thatf‘<<p‘q>(n) = w for all n>k. The description of each
function f]((D»QW i.e., (a table of) its values far, 1, ... ,k—1, is effectively computable, for ex-

ample, by an exhaustive search. @5 is i-admissible for any<k, we have, for eaclp, q,

f?pngfgpyq)szpyq)z...Zf<p‘q> (wheref’>f" meansvn € N : f'(n) > f”(n)). Therefore
the functiongp, o) = liMy_,o0 17}, v is well-defined, andy,, q)>f(, q). But since the colouring

defined by these limit functiong,, o, (as the frontier functions) ie-admissible (recall the “lo-
cality” of the local correctness condition), afitlis the maximalw-admissible colouring, we
haveg o) <fp,q)- Thusg, qy=fr,q), and therefore we get the following.

Lemma 1 For eachn € N there isk > n such that eacl‘ﬁ‘gmq> coincides withf,, 4y on the set
{0,1,2,...,n}.

Our algorithm will construcG* for k = 0,1,2,...; Lemma 1 guarantees that larger and
larger initial portions of (the graphs of}, ) are appearing during the run of the algorithm
(though we do not know the extent of the portiorbfn G*). To show when our algorithm can
terminate, recognizing an initial portion & and providing a description of the whole we
now explore a certain “repeatable pattern” which is guaranteed to app®&ar in

By the Belt Theorem, we can fix a set of belts with nonnegative rational or infinite slopes
such that each frontier is contained in one of them. We assume that the belts are “sufficiently”
thick; thus we can, for instance, suppose that the belt slopes are pairwise distinct (merging
parallel belts into one thicker).

Now we can choosky, h,, 1 € N, where0<h;<h,<1, such that (see Fig. 2):

1. for each frontier functiorf with f(h,)<w, all frontier points(f(n),n) between levels
h; andh,, (i.e., withh; <n<h,) lie in one of the belts (this follows trivially from our
assumption; note that Fig. 2 depicts just one frontier in each belt, though in general there
can be several frontiers in a single belt);
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Figure 2: Graphs ot y displaying a repeatable pattern, superimposed onto each other

2. the belts are pairwise disjoint at and above léuvel1 (i.e., we choosé., large enough
so that at leveh;—1 each belt is to the right of any other belt with greater slope);

3. for each frontier functiort: if f(h;—1)<1 thenf(h,)=f(h;—1); and if f(h,)=w then
f(h;—1)=w (this is satisfied wheh; andh, are chosen large enough);

4. for each frontier functio and eacm<h,: if f(n)<w thenf(n)<i (this is satisfied by
choosingi large enough after the choicelof andh,).

Each frontier point{f(n), n) has a certain (horizontatlistanceto the left border line of the belt

in which it lies. Since the slope of each belt is rational, it is clear that such distances range over
finitely many possible values. So, by a straightforward use of the pigeonhole principle, we can
additionally suppose (i.e., we could chodsg h;, 1 so) that the frontier points of all frontiers
inside a single belt have the same relative positions at lévetndh, 1 as at levelh; and

h;—1, respectively. More precisely:

5. for each frontier functiorf with f(h,)<w, the slope of the belt in which the respec-
tive frontier appears between levéils and h; is (h,—hy)/(f(hy)—f(hy)); moreover,
f(ha)—f(ha—1) = f(hy)—f(hy 1)

The number of possible distances would allow us to calculate a besndh that we can even
suppose (i.e., choose so) that—h;<b. Note thatb does not depend on how thick the belts

are chosen. In particular, we can assume each belt to be so thick that for each frontier point
(f(n), ) in the belt, withn>h;, the point(f(n), n+b) is still aninterior point of the belt,

i.e., its whole neighbourhood lies in the belt. Informally we say that the belt kaffiaiently

thick monochromatic left subbgliboveh,); monochromatic means that ea@l, 4 is constant
(either black or white) on the subbelt. Therefore we could choose belts;ahd andi so that

the following additional condition is satisfied:
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6. for each frontier poin{f(n),n) with hy<n<h,, the point(f(n), n+(h,—h;)) is an
interior point of the belt in which the respective frontier lies between léveBndh,.

We now say that a colouring@ has arepeatable patternbased orh,, h, andi, iff there are
belts such that the above conditions 1.—6. are satisfied (where theftentisr andfrontier
functionare understood as those related’)o We have thus demonstrated tiiahas a repeat-
able pattern. Our algorithm which constru@$, G', G?, . .. terminates when it finds sond®
which has a repeatable pattern based on somg; andi with i<j; such a condition is clearly
decidable; and Lemma 1, together with the fact thdtas a repeatable pattern, guarantees ter-
mination of the algorithm. Having discovered a repeatable patter@’ftmased orh;, h, and
i with i<j, we define the colourings* by defining its frontier functioné;‘pm inductively as
follows:

f’;pm(n), ifn<h,

fz‘p‘q>(n—c) +d, ifn>h,

wherec = h,h; andd = f’ (hz) f] (h]) Hence each_ . is periodic, arising

(p,a)
from f’p‘ @ by repeating the sequence of steps betwiegand h, forever. Also note that if
f’%pyq>(n):w for somen<h, thenfz‘p‘q>—f<p e We shall show (Lemma 3) th&* is in factG.

To this end, we make some considerations and introduce some auxiliary notions.

First recall that the local correctness of a pajnt,n) in a colouringC depends only on
the restriction ofC to the neighbourhood ofm,n). Also recall that the possible transitions
from a statep(m) do not depend omn whenm>0. ThereforeG* is surely w-admissible:
each pointim, n) in the verified areai.e., withm<j andn<hs;, is locally correct since it is
(by definition) locally correct iz, andG’ andG* coincide on the neighbourhood 6f, n).
Furthermore, each point outside the verified area obviously has a corresponding point in the
verified area whose neighbourhood is coloured identically. By the factGhatthe maximal
w-admissible colouring, we havg,  <f, q). Sincef(, q) <f , we havefy .\ (n)=f, ) (n)

for all n<h, (wheref commdes Wlthf] ). The only pOSS|b|I|ty thalG* andG are not
equal is |ff o ( )<f<p,q ( ) for somen>h2 Due to the next result (Lemma 2), this will be
lead to a contradiction in the proof of Lemma 3.

Let v = (vi,v2) € ZxZ be a vector with integer entries. A poifi,n) € NxN with
m+vy, n+v, > 0islit by Vin Gy o) iff Gy qy (M, n) = black andGy, o) (m+vi, n+v;) =
white; if (m,n) is lit by v in someG, o, then we say thafm,n) is lit by v. For
points (m,n), (m’,n’) € NxN we write (m,n) <y (m’,n') iff both are lit by v, and
m—m'[ < 1 andn—m'[ < 1. The transitive closure of>; is denoted by—:. Note
that (m,n) <% (m’,n’) can be demonstrated by givingti@jectory, a sequence of points
(Mo, no), (My,Mq), ..., (M, ng) such that

(m,n) = (Mo, No) &5 (My, M) S50 o5 (M, ) = (M, n').

Lemma 2 Leth>0andv = (v, v;) withv;<0 andv,<0. If a point(m,, no) withne+v, > h
is lit by V then there is a pointmg, ng) with nj+v, = h such that{mg, ng) <% (mg, ng).

Proof:  Suppose(my, o) satisfies the assumption but there is no requiped, n); then
n’+v, > hfor each(m’, n') such thatmo, no) <% (m’,n’). Define the colourings by
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Gp,q)(m,n) = black iff G q) (M, n) = black, or
(m—vy,n—v,) islitby vin G, oy and

(Mo, o) &% (M—Vy, n—Wvy).

G obviously satisfies the monotonicity property of colourings, and we can easily check that
each point is locally correct iv. HenceG is w-admissible, which contradicts the fact tifat
is themaximalw-admissible colouring. O

Lemma 3 G* is equal toG.

Proof: We have already shown that eaﬁ:gpm coincides withf, ;y onthe sef0,1,2,..., h,},
so we only have to exclude the possibility tl‘ﬁ@pq> (n)<fp,q (n) for somen>h,.

Recall that our algorithm stops by finding a repeatable patteri,fdt,, i, in G’ (i<j). Let
us fix a corresponding set of belts required by the definition of a repeatable pattern (note that
each frontier ofG* lies in one of the belts above).

We say that a beB is valid iff G* coincides withG when restricted t®. (In particular, the
horizontal belt, if it was chosen, is surely valid.) If all belts are valid, then sugélis equal to
G. Otherwise, leB be therightmostbelt (i.e., the belt with the least slope) which is not valid.
Consider annvalid point(mg, no) in B, i.e.,GZ‘mq> (Mo, no)=white andGy, 4, (Mo, no)=black,
for somep, q; moreover we suppose, to be minimal (i.e.,B is valid belown,). Note that
no>h,.

Let « be the slope 0B, and letvV = (v;,v;), wherev; = (hy—h;)/x andv, = h;—h,

(v corresponds to the “period &” in G*; see Fig. 3). Due to the choice ¢f(as the pe-
riod of B) we haver‘p‘q> (mo+v1,no+Vv2) = white, and sinceB is valid belown,, we have
Gp,q) (Mo+vi,no+v2) = white. This means that the poifitng, no) is lit by v in Gy, q).

Due to Lemma 2 (forh; in the place ofh) there is a pointmg,nj) (lit by v) such that
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(Mo, no) <% (Mg, ng) andnj+v,=hy, i.e., nj=h,. Recall that the restrictions @* and
GtoN x {0,1,2,...,hy} coincide. Hence if there is no belt to the right Bfthen there is
clearly no pointm’, h,) which would be lit byv. Otherwise leB’ be the first belt to the right
of B. Any point(m’, h,) which is lit by v can lie only in, or to the right ofB’. Nevertheless
any trajectory demonstratingno, no) <% (m', h,) would have to cross the (sufficiently thick)
monochromatic left subbelt of (the validy, which is impossible. (The first point on such a
trajectory which is inB’, and is thus not an interior point &f, cannot be lit by.) O

We can summarize the preceding argument in the following.

Theorem 1 There is an algorithm which, given a one counter net, constructs a description of
the respective maximal simulation relation; more concretely, it gives periodicity descriptions
for the corresponding frontier functions.

3 Applications

In this section we show how Theorem 1 can be applied to obtain new decidability results for
one-counter nets. The following one comes almost for free.

Theorem 2 The problem of strongk=-regularity of one-counter nets is decidable.

Proof: Let p(i) be a process of the one-counter mét= (Q, X, 5=,6”). Define the set
M ={q € Q| p(i) =* q(j) forinfinitely manyj € N}. Observe thatM is effectively
constructible using standard techniques for pushdown automat.ig\Bnite, we see thai(i)

can reach infinitely many pairwise non-equivalent states iff thegedsM such that for every
i € N there is somg > i such thatq(j) £ q(i). In other wordsp(i) is not strongly regular
w.r.t. simulation equivalence iff there i € M such that the frontier functiofy, ;, has no
w-valuesfn € N: f, y(n) < w). O

Next we show that a number sfmulationproblems for processes of one-counter nets can be
reduced to the correspondibgsimulationproblems for processes of one-counter automata. In
this way we obtain further (original) decidability results. The basic tool which enables the
mentioned reductions is taken from [11] and is described next.

For every image-finite transition system= (S, Act, —) we define the transition system
B(T) = (S, Act,—) where— is given by

st iff s StandvueS: (s SuAt<u)=u=<t

Note thatB3(T) is obtained fronT by deleting certain transitions (preserving only the “maximal”
ones). Also note thal andB(T) have the same set of states; as we often need to distinguish
between processes bf T”and “s of B(T)”, we denote the latter one I3y;. A proof of the next
(crucial) theorem, relating simulation equivalence and bisimulation equivalence, can be found
in[11].

Theorem 3 Lets andt be processes of image-finite transition systdnasd T', respectively.
It holds thats <= s andt <= tz; moreovers <=t iff sz ~ 5.

The next theorem provides the technical basis for the aforementioned reductions.
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Figure 4: The structure dfy (left) andB(Ty) (right)

Theorem 4 Let N be a one-counter net. Then the transition syst&iy) is effectively defin-

able within the syntax of one-counter automata, i.e., one can effectively construct a one-counter
automatonM such thatly, is isomorphic to3(Ty). Moreover, for every state = p(i) of Ty

we can effectively construct a stat§i’) of Ty, which is isomorphic to the statg; of B(Ty).

Proof: LetN = (Q,Z,57,5) be a one-counter net, and let be the transition relation of
B(Tn). Let us define the functiollaxTran: Q x £ x N — P(Q x {—1,0, 1}) as follows:

(q,j) € MaxTrar(p,a,i) iff p(i) > q(i+]j)

where— is the transition relation oB(Ty ). In fact, MaxTranp, a, i) represents all “maximal”
a-transitions o (i). Our aim is to show that the functidlaxTranis, in some sense, periodic—
we prove that there (effectively) exists > 0 such that for alp € Q, a € X, andi > n we
have thaMaxTranp, a,i) = MaxTranp, a,i+mn). It clearly suffices for our purposes because
then we can construct a one-counter automatos- (Q x {0,...,n—1} X y=,v~) wherey=
andy~ are the least sets satisfying the following conditions:

e if p(i) > q(j) where0 < i,j < n, then((q,j),0) € y=((p, 1), a)

o if p(n— 1)+ q(n), then({q,0), +1) € y=({(p,n — 1), a)

o if p(n+1) > q(n+j) whered < 1i,j <n, then((q,j),0) € y>((p,i),a)
o if p(n) = q(n— 1), then((g,n — 1), 1) € ¥y~ ((p,0), a)

o if p(2n—1) = q(2n), then((q,0),+1) € y*((p,n — 1), a)

Note that the definition oM is effective, because the constantan be effectively found and

for every transitiorp(i) — p(j) of Ty we can effectively decide whetheri) ~ p(j) (here

we need the decidability of simulation for one-counter nets). The facilthhas isomorphic to
B(Tyn) is easy to see as soon as we realize B{di) can be viewed as a sequence of “blocks”
of heightn, where all “blocks” except for the initial one are the same. The structure of the two
(types of) blocks is encoded in the finite control\df, and the number of “current” blocks is
stored in its counter (see Fig. 4). Note thatindeed needs the test for zero in order to recognize
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that the initial block has been entered.

Now we show how to construct the constantFirst, we prove thatforalp € Q, a € ©
one can effectively find two constaritép, a) andl(p, a) such that for every > k(p, a) we
haveMaxTranp, a,i) = MaxTranp, a,i+ l(p, a)). We start by reminding ourselves that the
out-going transitions op (i) andp(j), wherei,j > 1, are the “same” in the following sense
(see Fig. 4):

p(i) = qi+m) iff p(G) = q(G+m) iff (q,m) € (p,a).

Hence, the seWlaxTranp, a,i), wherei > 1, is obtained by selecting certain elements from
57 (p, a). In order to find these elements, we must (by the definitio@f)) take all pairs
{{(q,m), (r,n)) € 6~ (p,a) x 6~ (p, a), determine whethetj(i + m) < (i + n), and select
only the “maximals”. For each such pdifq, m), (r,n)) we define an infinite binary sequence
S as follows: S(i) = 1if Gy (i + m,i+n) = black, andS(i) = 0 otherwise. As (a
description of)G(, », can be effectively constructed, and the frontier functigp, is periodic
(see Theorem 1), we can conclude that «x3* wherex, 3 are finite binary strings. Note that
o and can be “read” from the constructed description®f », and thus they are effectively
constructible. A~ (p, a) is finite, there are only finitely many pairs to consider and hence we
obtain only finitely manyx’'s and’s. Now we letk(p, a) be the length of the longeat and let
l(p, a) be the product of lengths of gli's. In this way we achieve that the whole information
which determines the selection of “maximal” element$0fp, a) during the construction of
MaxTranp, a, i) is periodic (w.r.ti) with periodl(p, a) after a finite “initial segment” of length
k(p,a). Let K = maXk(p,a) |p € Q,a € L}, andL = HpEQ,aEZ l(p,a). Finally, let
n=K-L.

To finish the proof, we need to show that for every state p(i) of Ty one can construct
a statep’(i’) of Ty, which is isomorphic to the statg; of B(Ty). This is straightforward; we
simply takep’ = (p,i modn) and i’ =1idivn. 0

Two concrete examples of how Theorems 3 and 4 can be applied to obtain (new and nontrivial)
positive decidability results on one-counter nets are given next.

Corollary 1 The problem ok:=-regularity of one-counter nets is decidable.

Proof: It suffices to realize that a processf a transition systenh is <=-regular iff the process
s of B(T)is ~-regular. As~-regularity is decidable for processes of one-counter automata [3],
we are done. a

Corollary 2 Let px be a process of a deterministic pushdown automdtand q(i) be a
process of a one-counter n&t The problem whethgro <= q(i) is decidable.

Proof: First, realize that ifT is a deterministic transition system th&tT) = T. Hence,
pa<=q(i) iff pa~ q'(i") whereq'(i’) is the process of Theorem 4. As one-counter automata
are (special) pushdown automata, we can apply the result of [14] which says that bisimilarity is
decidable for pushdown processes. a

The previous corollary touches, in a sense, the decidability/undecidability border for simulation
equivalence, because the problem whethek= q(i) wherep« is a process of a deterministic
PDA T andq(i) is a process of a one-counter automaMnis undecidable [7] (in fact, it is
undecidable even if we requiféeto be a deterministic one-counter automaton).
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Figure 5: An example of a nét” (left) and A/’ (right)

Appendix

In this appendix we show that the model of one-counter nets which has been introduced in
Section 1 exactly corresponds to Petri nets with at most one unbounded place.
A Petri netis a tupleN = (P, T, F, Act, £) where

e P andT are finite disjoint sets gblacesandtransitions respectively.

e F: (PxT)U(TxP)— Nistheflow function A placep is aninput placefor a transition
tiff F(p,t) > 1. Similarly, p is anoutput placefor t iff F(t,p) > 1.

e Actis afinite set ofactions
e {: T — Actis thelabellingwhich associates an action with every transition.

A marking M is a functionM : P — N which associates a numbertokenswith every place.
A transitiont is enabledat a markingM iff M(p) > F(p,t) for every placep. A net N\

determines a unique transition systémwhere the set of states is the set of all markinfgys,
is the set of actions, and transitions are determined as folldws®: M iff there ist € T such
thatt is enabled aim, {(t) = a, andM'(p) = M (p) —F(p, t) + F(t,p) for all p € P (we say
thatt firesat M reachingM’). Let M be a marking. A place is boundedor M iff there is
k € N such thatM'(p) < k for every markingM'’ which is reachable fronM. The set of all
bounded places foh can be effectively constructed [8].

Theorem 5 Let ' = (P, T,F,Act () be a Petri net, M a marking such that\" has at
most one unbounded place favl. Then we can effectively construct a one-counter net
N = (Q,X,56=,06”) and its proces$ (i) such that the parts ofy and T, which are reach-
able fromp (i) and M, respectively, are isomorphic.

Here we give only a brief sketch of the crucial argument which allows to prove the previous
theorem. Letn = maxF(s,t),F(t,s)|s € P,t € T}. First we construct from\ another

net N/ which is isomorphic to\' and where each transition changes the value stored in the

‘counter’ (i.e., the number of tokens in the only unbounded place) at most by one, taking at
most one token from it. To do that, we first add 6 new placesy, ..., pn 1. Intuitively,

the idea is to ‘encode’ the valdeof the counter of\/ by storingi divn tokens in the counter
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of A" and putting a token to the plagemon. Each transitiort of A/ is then replaced with

a set of transitions;, where0 < 1 < n — 1, such that each; has the same label and the
same ‘connections’ to the bounded places\bfast, but the operation on the counter is ‘re-
implemented’ using the newly added plages. .., p,_1 — eacht; takes one token from;,

puts one token to (some), and possibly increments/decrements the counter by one. A concrete
example is given is Fig. 5. Then, the né€t is transformed into a néY’” where each transition

has exactly one bounded place among its input and output places (observe thatXReohet

Fig. 5 already has this property and hence it need not be further transformed). It is achieved by
introducing a special place for each of the finitely many reachable ‘states’ of the bounded part
of N'" and replacing each transitiarof A" with a family of transitions which have the same
label and the same ‘connectivity’ to the countertaand which implement the state-change in

the bounded part oV’ caused byt ‘explicitly’ by shifting only one token. The net/” can

then be ‘translated’ to a one-counter Metn a straightforward way.
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