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Technischen Universit ät M ünchen
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Abstract

We design a general method for proving decidability of bisimulation-like

equivalences between in�nite-state processes and �nite-state ones. We ap-

ply this method to the class of PAD processes, which strictly subsumes PA

and pushdown (PDA) processes, showing that a large class of bisimulation-

like equivalences (including e.g. strong and weak bisimilarity) is decidable

between PAD and �nite-state processes. On the other hand, we also demon-

strate that no \reasonable" bisimulation-like equivalence is decidable be-

tween state-extended PA processes and �nite-state ones. Furthermore,

weak bisimilarity with �nite-state processes is shown to be undecidable

even for state-extended BPP (which are also known as `parallel pushdown

processes').
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1 Introduction

In this paper we study the decidability of bisimulation-like equivalences between

in�nite-state processes and �nite-state ones. First we examine this problem in a

general setting, extracting its core in a form of two rather special subproblems

(which are naturally not decidable in general). A special variant of this method

which works for strong bisimilarity has been described in [JK97]; here we extend

and generalize the concept, obtaining a universal mechanism for proving decid-

ability of bisimulation-like equivalences between in�nite-state and �nite-state pro-

cesses. Then we apply the designed method to the class of PAD processes (de�ned

in [May97b]), which properly subsumes all PA and pushdown processes. We prove

that a large class of bisimulation-like equivalences (including e.g. strong and weak

bisimilarity) is decidable between PAD and �nite-state processes, utilizing pre-

viously established results on decidability of the model-checking problem for EF

logic [May97a, May98]. We also provide several undecidability results to complete

the picture|we show that any \reasonable" bisimulation-like equivalence is un-

decidable between state-extended PA processes and �nite-state ones. Moreover,

even in case of state-extended BPP processes (which form a natural subclass of

Petri nets) the weak bisimilarity with �nite-state processes is undecidable.

Decidability of bisimulation-like equivalences has been intensively studied for

various process classes (see e.g. [Mol96] for a complete survey). The majority of

the results are about the decidability of strong bisimilarity, e.g. [BBK93, CHS95,

CHM93, Sti96, �CKK97, Ku�c97, Jan95].

Strong bisimilarity with �nite-state processes is known to be decidable for (la-

belled) Petri nets [JM95], PA and pushdown processes [JK97]. Another positive

result of this kind is presented in [May96], where it is shown that weak bisimilarity

is decidable between BPP and �nite-state processes. However, weak bisimilarity

with �nite-state processes is undecidable for Petri nets [JE96]. Thus, in this paper

we obtain original positive results for PAD (and hence also PA and PDA) pro-

cesses, and an undecidability result for state-extended BPP processes. Moreover,

all positive results are proved using the same general strategy, which can also be

adapted to previously established ones.

2 De�nitions

Transition systems are widely accepted as a structure which can exactly de�ne

the operational semantics of processes. In the rest of this paper we understand

processes as (being associated with) nodes in transition systems of certain types.

De�nition 1. A transition system (TS) T is a triple (S;Act;!) where S is a

set of states, Act is a �nite set of actions (or labels) and !� S � Act� S is a
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transition relation.

We de�ned Act as a �nite set; this is a little bit nonstandard, but we can allow

this as all classes of processes we consider generate transition systems of this kind.

As usual, we write s
a
! t instead of (s; a; t) 2! and we extend this notation to

elements of Act� in an obvious way (we sometimes write s!�
t instead of s

w
! t

if w 2 Act� is irrelevant). A state t is reachable from a state s if s!�
t.

Let Var = fX; Y; Z; : : :g be a countably in�nite set of variables. The class

of process expressions, denoted E , is de�ned by the following abstract syntax

equation:

E ::= � j X j EkE j E:E

Here X ranges over Var and � is a constant that denotes the empty expression. In

the rest of this paper we do not distinguish between expressions related by struc-

tural congruence which is the smallest congruence relation over process expressions

such that the following laws hold:

� associativity for `:' and `k'

� commutativity for `k'

� `�' as a unit for `:' and `k'.

A process rewrite system [May97b] is speci�ed by a �nite set � of rules which are

of the form E
a
! F , where E; F are process expressions and a is an element of a

�nite set Act. Each process rewrite system determines a unique transition system

where states are process expressions, Act is the set of labels, and transitions are

determined by � and the following inference rules (remember that `k' is commu-

tative):

(E
a
! F ) 2 �

E
a
! F

E
a
! E

0

E:F
a
! E

0
:F

E
a
! E

0

EkF
a
! E

0kF

The classes of BPA, BPP, PA, and PAD systems are subclasses of process rewrite

systems obtained by certain restrictions on the form of the expressions which

can appear at the left-hand and the right-hand side of rules. To specify those

restrictions, we �rst de�ne the classes of sequential and parallel expressions, com-

posed of all process expressions which do not contain the `k' and the `:' operator,

respectively. BPA, BPP, and PA allow only a single variable at the left-hand

side of rules, and a sequential, parallel, and general process expression at the

right-hand side, respectively. Note that each transition E
a
! F is due to some

rule X
a
! G of � (i.e. X is rewritten by G within E, yielding the expression

F ). Generally, there can be more than one rule of � with this property|if e.g.

� = fX
a
! XkY; Y

a
! Y kY g, then the transitionXkY

a
! XkY kY can be derived
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in one step in two di�erent ways. For each transition E
a
! F we denote the set

of all rules of � which allow to derive the transition in one step by Step(E
a
! F ).

The PA class strictly subsumes BPA and BPP systems; a proper extension of

PA is the class of PAD systems (see [May97b]), where sequential expressions are

allowed at the left-hand side and general ones at the right-hand side of rules. The

PAD class strictly subsumes not only PA but also PDA processes (see below).

This fact is demonstrated in [May97b].

Another way how to extend a PA system is to add a �nite-state control unit

to it. A state-extended PA system is a triple (�; Q;BT) where � is a PA system,

Q is a �nite set of states, and BT � � � Q � Q is a set of basic transitions.

The transition system generated by a state-extended PA system (�; Q;BT) has

Q� E as the set of states (its elements are called state-extended PA processes, or

StExt(PA) processes for short), Act is the set of labels, and the transition relation

is determined by

(p; E)
a
! (q; F ) i� E

a
! F and (X

a
! G; p; q) 2 BT

for some element X
a
! G of Step(E

a
! F )

Natural subclasses of StExt(PA) systems are StExt(BPA) and StExt(BPP), which

are also known as pushdown (PDA) and parallel pushdown (PPDA) systems,

respectively. Each StExt(BPA) system can also be seen as a PAD system; however,

the classes of StExt(BPP) and PAD systems are semantically incomparable (w.r.t.

strong bisimilarity, which is de�ned in the next section|see also [May97b]).

3 A General Method for Bisimulation-Like

Equivalences

In this section we design a general method for proving decidability of bisimulation-

like equivalences between in�nite-state processes and �nite-state ones.

De�nition 2. Let R : Act! 2Act
�

be a (total) function, assigning to each action

its corresponding set of responds. We say that R is closed under substitution if

the following conditions hold:

� a 2 R(a) for each a 2 Act

� If b1b2 : : : bn 2 R(a) and w1 2 R(b1); w2 2 R(b2); : : : ; wn 2 R(bn), then also

w1w2 : : : wn 2 R(a).

In order to simplify our notation, we adopt the following conventions in this

section:
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� G = (G;Act;!) always denotes a (general) transition system.

� F = (F;Act;!) always denotes a �nite-state transition system with k states.

� R always denotes a function from Act to 2Act
�

which is closed under substi-

tution.

� N always denotes a decidable binary predicate de�ned for pairs (s; t) of nodes

in transition systems (which will be clear from the context). Moreover, N

is reexive, symmetric, and transitive.

Note that G and F have the same set of actions Act. All de�nitions and propo-

sitions which are formulated for G should be considered as general; if we want to

state some speci�c property of �nite-state transition systems, we refer to F . We

also assume that G, F , R, and N are de�ned in a `reasonable' way so that we

can allow natural decidability assumptions on them (e.g. it is decidable whether

g
a
! g

0 for any given g; g
0 2 G and a 2 Act, or whether w 2 R(a) for a given

w 2 Act�, etc.)

De�nition 3. The extended transition relation )� G � Act � G is de�ned as

follows: s
a
) t i� s

w
! t for some w 2 R(a).

De�nition 4. A relation P � G�G is an R-N-bisimulation if whenever (s; t) 2

P , then N(s; t) is true and for each a 2 Act:

� If s
a
! s

0, then t
a
) t

0 for some t0 2 G such that (s0; t0) 2 P .

� If t
a
! t

0, then s
a
) s

0 for some s0 2 G such that (s0; t0) 2 P .

States s; t 2 G are R-N-bisimilar, written s
RN

� t, if there is an R-N-bisimulation

relating them.

Various special versions of R-N -bisimilarity appeared in the literature, e.g. strong

and weak bisimilarity (see [Par81, Mil89]). The corresponding versions of R (de-

noted by S and W , respectively) are de�ned as follows:

� S(a) = fag for each a 2 Act

� W (a) =

(
f� i j i 2 N0g if a = �

f� ia� j j i; j 2 N0g otherwise

The `� ' is a special (silent) action, usually used to model an internal commu-

nication. As the predicate N is not used in the de�nitions of strong and weak

bisimilarity, we can assume it is always true (we use T to denote this special

case of N in the rest of this paper). One can also argue that the N predicate
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could be omitted from the de�nition of R-N -bisimilarity, as it is not employed by

any known bisimulation-like equivalence. This is not completely true, as e.g. the

version of bisimilarity introduced in [Mol96] uses such a predicate to distinguish

between `terminal' and `�nal' states. However, the main reason for introducing

the N predicate is our e�ort to enlarge the class of bisimulation-like equivalences

for which we can provide positive decidability results as much as possible.

The concept of R-N -bisimilarity covers many equivalences, which have not

been explicitly investigated so far; for example, we can de�ne the function R like

this:

� K(a) = fai j i 2 N0g for each a 2 Act.

� L(a) = fw 2 Act� j w begins with ag.

� M(a) =

(
Act� if a = �

fw 2 Act� j w contains at least one ag otherwise

The predicate N can also have various forms. We have already mentioned the `T '

(always true). Another natural example is the I predicate: I(s; t) is true i� s and

t have the same sets of initial actions (the set of initial actions of a state g 2 G is

fa 2 Act j g
a
! g

0 for some g0 2 Gg). It is easy to see that e.g.
ST

� coincides with
SI

�, while
WI

� re�nes
WT

� .

To the best of our knowledge, the only bisimulation-like equivalence which can-

not be seen as R-N -bisimilarity is branching bisimilarity introduced in [vGW89].

This relation also places requirements on `intermediate' nodes that extended tran-

sitions pass through, and this brings further di�culties. Therefore we do not

consider branching bisimilarity in our paper.

R-N -bisimilarity can also be de�ned in terms of the so-called R-N-bisimulation

game. Imagine that there are two tokens initially placed in states s and t such that

N(s; t) is true. Two players, Al and Ex, now start to play a game consisting of a

(possibly in�nite) sequence of rounds, where each round is performed as follows:

1. Al chooses one of the two tokens and moves it along an arbitrary (but single!)

transition, labelled by some a 2 Act.

2. Ex has to respond by moving the other token along a �nite sequence of

transitions in such a way that the corresponding sequence of labels belongs

to R(a) and the predicate N is true for the states where the tokens lie after

Ex �nishes his move.

Al wins the R-N -bisimulation game, if after a �nite number of rounds Ex cannot

respond to Al's �nal attack. Now it is easy to see that the states s and t are

R-N -bisimilar i� Ex has a universal defending strategy (i.e. Ex can play in such

a way that Al cannot win).
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A natural way how to approximate R-N -bisimilarity is to de�ne the family of

relations
RN

�i� G�G for each i 2 N0 as follows: s
RN

�i t i� N(s; t) is true and Ex

has a defending strategy within the �rst i rounds in the R-N -bisimulation game.

However,
RN

�i does not have to be an equivalence relation. Moreover, it is not

necessarily true that s
RN

� t() s
RN

�i t for each i 2 N0.

Example 1. It is a well-known fact that in case of weak bisimilarity (i.e. W-T-

bisimilarity) the equivalence

s
WT

� t () s
WT

� i t for each i 2 N0

does not hold in general ( `(=' does not have to be valid). Moreover,
WT

� i is

not transitive for i � 1. To see this, consider the states s; t; u in the following

transition system:

r
s

?
a

b

t
r

�
��
� �

b

A
AU
b

? ?
a b

b b

u
r

?
b

b

Now s
WT

� 1 t and t
WT

� 1 u, but s 6
WT

� 1 u.

Now we show how to overcome those drawbacks; to do this, we introduce the

extended R-N -bisimulation relation:

De�nition 5. A relation P � G�G is an extended R-N-bisimulation if whenever

(s; t) 2 P , then N(s; t) is true and for each a 2 Act:

� If s
a
) s

0, then t
a
) t

0 for some t0 2 G such that (s0; t0) 2 P .

� If t
a
) t

0, then s
a
) s

0 for some s0 2 G such that (s0; t0) 2 P .

States s; t 2 G are extended R-N-bisimilar if there is an extended R-N-bisimulation

relating them.

Naturally, we can also de�ne the extended R-N -bisimilarity by means of the ex-

tended R-N -bisimulation game; we simply allow Al to use the `long' moves (i.e.

Al can play the same kind of moves as Ex). Moreover, we can de�ne the family

of approximations of extended R-N -bisimilarity in the same way as in case of

R-N -bisimilarity|for each i 2 N0 we de�ne the relation
RN

'i� G �G as follows:

s
RN

'i t i� N(s; t) is true and Ex has a defending strategy within the �rst i rounds

in the extended R-N -bisimulation game where tokens are initially placed in s and

t.
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Lemma 1. Two states s; t of G are R-N-bisimilar i� s and t are extended R-N-

bisimilar.

Proof: Every extended R-N -bisimulation is also an R-N -bisimulation; here we

need that a 2 R(a) for each a 2 Act. Conversely, each R-N -bisimulation is also

an extended R-N -bisimulation; each extended transition is a �nite sequence of

transitions, hence we can concatenate `responses' to those individual transitions,

obtaining a valid response to the original extended transition. Here we need

the second requirement from De�nition 2, that the relation R is closed under

substitution.

Lemma 2. The following properties hold:

1.
RN

'i is an equivalence relation for each i 2 N0.

2. Let s; t be states of G. Then s
RN

�i t for each i 2 N0 i� s
RN

'i t for each

i 2 N0.

Proof:

1. For the �rst part, reexivity and symmetry are obvious. Transitivity follows

from the condition that the relation R is closed under substitution.

2. It follows from the de�nition of
RN

' that s
RN

'i t =) s
RN

�i t. Hence it su�ces

to realize that if s 6
RN

'i t, then s 6
RN

�j t for some j 2 N0|as Al can force his

win using i `long' moves and each of those moves is composed of a �nite

number of `short' moves, Al could actually `decompose' his attacks, playing

only (a �nite number of) short moves.

Remark 1. For any states s; t of G and i 2 N0 we have that if s
RN

'i t then also

s
RN

�i t. However, there is no `reverse correspondence'|it can be easily shown that

for arbitrarily large j the implication s
RN

�j t =) s
RN

'1 t is generally invalid (the

implication is invalid even in case when t is a state in one-state TS).

Now we examine some special features of R-N -bisimilarity on �nite-state transi-

tion systems (remember that F is a �nite-state TS with k states).

Lemma 3. Two states s; t of F are R-N-bisimilar i� s
RN

'k�1 t.

Proof: As F has k states and
RN

'i+1 re�nes
RN

'i for each i 2 N0, we have that
RN

'k�1=
RN

'k, hence
RN

'k�1=
RN

�.
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Theorem 1. States g 2 G and f 2 F are R-N-bisimilar i� the following condi-

tions are true:

1. g
RN

'k f

2. For each state g0 reachable from g there is a state f 0 2 F such that g0
RN

'k f
0.

Proof:

`=)': Obvious.

`(=': We prove that the relation

P = f(g0; f 0) j g!�
g
0 and g

0 RN'k f
0g

is an extended R-N -bisimulation. Let (g0; f 0) 2 P and let g0
a
) g

00 for some

a 2 Act (the case when f 0
a
) f

00 is handled is the same way). By de�nition of
RN

'k,

there is f 00 such that f 0
a
) f

00 and g
00
RN

'k�1 f
00. It su�ces to show that g00

RN

'k f
00;

as g !�
g
00, there is a state f of F such that g00

RN

'k f . By transitivity of
RN

'k�1 we

have f
RN

'k�1 f
00, hence f

RN

'k f
00 (due to Lemma 3). Now g

00
RN

'k f
RN

'k f
00 and thus

g
00
RN

'k f
00 as required. Clearly (g; f) 2 P and the proof is �nished.

Remark 2. We have already mentioned that the equivalence

s
RN

� t () s
RN

'i t for each i 2 N0

is generally invalid (e.g. in case of weak bisimilarity). However, as soon as we

assume that t is a state in a �nite-state transition system, the equivalence becomes

true. This is an immediate consequence of the previous theorem. Moreover, the

second part of Lemma 2 says that we could also use the
RN

�i approximations in the

right-hand side of the equivalence.

The previous theorem in fact says that one can use the following strategy to decide

whether g
RN

� f :

1. Decide whether g
RN

'k f (if not, then g 6
RN

� f).

2. Check whether g can reach a state g0 such that g 6
RN

'k f
0 for any state f 0 of

F (if there is such a g0 then g 6
RN

� f ; otherwise g
RN

� f).

However, none of these tasks is easy in general. Our aim is to examine both

subproblems in detail, keeping the general setting. Thus we cannot expect any

`universal' (semi)decidability result, because even the problems g
WT

' 1 f and g 6
WT

' 1

f are not semidecidable in general (see Section 5).

As F has �nitely many states, the extended transition relation ) is �nite

and e�ectively constructible. This allows us to \extract" from F the information
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which is relevant for the �rst k moves in the extended R-N -bisimulation game

by means of branching trees with depth at most k, whose arcs are labelled by

elements of Act and nodes are labelled by elements of F [ f?g, where ? 62 F .

The aim of following de�nition is to describe all such trees up to isomorphism

(remember that Act is a �nite set).

De�nition 6. For each i 2 N0 we de�ne the set of Trees with depth at most i

(denoted Treei) inductively as follows:

� A Tree with depth 0 is any tree with no arcs and a single node (the root)

which is labelled by an element of F [ f?g.

� A Tree with depth at most i+1 is any directed tree with root r whose nodes

are labelled by elements of F [ f?g, arcs are labelled by elements of Act,

which satis�es the following conditions:

{ If r
a
! s, then the subtree rooted by s is a Tree with depth at most i.

{ If r
a
! s and r

a
! s

0, then the subtrees rooted by s and s
0 are not

isomorphic.

It is clear that the set Treej is �nite for any j 2 N0. More precisely, its cardinality

(denoted NT(j)) is given by:

� NT(0) = k + 1

� NT(i + 1) = (k + 1) � (2n�NT(i) � 1), where n = card(Act)

The set Treej is e�ectively constructible for each j 2 N0. As each Tree can be

seen as a transition system, we can also speak about Tree-processes which are

associated with roots of Trees (we do not distinguish between Trees and Tree-

processes in the rest of this paper).

Now we introduce special rules which replace the standard ones whenever we

consider an extended R-N-bisimulation game with initial state (g; p), where g 2 G

and p is a Tree process (formally, this is a di�erent game|however, it does not

deserve a special name in our opinion).

� Al and Ex are allowed to play only `short' moves consisting of exactly one

transition whenever playing within the Tree process p (transitions of Trees

correspond to extended transitions of F).
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� The predicate N(g0; p0), where g0 2 G and p
0 a state of the Tree process p,

is evaluated as follows:

N(g0; p0) =

8>>>>>><
>>>>>>:

true if label(p0) = ? and

N(g0; f) = false for any f 2 F

false if label(p0) = ? and

N(g0; f) = true for some f 2 F

N(g0; label(p0)) otherwise

Whenever we write g
RN

'i p, where g 2 G and p is a Tree process, we mean that

Ex has a defending strategy within the �rst i rounds in the `modi�ed' extended

R-N -bisimulation game. The importance of Tree processes is clari�ed by the two

lemmas below:

Lemma 4. Let g be a state of G, j 2 N0. Then g
RN

'j p for some p 2 Treej

Proof: We proceed by induction on j:

� j = 0 : Then p is a Tree with no arcs and just one node labelled by some

f 2 F such that N(g; f) is true; if there is no such f , then it is labelled by

?. Clearly g
RN

'0 p.

� Induction step: We need to construct a Tree p such that g
RN

'j+1 p. The

Tree p has a root r whose label is the same as in the case when j = 0. The

successors of r are de�ned by

r
a
! s i� g

a
) g

0 and g0
RN

'j s

By induction hypothesis, for each g
0 there is p0 2 Treej such that g0

RN

'j p
0.

Thus we have g
RN

'j+1 p as required.

Lemma 5. Let f be a state of F , j 2 N0, and p 2 Treej such that f
RN

'j p. Then

for any state g of G we have that g
RN

'j f i� g
RN

'j p.

Proof:

`=)': By induction on j:

� j = 0 : As f
RN

'0 p and g
RN

'0 f , we have that N(g; f) is true and (the root

of) p is labelled by some f 0 such that N(f; f 0) is true. Hence N(g; f 0) is true

and g
RN

'0 p.
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� Induction step: Let f
RN

'j+1 p and g
RN

'j+1 f . We prove that g
RN

'j+1 p.

Clearly N(g; label(p)) is true (see above). Let g
a
) g

0 (the case when p
a
! p

0

can be done similarly). We need to show that p
a
! p

0 for some p
0 with

g
0
RN

'j p
0. As g

RN

'j+1 f , there is f 0 2 F such that f
a
) f

0 and g
0
RN

'j f
0.

Furthermore, as f
RN

'j+1 p and f
a
) f

0, there is p0 such that p
a
! p

0 and

f
0
RN

'j p
0. To sum up, we have f 0

RN

'j p
0 and g

0
RN

'j f
0, hence g0

RN

'j p
0 by

induction hypotheses.

`(=': In a similar way.

Now we can extract the core of both subproblems which appeared in the previ-

ously mentioned general strategy in a (hopefully) nice way by de�ning two new

and rather special problems|the Step-problem and the Reach-problem:

The Step-problem

Instance: (g; a; j; p) where g is a state of G, a 2 Act, 0 � j < k, and p 2 Treej.

Question: Is there a state g0 of G such that g
a
) g

0 and g
0
RN

'j p?

The decision algorithm may use the oracle which for any state g00 of G answers

whether g00
RN

'j p.

The Reach-problem

Instance: (g; p) where g is a state of G and p is a Tree-process of depth � k.

Question: Is there a state g0 of G such that g !�
g
0 and g

0
RN

'k p?

The decision algorithm may use the oracle which for any state g00 of G answers

whether g00
RN

'k p.

Formally, the transition system F should also be present in instances of both prob-

lems, as it determines the sets Treej and the constant k; we prefer the simpli�ed

form to make the following proofs more readable.

Theorem 2. If the Step-problem is decidable (with possible usage of the men-

tioned oracle), then
RN

'k is decidable between any states g and f of G and F ,

respectively.

Proof: We prove by induction on j that
RN

'j is decidable for any 0 � j � k.

First,
RN

'0 is decidable because the predicate N is decidable. Let us assume that
RN

'j is decidable (hence the mentioned oracle can be used). It remains to prove

that if the Step-problem is decidable, then
RN

'j+1 is decidable as well. We need to

introduce two auxiliary �nite sets:

12



� The set of Compatible Steps, denoted CSfj , is composed exactly of all pairs

of the form (a; p) where a 2 Act and p 2 Treej, such that f
a
) f

0 for some

f
0 with f 0

RN

'j p.

� The set of INCompatible Steps, denoted INCS
f
j , is a complement of CS

f
j

w.r.t. Act� Treej.

The sets CSfj and INCSfj are e�ectively constructible. By de�nition, g
RN

'j+1 f i�

N(g; f) is true and the following conditions hold:

1. If f
a
) f

0, then g
a
) g

0 for some g0 with g0
RN

'j f
0.

2. If g
a
) g

0, then f
a
) f

0 for some f 0 with g0
RN

'j f
0.

The �rst condition in fact says that (g; a; j; p) is a positive instance of the Step-

problem for any (a; p) 2 CSfj (see Lemma 4 and 5). It can be checked e�ectively

due to the decidability of the Step-problem.

The second condition does not hold i� g
a
) g

0 for some g0 such that g0
RN

'j p

where (a; p) is an element of INCSfj (due to Lemma 4 and 5). This is clearly

decidable due to the decidability of the Step-problem again.

It is worth mentioning that the Step-problem is generally semidecidable (provided

it is possible to enumerate all �nite paths starting in g). However, it does not

su�ce for semidecidability of
RN

'i or 6
RN

'i between states of G and F .

Theorem 3. Decidability of the Step-problem and the Reach-problem (with pos-

sible usage of the indicated oracles) implies decidability of the problem whether for

each g0 reachable from a given state g of G there is a state f 0 of F with g0
RN

'k f
0.

Proof: First, the oracle indicated in the de�nition of Reach-problem can be used

because we already know that decidability of the Step-problem implies decidability

of
RN

'k between states of G and F (see the previous theorem). To �nish the proof,

we need to de�ne one auxiliary set:

� The set of INCompatibleTrees, denoted INCT , is composed of all p 2 Treek
such that f 6

RN

'k p for each state f of F .

The set INCT is �nite and e�ectively constructible. The state g can reach a

state g0 such that g0 6
RN

'k f for any state f of F (i.e. g is a negative instance of

the problem speci�ed in the second part of this theorem) i� (g; p) is a positive

instance of the Reach problem for some p 2 INCT (due to Lemma 4 and 5).

13



4 Applications

In this section we show how to apply the previously designed general method

to various classes of in�nite-state processes. We show that the Step-problem as

well as the Reach-problem can be reduced to the model checking problem for the

branching-time temporal logic EF . Therefore it is possible to apply decidability

results from this area. In this way we elegantly prove that a large class of R-

N -bisimulation equivalences is decidable between PAD processes and �nite-state

ones (the class includes all versions of R-N -bisimulation equivalences we de�ned

in this paper and many others). First we de�ne the logic EF (more exactly an

extended version of EF with constraints on sequences of actions). The formulae

have the following syntax:

� ::= true j :� j �1 ^ �2 j hai� j 3C�

where a is an atomic action and C is a unary predicate on sequences of atomic

actions. Let T = (S;Act;!) be a transition system. The denotation [[�]] of a

formula � is a set of states of T , which is de�ned as follows (sequences of atomic

actions are denoted by w):

[[true]] := S

[[:�]] := S � [[�]]

[[�1 ^ �2]] := [[�1]] \ [[�2]]

[[hai�]] := fs 2 S j 9s0 2 S: s
a
! s

0 2 [[�]]g

[[3C�]] := fs 2 S j 9w; s0: s
w
! s

0 ^ C(w) ^ s
0 2 [[�]]g

The predicates C are used to express constraints on sequences of actions. For

every R-N -bisimulation we de�ne predicates Ca s.t. for every action a and every

sequence w

Ca(w)() w 2 R(a)

Let EFR be the fragment of EF that contains only constraints Ca for R and the

true constraint.

An instance of the model checking problem is given by a state s in S and an

EFR-formula �. The question is whether s 2 [[�]]. This property is also denoted

by s j= �.

Let us �x a general TS G = (G;Act;!) and a �nite-state TS F = (F;Act;!)

with k states in the same way as in the previous section. We show how to encode

the Step and the Reach problems by EFR formulae. The �rst di�culty is the N

predicate. Although it is decidable, we do not know anything about the strategy

of the model-checking algorithm, hence this fact is generally of no use. Instead, we

restrict our attention to those predicates which can be encoded by EFR formulae

14



in the following sense: for each f 2 F there is an EFR formula 	f such that for

each g 2 G we have that g j= 	f i� N(g; f) is true. In this case we also de�ne

the formula 	? :=
V
f2F :	f .

A concrete example of a predicate which can be encoded by EFR formulae

is e.g. the `I' predicate de�ned in the previous section: For every f 2 F let

Af := fa 2 Act j 9f 0: f
a
! f

0g. Then

	f :=
^

a2Af

haitrue ^
^

a2Act�Af

:haitrue

Now we design the family of �j;p formulae, where 0 � j � k and p 2 Treej, in

such a way that for each g 2 G the following equivalence holds:

g
RN

'j p () g j= �j;p

Having these formulae, the Step and the Reach problems can be encoded in a

rather straightforward way:

� (g; a; j; p) is a positive instance of the Step problem i� g j= 3Ca(�j;p)

� (g; p) is a positive instance of the Reach problem i� g j= 3(�k;p)

The family of �j;p formulae is de�ned inductively on j as follows:

� �0;p := 	f ; where f = label(p)

� �j+1;p := 	f ^

0
@ ^
a2Act

^
p02S(p;a)

3Ca�j;p0

1
A ^

0
@ ^
a2Act

(:3Ca(
^

p02S(p;a)

:�j;p0))

1
A,

where f = label(p) and S(p; a) = fp0 j p
a
! p

0g. If the set S(p; a) is empty,

any conjunction of the form

^
p02S(p;a)

�p0

is replaced by true.

The decidability of model checking with the logic EFR depends on the constraints

that correspond to R. It has been shown in [May97a] that model checking PA-

processes with the logic EF is decidable for the class of decomposable constraints.

This result has been generalized to PAD processes in [May98]. These constraints

are called decomposable, because they can be decomposed w.r.t. sequential and

parallel composition. The formal de�nition is as follows: A set of decomposable

constraints DC is a �nite set of unary predicates on �nite sequences of actions

that contains the predicates true and false and satis�es the following conditions.

15



1. For every C 2 DC there is a �nite index set I and a �nite set of decomposable

constraints fC1
i ; C

2
i 2 DC j i 2 Ig s.t.

8w;w1; w2: w1w2 = w )

 
C(w) ()

_
i2I

C
1
i (w1) ^ C

2
i (w2)

!

2. For every C 2 DC there is a �nite index set J and a �nite set of decomposable

constraints fC1
i ; C

2
i 2 DC j i 2 Jg s.t.

8w1; w2:

 
(9w 2 interleave(w1; w2): C(w)) ()

_
i2J

(C1
i (w1) ^ C

2
i (w2))

!

w 2 interleave(w1; w2) i� w is an arbitrary interleaving of w1 and w2. The

formal de�nition of the function interleave is as follows: Let � be the empty

sequence.

interleave(�; w) := fwg

interleave(w; �) := fwg

interleave(a1w1; a2w2) :=
fa1w j w 2 interleave(w1; a2w2)g[

fa2w j w 2 interleave(a1w1; w2)g

It is easy to see that the closure of a set of decomposable constraints under dis-

junction is again a set of decomposable constraints. All the previously mentioned

examples of relations R can be expressed by decomposable constraints. Consider

the relation W for weak bisimulation. There we have the following constraints:

W� (w) := (w = �
i for some i 2 N0)

Wa(w) := (w = �
i
a�

j for some i; j 2 N0)

These constraints can be decomposed w.r.t. sequential and parallel composition.

For W� this is trivial. For Wa we have

Wa(w1w2) , (Wa(w1) ^W� (w2)) _ (W� (w1) ^Wa(w2))

(9w2 interleave(w1; w2):Wa(w)) , (Wa(w1) ^W� (w2)) _ (W� (w1) ^Wa(w2))

Now we show decomposability for some other (nonstandard) relations that were

de�ned on page 6: For the relationK the decomposition is trivial. For the relation

L we have the constraint

La(w) := w begins with a

16



The decomposition is

La(w1w2) () La(w1)

(9w 2 interleave(w1; w2): La(w)) () La(w1) _ La(w2)

For the relation M we have the constraints

M� (w) := true

Ma(w) := w contains at least one a

The decomposition of M� is trivial. The decomposition of Ma is

Ma(w1w2) () Ma(w1) _Ma(w2)

(9w 2 interleave(w1; w2):Ma(w)) () Ma(w1) _Ma(w2)

However, there are also relations R that are closed under substitution, but which

yield non-decomposable constraints. For example let Act = fa; bg and R(a) :=

fw j #aw > #bwg and R(b) := fbg, where #aw is the number of actions a in w.

On the other hand there are decomposable constraints that are not closed under

substitution like R(a) := fai j 1 � i � 5g. Now we can formulate a very general

decidability theorem:

Theorem 4. The problem g
RN

� f , where R yields a set of constraints contained

in a set DC of decomposable constraints, N is expressible in EFR, g is a PAD

processes, and f is a �nite-state process, is decidable.

Corollary 1. Weak bisimilarity between a PAD process and a �nite-state system

is decidable.

Let us also mention that decidability of the model checking problem for the EFR

logic in a certain class of transition systems C is a su�cient but not necessary

condition for decidability of R-N -bisimilarity between processes of C and �nite-

state ones. For example, model checking the `pure' EF (without any constraints)

is undecidable for Petri nets, but the Step and the Reach problems are decidable

for S-T -bisimilarity [JE96]. This is because the Step-problem is trivial for strong

bisimulation.

5 Undecidability Results

In this section we provide several negative (undecidability) results which help to

clarify the decidability/undecidability border in the area of comparing in�nite-

state processes with �nite-state ones.

Intuitively, any `nontrivial' equivalence with �nite-state processes should be

undecidable for a class of processes having `full Turing power', which can be

formally expressed as e.g. the ability to simulate Minsky counter machines:
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De�nition 7. A counter machine M with nonnegative counters c1; c2; :::; cm is a

sequence of instructions

1 : INS1
2 : INS2
...

n� 1 : INSn�1
n : HALT

where each INSi (i = 1; 2; :::; n�1) is in one of the following two forms (assuming

1 � k; k1; k2 � n, 1 � j � m)

� cj := cj + 1; goto k

� if cj = 0 then goto k1 else (cj := cj � 1; goto k2)

The halting problem problem is undecidable even for Minsky machines with two

counters initialized to zero values [Min67]. Any such machine M can be easily

`mimicked' by a StExt(PA) process P (M). A construction of the P (M) process

is described in [JK97]. The (two) counters are modelled by a simple PA process

(I1:I1 : : : I1:Z1)k(I2:I2 : : : I2:Z2) where the number of Ii's means the current value

of the counter ci, i = 1; 2 (the starting zero point being modelled by Z1kZ2).

The control states (s1; s2; : : : ; sn) correspond to the instructions ofM; each state

determines the unique transition to be performed next with the exception of sn
which is the `halting state'.

If we label each transition in P (M) by a �xed action a then it is able either

to perform the action a boundedly many times and to stop (its behaviour can be

de�ned as an for some n) or to do a forever (its behaviour being a!); this depends

on whether the corresponding counter machine M halts or not. Notice that a!

is the behaviour of the 1-state transition system (fsg; fag; f(s; a; s)g). When we

declare as reasonable any equivalence which distinguishes between (processes with)

behaviours a! and an, we can conclude:

Theorem 5. Any reasonable equivalence between StExt(PA) processes and �nite-

state ones is undecidable.

It is obvious that (almost) any R-N -bisimilarity is reasonable in the above sense,

except for some trivial cases. For weak bisimilarity, we can even show that none

of the problems g
WT

' 1 f , g 6
WT

' 1 f is semidecidable when g is a StExt(PA) process.

It su�ces to realize that we can label all transitions in P(M) by � and add a

special a-transition enabled in the (halting) state sn.
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Once seeing that StExt(PA) are strong enough to make our equivalences unde-

cidable, it is natural to ask what happens when we add �nite-state control parts

to processes from subclasses of PA, namely to BPA and BPP.

We have already shown that any R-N -bisimilarity such that R yields de-

composable constraints and N is expressible within EFR is decidable between

StExt(BPA) (i.e. PDA) processes and �nite-state ones. In the case of StExt(BPP),

strong bisimilarity with �nite-state processes is decidable [JM95]. Here we demon-

strate that the problem for weak bisimilarity is undecidable.

We start by recalling the construction of the proof from [JE96] which shows

that the weak bisimilarity is undecidable between labelled Petri nets and �nite-

state systems.

De�nition 8. A labelled (place/transition) Petri net over Act is a tuple N =

(P; T; F;M0; `) where

� P and T are �nite and disjoint sets of places and transitions, respectively;

� F : (P � T ) [ (T � P ) ! f0; 1g determines (by attaching the value 1) the

arcs;

� M0:P ! N0 is the initial marking of N (N0 denoting the set of nonnegative

integers);

� `:T ! Act is a labelling, which associates an action to each transition.

Each netN determines a unique TS; its states are markings, i.e. mappingsM :P !

N0 where M0 is the distinguished (starting) state, Act is the action set, and

M
a
! M

0 i� there is t 2 T s.t. `(t) = a, M(p) � F (p; t) and M
0(p) = M(p) �

F (p; t) + F (t; p) for each p 2 P .

A place p is bounded in N i� there is some m 2 N0 s.t. M(p) � m for any M

which is reachable from M0; otherwise p is unbounded.

It can be easily shown that a labelled Petri net where each transition t has

exactly one input place (F (p; t) = 1 exactly for one p) is equivalent to a BPP

process (the corresponding transition systems are isomorphic)|cf. e.g. [Esp95].

Similarly, if any transition has at most one unbounded place among its input

places, then it is easy to transform the net into an equivalent StExt(BPP) process

(the marking of bounded places is modelled by �nite control states); let us call

such nets as StExt(BPP)-nets.

The idea of the mentioned construction from [JE96] looks as follows. First, the

7-state transition system of Figure 1 with a distinguished state f is �xed. Then

it is shown how to construct a net NM for any two-counter machine M. The net

NM is sketched in Figure 2. It holds that the net NM is weakly bisimilar to f i�

the machine M does not halt for the zero input. Therefore, if the net NM were

19



h- h- h- h- h

h

�
��7���/

?

-

�
�
�
�
�
�
�
��3

Q
Q
Q
Q
Q
Q
Q
QQs

XXX
XXX

XXX
Xy

z

����������9

:

r

h

p

�

c

c

� a � b

N1

N2

- - - -
6

�

Figure 2

� b
// �

c

��

�
f

a
// �

� 77
n
n
n
n
n
n

� ''P
P
P
P
P
P

�
b

// �

c

�� �
// �

Figure 1

f

f

f �

c

c

-

PPPPqPP
PPi

�

��
��1����)

Q
Q
QQs

��
��*
�
�
���
�
��

A
A
AUA
A
AK

f

f

f

c

c
PPPPqPP
PPi

��
��1����)

�
�
���
�
��

A
A
AUA
A
AK

f

�

�

XXXXz
��> QQs

���
���

�:Q
Qk

c-�

Figure 3

always a StExt(BPP)-net, we would be done. In fact, it is not the case but NM can

be suitably transformed. The depicted subnets N1 and N2 (with all transitions

labelled by �) can be constructed as in [Jan95] (for showing undecidability of the

reachability set equality problem). At most 5 places in N1 and 5 places in N2 can

be unbounded then; it can be easily veri�ed that each their transition has at most

1 unbounded place among its input places.

The only di�culty are the � -transitions in the `right-hand side' of NM (the

places of N1 correspond bijectively to places of N2 and there is one such � -

transition for each corresponding pair).

Important here is that all transitions in the right hand side are enabled after

the depicted place p is marked (p is bounded and can be marked by 1 at most);

p is a `run-place' for these transitions (it is an input and output place for each of

them). At that time, either the action c is enabled forever { when the markings in

N1 and N2 di�er { or a deadlock can be reached (using the � -transitions) { when

the markings in N1 and N2 coincide.

For our aims, we can replace each � -transition which has 2 unbounded input

places in the way depicted in Figure 3 (replacing the left-hand side by the right-

hand side). Thus we transform NM into an StExt(BPP)-net, leaving it in the

same weak bisimilarity class. Therefore we can conclude:

Theorem 6. Weak bisimilarity is undecidable between StExt(BPP) processes and

�nite-state ones.
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6 Conclusions, Future Work

We designed a general method for proving decidability of R-N -bisimilarity be-

tween in�nite-state processes and �nite-state ones (Theorem 1) by reducing this

problem to two other problems|the Step and the Reach problem (Theorem 2

and 3). We also showed how to encode these special problems by formulae of

EFR logic. As this logic is decidable for PAD (and hence also PA and PDA) pro-

cesses, we obtained a general decidability theorem (Theorem 4), which says that

any R-N -bisimilarity such that R yields decomposable constrains on sequences

of actions and N can be expressed by EFR formulae is decidable between PAD

and �nite-state processes. This class of R-N -bisimilarities includes all versions of

R-N -bisimulation equivalences mentioned in this paper. Examples are the rela-

tions
KI

�,
LT

�,
MI

�, or
WI

�, but most importantly
ST

� and
WT

� (i.e. the strong and weak

bisimilarity).

Then we demonstrated that each \reasonable" R-N -bisimilarity is undecidable

between StExt(PA) processes and �nite-state ones (Theorem 5); this is caused by

the fact that StExt(PA) processes have full Turing power. Moreover, even if

we restrict our attention to StExt(BPP), we get undecidability result for weak

bisimilarity (Theorem 6). This proof is obtained by a modi�cation of the one

which has been used for Petri nets.

A complete summary of the results on decidability of bisimulation-like equiv-

alences with �nite-state processes is given in the table below. As we want to

make clear what results have been previously obtained by other researchers, our

table contains more rows than it is necessarily needed (e.g., the positive result

for PAD and
RN

�, where R and N have the above indicated properties, `covers'

all positive results for BPA, BPP, PA, and PDA). We also add a special column

which indicates decidability of the model-checking problem for EF .

ST

�

WT

�

RN

� EF

BPA Yes [CHS95] YES YES Yes

BPP Yes [CHM93] Yes [May96] YES Yes

PA Yes [JK97] YES YES Yes

StExt(BPA), i.e. PDA Yes [JK97] YES YES Yes

StExt(BPP), i.e. PPDA Yes [JM95] NO NO No

StExt(PA) No [JK97] No [JK97] No [JK97] No

PAD YES YES YES Yes

Petri nets Yes [JM95] No [JE96] No [JE96] No

The results obtained in this paper are in boldface. Note that although model-

checking EF logic is undecidable for StExt(BPP) processes and Petri nets, strong

bisimilarity with �nite-state systems is decidable. The original proof in [JM95] in
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fact demonstrates decidability of the Reach problem (the Step problem is trivially

decidable), hence our general strategy applies in this case, too.

A unifying concept similar to R-N -bisimulation can also be used in case of

simulation-like equivalences|we can de�ne the R-N -simulation relation in the

very same way as R-N -bisimulation (which can be then seen as a special case of

R-N -simulation with the property that its inverse is also an R-N -simulation). The

predicate N becomes more important in this context, as it allows to de�ne some

of the known and studied simulation-like equivalences (e.g. the ready simulation

equivalence). An interesting open problem is whether it is possible to design a

general strategy for deciding R-N -simulation equivalence between in�nite-state

and �nite-state processes in a similar way as in case of R-N -bisimilarity. Another

set of open problems is decidability of branching bisimilarity with �nite-state

processes.
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