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to check if the �nite-state speci�cation and the in�nite-state implementationare semantically equivalent, i.e., weakly bisimilar.We concentrate on the classes of in�nite-state processes de�nable by the syn-tax of BPA (Basic Process Algebra) and normed BPP (Basic Parallel Pro-cesses) systems. BPA processes (also known as context-free processes) can beseen as simple sequential programs (due to the binary operator of sequentialcomposition). They have recently been used to solve problems of data-
owanalysis in optimizing compilers [13]. BPP [8] model simple parallel systems(due to the binary operator of parallel composition). They are equivalent tocommunication-free nets, the subclass of Petri nets [36] where every transitionhas exactly one input-place [11]. A process is normed i� at every reachablestate it can terminate via a �nite sequence of computational steps.Although the syntax of BPA and BPP allows to de�ne simple in�nite-statesystems, from the practical point of view it is also important that they can givevery compact de�nitions of �nite-state processes (i.e., the size of a BPA/BPPde�nition of a �nite-state process F can be exponentially smaller than thenumber of states of F|see the next section). As our veri�cation algorithmsare polynomial in the size of the BPA/BPP de�nition, we can (potentially)verify very large processes. Thus, our results can be also seen as a way howto overcome the well-known problem of state-space explosion.The state of the art. Baeten, Bergstra, and Klop [1] proved that strongbisimilarity [35] is decidable for normed BPA processes. Simpler proofs havebeen given later in [20,14], and there is even a polynomial-time algorithm[17]. The decidability result has later been extended to the class of all (notnecessarily normed) BPA processes in [10], but the best known algorithm isdoubly exponential [4]. Decidability of strong bisimilarity for BPP processeshas been established in [9], but the associated complexity analysis does notyield an elementary upper bound (although some deeper examination might inprinciple show that the algorithm is elementary). Strong bisimilarity of BPPhas been shown to be co-NP -hard in [28]. However, there is a polynomial-timealgorithm for the subclass of normed BPP [18]. Strong bisimilarity betweennormed BPA and normed BPP is also decidable [7]. This result even holdsfor parallel compositions of normed BPA and normed BPP processes [22].Recently, this has even been generalized to the class of all normed PA-processes[16].For weak bisimilarity, much less is known. Semidecidability of weak bisimila-rity for BPP has been shown in [11]. In [15] it is shown that weak bisimilarity isdecidable for those BPA and BPP processes which are `totally normed' (a pro-cess is totally normed if it can terminate at any moment via a �nite sequenceof computational steps, but at least one of those steps must be `visible', i.e.,non-internal). Decidability of weak bisimilarity for general BPA and BPP is2



open; those problems might be decidable, but they are surely intractable (as-suming P 6= NP ). Weak bisimilarity of (normed) BPA is PSPACE -hard [38].An NP lower bound for weak bisimilarity of BPP has been shown by St�r��brn�ain [38]. This result has been improved to �p2-hardness by Mayr [28] and veryrecently to PSPACE -hardness by Srba in [37]. Moreover, the PSPACE lowerbound for weak bisimilarity of BPP in [37] holds even for normed BPP.The situation is dramatically di�erent if we consider weak bisimilarity betweencertain in�nite-state processes and �nite-state ones. This study is motivatedby the fact that the intended behavior of a process is often easy to specify(by a �nite-state system), but a `real' implementation can contain compo-nents which are in�nite-state (e.g., counters, bu�ers, recursion, creation ofnew parallel subprocesses). It has been shown in [26] that weak bisimilaritybetween BPP and �nite-state processes is decidable. A more general resulthas recently been obtained in [21], where it is shown that many bisimulation-like equivalences (including the strong and weak ones) are decidable betweenPAD and �nite-state processes. The class PAD [31,30] strictly subsumes notonly BPA and BPP, but also PA [2] and pushdown processes. The result in[21] is obtained by a general reduction to the model-checking problem for thesimple branching-time temporal logic EF, which is decidable for PAD [30].As the model-checking problem for EF is hard (for example, it is known tobe PSPACE -complete for BPP [26] and PSPACE -complete for BPA [39,27]),this does not yield an e�cient algorithm.Our contribution. We show that weak (and hence also strong) bisimilarityis decidable in polynomial time between BPA and �nite-state processes, andbetween normed BPP and �nite-state processes. To the best of our knowl-edge, these are the �rst polynomial algorithms for weak bisimilarity within�nite-state systems. Moreover, the algorithm for BPA is the �rst exampleof an e�cient decision procedure for a class of unnormed in�nite-state sys-tems (the polynomial algorithms for strong bisimilarity of [17,18] only workfor the normed subclasses of BPA and BPP, respectively). Due to the afore-mentioned hardness results for the `symmetric case' (when we compare twoBPA or two (normed) BPP processes) we know that our results cannot beextended in this direction. A recent work [29] shows that strong bisimilaritybetween pushdown processes (a proper superclass of BPA) and �nite-stateones is already PSPACE -hard. Furthermore, weak bisimilarity remains com-putationally intractable (DP -hard) even between processes of one-counter netsand �nite-state processes [23] (one-counter nets are computationally equiva-lent to the subclass of Petri nets with at most one unbounded place and canbe thus also seen as very simple pushdown automata). Hence, our result forBPA is rather tight. The question whether the result for normed BPP canbe extended to the class of all (not necessarily normed) BPP processes is leftopen. It should also be noted that simulation equivalence with a �nite-stateprocess is co-NP -hard for BPA/BPP processes [25], EXPTIME -complete for3



pushdown processes [24], but polynomial for one-counter nets [24].The basic scheme of our constructions for BPA and normed BPP processes isthe same. The main idea is that weak bisimilarity between BPA (or normedBPP) processes and �nite-state ones can be generated from a �nite base of`small' size and that certain in�nite subsets of BPA and BPP state-space canbe `symbolically' described by �nite automata and context-free grammars,respectively. A more detailed intuition is given in Section 3. An interestingpoint about this construction is that it works although weak bisimulation isnot a congruence w.r.t. sequential composition, but only a left congruence.In Section 4, we propose a natural re�nement of weak bisimilarity calledtermination-sensitive bisimilarity which is a congruence and which is alsodecidable between BPA and �nite-state processes in polynomial time. The re-sult demonstrates that the technique which has been used for weak bisimilarityactually has a wider applicability|it can be adapted to many `bisimulation-like' equivalences. Finally, we should note that our aim is just to show that thementioned problems are in P; although we do compute the degrees of bound-ing polynomials explicitly, our analysis is quite simple and rough. Moreover,both presented algorithms could be easily improved by employing standardtechniques. See the �nal section for further comments.2 De�nitionsWe use process rewrite systems [31] as a formal model for processes. Let Act =fa; b; c; : : :g and Const = fX; Y; Z; : : :g be disjoint countably in�nite sets ofactions and process constants, respectively. The class of process expressions Eis de�ned by E ::= " j X j EkE j E:Ewhere X 2 Const and " is a special constant that denotes the empty expres-sion. Intuitively, `:' is sequential composition and `k' is parallel composition.We do not distinguish between expressions related by structural congruencewhich is given by the following laws: `:' and `k' are associative, `k' is commu-tative, and `"' is a unit for `:' and `k'.A process rewrite system [31] is speci�ed by a �nite set of rules � which havethe form E a! F , where E; F 2 E and a 2 Act . Const(�) and Act(�) denotethe sets of process constants and actions which are used in the rules of �,respectively (note that these sets are �nite). Each process rewrite system �de�nes a unique transition system where states are process expressions overConst(�), Act(�) is the set of labels, and transitions are determined by �4



and the following inference rules (remember that `k' is commutative):(E a! F ) 2 �E a! F E a! E 0E:F a! E 0:F E a! E 0EkF a! E 0kFWe extend the notation E a! F to elements of Act� in the standard way. F isreachable from E if E w! F for some w 2 Act�.Sequential and parallel expressions are those process expressions which do notcontain the `k' and the `:' operator, respectively. Finite-state, BPA, and BPPsystems are subclasses of process rewrite systems obtained by putting certainrestrictions on the form of the rules. Finite-state, BPA, and BPP allow onlya single constant on the left-hand side of rules, and a single constant, sequen-tial expression, and parallel expression on the right-hand side, respectively.The set of states of a transition system which is generated by a �nite-state,BPA, or BPP process � is restricted to Const(�), the set of all sequential ex-pressions over Const(�), or the set of all parallel expressions over Const(�),respectively.Example 1 Let � = fZ z! Z;Z i! I:Z; I i! I:I; I d! "g be a processrewrite system. We see that � is a BPA system; a part of the transition systemassociated to � which is reachable from Z looks as follows:
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dIf we replace each occurrence of the `:' operator with the `k' operator, we obtaina BPP system which generates the following transition system (again, we onlydraw the part reachable from Z):
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A process is normed i� at every reachable state it can (successfully) terminatevia a �nite sequence of computational steps. For a BPA or BPP process, thisis equivalent to the condition that for each constant X 2 Const(�) of itsunderlying system � there is some w 2 Act� such that X w! ". We call suchconstants X with this property normed.The semantical equivalence we are interested in here is weak bisimilarity [32].This relation distinguishes between `observable' and `internal' moves (compu-5



tational steps); the internal moves are modeled by a special action which isdenoted `� ' by convention. In what follows we consider process expressionsover Const(�) where � is some �xed process rewrite system.De�nition 2 The extended transition relation ` a)' is de�ned by E a) F i�either E = F and a = � , or E � i! E 0 a! E 00 � j! F for some i; j 2 N0 ,E 0; E 00 2 E.A binary relation R over process expressions is a weak bisimulation i� when-ever (E; F ) 2 R then for each a 2 Act:� if E a! E 0 then there is F a) F 0 such that (E 0; F 0) 2 R, and� if F a! F 0 then there is E a) E 0 such that (E 0; F 0) 2 R.Processes E; F are weakly bisimilar, written E � F , i� there is a weak bisi-mulation relating them.Weak bisimilarity can be approximated by the family of �i relations, whichare de�ned as follows:� E �0 F for every E; F� E �i+1 F i� E �i F and the following conditions hold:� if E a! E 0 then there is F a) F 0 such that E 0 �i F 0� if F a! F 0 then there is E a) E 0 such that E 0 �i F 0It is worth noting that �i is not an equivalence for i � 1, as it is not transitive.It is possible to approximate weak bisimilarity in a di�erent way so that theapproximations are equivalences (see [21]). However, we do not need this forour purposes.Let � be a �nite-state system with n states, f; g 2 Const(�). It is easy toshow that the problem whether f � g is decidable in O(n3) time. First wecompute in O(n3) time the transitive closure of the transition system w.r.t.the �! transitions and thus obtain a new system in which a! is the same asa) in the old system. Then it su�ces to decide strong bisimilarity of f andg in the new system. This can be done in O(n2 logn) time, using partitionre�nement techniques from [34].Sometimes we also consider weak bisimilarity between processes of di�erentprocess rewrite systems, say � and �. Formally, � and � can be consideredas a single system by taking their disjoint union.6



3 BPA ProcessesIn this section we prove that weak bisimilarity is decidable between BPA and�nite-state processes in polynomial time.Let E be a BPA process with the underlying system �, F a �nite-state processwith the underlying system � such that Const(�)\Const(�) = ;. We assume(w.l.o.g.) that E 2 Const(�). Moreover, we also assume that for all f; g 2Const(�), a 2 Act such that f 6= g or a 6= � we have that f a) g impliesf a! g 2 �. If those ` a!' transitions are missing in �, we can add themsafely. Adding these transitions does not change the weak bisimilarity relationamong the states. In order to do this it su�ces to compute (in cubic time)the transitive closure of � w.r.t. the � transitions. These extra transitions donot in
uence our complexity estimations, as we always consider the worst casewhen � has all possible transitions. The condition that a 6= � is there becausewe do not want to add new transitions of the form f �! f , because thenour proof for weak bisimilarity would not immediately work for termination-sensitive bisimilarity (which is de�ned at the end of this section).We use upper-case letters X; Y; : : : to denote elements of Const(�), and lower-case letters f; g; : : : to denote elements of Const(�). Greek letters �; �; : : : areused to denote elements of Const(�)�. The size of � is denoted by n, and thesize of � by m (we measure the complexity of our algorithm in (n;m)).The set Const(�) can be divided into two disjoint subsets of normed andunnormed constants (remember that X 2 Const(�) is normed i� X w! "for some w 2 Act�). Note that it is decidable in O(n2) time if a constant isnormed. The set of all normed constants of � is denoted Normed(�). In ourconstructions we also use processes of the form �f ; they should be seen asBPA processes with the underlying system � [ �.Intuition: Our proof can be divided into two parts: �rst we show that thegreatest weak bisimulation between processes of � and � is �nitely repre-sentable. There is a �nite relation B of size O(nm2) (called bisimulation base)such that each pair of weakly bisimilar processes can be generated from thatbase (a technique �rst used by Caucal [6]). Then we show that the bisimulationbase can be computed in polynomial time. To do that, we take a su�cientlylarge relation G which surely subsumes the base and `re�ne' it (this re�ne-ment technique has been used in [17,18]). The size of G is still O(nm2), andeach step of the re�nement procedure possibly deletes some of the elementsof G. If nothing is deleted, we have found the base (hence we need at mostO(nm2) steps). The re�nement step is formally introduced in De�nition 9 (wecompute the expansion of the currently computed approximation of the base).Intuitively, a pair of processes belongs to the expansion i� for each a! moveof one component there is a a) move of the other component such that the7



resulting pair of processes can be generated from the current approximationof B. We have to overcome two problems:1. The set of pairs which can be generated from B (and its approximations) isin�nite.2. The set of states which are reachable from a given BPA state in one ` a)'move is in�nite.We employ a `symbolic' technique to represent those in�nite sets (similar tothe one used in [3]), taking advantage of the fact that they have a simple (reg-ular) structure which can be encoded by �nite-state automata (see Theorem 6and 12). This allows to compute the expansion in polynomial time.De�nition 3 A relation K is well-formed i� it is a subset of the relation Gde�ned byG =((Normed(�) � Const(�))� Const(�))[ (Const(�)� Const(�))[ (Const(�)� Const(�))[ (f"g � Const(�))Note that the size of any well-formed relation is O(nm2) and that G is thegreatest well-formed relation.One of the well-formed relations is of special importance.De�nition 4 The bisimulation base for � and �, denoted B, is de�ned asfollows:B= f(Y f; g) j Y f � g; Y 2 Normed(�)g[ f(X; g) j X � gg[ f(f; g) j f � gg[ f("; g) j " � ggAs weak bisimilarity is a left congruence w.r.t. sequential composition, wecan `generate' from B new pairs of weakly bisimilar processes by substitution(it is worth noting that weak bisimilarity is not a right congruence w.r.t.sequencing|to see this, it su�ces to de�ne X �! X; Y �! "; Z a! Z. NowX � Y , but XZ 6� Y Z). This generation procedure can be de�ned for anywell-formed relation as follows:De�nition 5 Let K be a well-formed relation. The closure of K, denoted8



Cl(K), is the least relation M which satis�es the following conditions:(1) K �M ,(2) if (f; g) 2 K and (�; f) 2M , then (�; g) 2M ,(3) if (f; g) 2 K and (�h; f) 2M , then (�h; g) 2M ,(4) if (Y f; g) 2 K and (�; f) 2M , then (Y �; g) 2M ,(5) if (Y f; g) 2 K and (�h; f) 2M , then (Y �h; g) 2M ,(6) if (�; g) 2M and � contains an unnormed constant, then (��; g); (��h; g) 2M for every � 2 Const(�)� and h 2 Const(�).Note that Cl(K) contains elements of just two forms { (�; g) and (�f; g).Clearly Cl(K) = S1i=0Cl(K)i where Cl(K)0 = K and Cl(K)i+1 consists ofCl(K)i and the pairs which can be immediately derived from Cl(K)i by therules 2{6 of De�nition 5.Although the closure of a well-formed relation can be in�nite, its structure is insome sense regular. This fact is precisely formulated in the following theorem:Theorem 6 Let K be a well-formed relation. For each g 2 Const(�) thereis a �nite-state automaton Ag of size O(nm2) constructible in O(nm2) timesuch that L(Ag) = f� j (�; g) 2 Cl(K)g [ f�f j (�f; g) 2 Cl(K)g.PROOF. We construct a regular grammar of size O(nm2) which generatesthe mentioned language. Let Gg = (N;�; �; g) where� N = ff j f 2 Const(�)g [ fUg� � = Const(�) [ Const(�)� � is de�ned as follows:� for each ("; h) 2 K we add the rule h! ".� for each (f; h) 2 K we add the rules h! f , h! f .� for each (Y f; h) 2 K we add the rules h! Y f; h! Y f .� for each (X; h) 2 K we add the rule h ! X and if X is unnormed, thenwe also add the rule h! XU .� for eachX 2 Const(�), f 2 Const(�) we add the rules U ! XU , U ! X,U ! f .A proof that Gg indeed generates the mentioned language is routine. Now wetranslate Gg to Ag (see, e.g., [19]). Note that the size of Ag is essentially thesame as the size of Gg; Ag is non-deterministic and can contain "-rules.It follows immediately that for any well-formed relation K, the membershipproblem for Cl(K) is decidable in polynomial time. Another property of Cl(K)is speci�ed in the lemma below. 9



Lemma 7 Let (�f; g) 2 Cl(K). If (�h; f) 2 Cl(K), then also (��h; g) 2Cl(K). Similarly, if (�; f) 2 Cl(K), then also (��; g) 2 Cl(K).PROOF. We just give a proof for the �rst claim (the second one is similar).Let (�f; g) 2 Cl(K)i. By induction on i.� i = 0. Then (�f; g) 2 K and we can immediately apply the rule 3 or 5 ofDe�nition 5 (remember that � can be ").� Induction step. Let (�f; g) 2 Cl(K)i+1. There are three possibilities (cf.De�nition 5).I. There is r such that (�f; r) 2 Cl(K)i, (r; g) 2 K. By induction hypothesiswe know (��h; r) 2 Cl(K), hence (��h; g) 2 Cl(K) due to the rule 3 ofDe�nition 5.II. � = Y 
 and there is r such that (Y r; g) 2 K, (
f; r) 2 Cl(K)i. By induc-tion hypothesis we have (
�h; r) 2 Cl(K), and hence also (Y 
�h; r) 2Cl(K) by the rule 5 of De�nition 5.III. � = 
� where (
; g) 2 Cl(K)i and 
 contains an unnormed constant.Then (
��h; g) 2 Cl(K) by the last rule of De�nition 5.The importance of the bisimulation base is clari�ed by the following theorem.It says that Cl(B) subsumes the greatest weak bisimulation between processesof � and �.Theorem 8 For all �; f; g we have � � g i� (�; g) 2 Cl(B), and �f � g i�(�f; g) 2 Cl(B).PROOF. The `if' part is obvious in both cases, as B contains only weaklybisimilar pairs and all the rules of De�nition 5 produce pairs which are againweakly bisimilar. The `only if' part can, in both cases, be easily proved byinduction on the length of � (we just show the �rst proof; the second one issimilar).� � = ". Then ("; g) 2 B, hence ("; g) 2 Cl(B).� � = Y �. If Y is unnormed, then Y � g and (Y; g) 2 B. By the rule 6of De�nition 5 we obtain (Y �; g) 2 Cl(B). If Y is normed, then Y � w! �for some w 2 Act � and g must be able to match the sequence w by someg w) g0 such that � � g0. By substitution we now obtain that Y g0 � g.Clearly (Y g0; g) 2 B, and (�; g0) 2 Cl(B) by induction hypothesis. Hence(�; g) 2 Cl(B) due to the rule 4 of De�nition 5.The next de�nition formalizes one step of the `re�nement procedure' whichis applied to G to compute B. The intuition is that we start with G as an10



approximation to B. In each re�nement step some pairs are deleted from thecurrent approximation. If in a re�nement step no pairs are deleted any morethen we have found B. The next de�nition speci�es the condition on whicha given pair is not deleted in a re�nement step from the currently computedapproximation of B.De�nition 9 Let K be a well-formed relation. We say that a pair (X; g) ofK expands in K i� the following two conditions hold:� for each X a! � there is some g a) g0 such that (�; g0) 2 Cl(K)� for each g a! g0 there is some X a) � such that (�; g0) 2 Cl(K)The expansion of a pair of the form (Y f; g), (f; g), ("; g) in K is de�ned in thesame way|for each ` a!' move of the left component there must be some ` a)'move of the right component such that the resulting pair of processes belongsto Cl(K), and vice versa (note that " �) "). The set of all pairs of K whichexpand in K is denoted by Exp(K).The notion of expansion is in some sense `compatible' with the de�nition ofweak bisimulation. This intuition is formalized in the following lemma.Lemma 10 Let K be a well-formed relation such that Exp(K) = K. ThenCl(K) is a weak bisimulation.PROOF. We prove that every pair (�; g); (�f; g) of Cl(K)i has the propertythat for each ` a!' move of one component there is a ` a)' move of the othercomponent such that the resulting pair of processes belongs to Cl(K) (weconsider just pairs of the form (�f; g); the other case is similar). By inductionon i.� i = 0. Then (�f; g) 2 K; as K = Exp(K), the claim follows directly fromthe de�nitions.� Induction step. Let (�f; g) 2 Cl(K)i+1. There are three possibilities:I. There is an h such that (�f; h) 2 Cl(K)i, (h; g) 2 K.Let �f a! 
f (note that � can be empty; in this case we have toconsider moves of the form f a! f 0. It is done in a similar way as below).As (�f; h) 2 Cl(K)i, we can use the induction hypothesis and concludethat there is h a) h0 such that (
f; h0) 2 Cl(K). We distinguish two cases:1) a = � and h0 = h. Then (
f; h) 2 Cl(K) and as (h; g) 2 K, we obtain(
f; g) 2 Cl(K) due to Lemma 7. Hence g can use the move g �) g.2) a 6= � or h 6= h0. Then there is a transition h a! h0 (see the beginningof this section) and as (h; g) 2 K, by induction hypothesis we know thatthere is some g a) g0 such that (h0; g0) 2 Cl(K). Hence, (
f; g0) 2 Cl(K)due to Lemma 7.Now let g a! g0. As (h; g) 2 K, there is h a) h0 such that (h0; g0) 211



Cl(K). We distinguish two possibilities again:1) a = � and h0 = h. Then �f can use the move �f �) �f ; we have(h; g0) 2 Cl(K) and (�f; h) 2 Cl(K), hence also (�f; g0) 2 Cl(K).2) a 6= � or h 6= h0. Then h a! h0 and as (�f; h) 2 Cl(K)i, there is �f a) 
f(or �f a) f 0; it is handled in the same way) such that (
f; h0) 2 Cl(K).Hence also (
f; g0) 2 Cl(K) by Lemma 7.II. � = Y � and there is h such that (Y h; g) 2 K, (�f; h) 2 Cl(K)i.Let Y �f a! 
�f . As (Y h; g) 2 K, we can use induction hypothesis andconclude that there is g a) g0 such that (
h; g0) 2 Cl(K). As (�f; h) 2Cl(K), we obtain (
�f; g0) 2 Cl(K) by Lemma 7.Let g a! g0. As (Y h; g) 2 K, by induction hypothesis we know that Y hcan match the move g a! g0; there are two possibilities:1) Y h a) 
h such that (
h; g0) 2 Cl(K). Then also Y �f a) 
�f . As(�f; h) 2 Cl(K), we immediately have (
�f; g0) 2 Cl(K) as required.2) Y h a) h0 such that (h0; g0) 2 Cl(K). The transition Y h a) h0 can be`decomposed' into Y h x) h, h y) h0 where x = a^ y = � or x = � ^ y = a.If y = � and h0 = h, we are done immediately because then Y � a) �and as (h; g0); (�; h) 2 Cl(K), we also have (�; g0) 2 Cl(K) as needed.If y 6= � or h0 6= h, there is a transition h y! h0. As (�f; h) 2 Cl(K)i,due to induction hypothesis we know that there is some �f y) 
f (or�f y) f 0; this is handled in the same way) with (
f; h0) 2 Cl(K). ClearlyY �f a) 
f . As (h0; g0); (
f; h0) 2 Cl(K), we also have (
f; g0) 2 Cl(K).III. � = �
 where � contains an unnormed constant and (�; g) 2 Cl(K)i.Let � a! �0. Then �0 = �
 and � a! �. As (�; g) 2 Cl(K)i, there isg a) g0 such that (�; g0) 2 Cl(K) due to the induction hypothesis. Clearly� contains an unnormed constant, hence (�
; g0) 2 Cl(K) by the last ruleof De�nition 5.Let g a! g0. As (�; g) 2 Cl(K)i, there is � a) � such that (�; g0) 2 Cl(K)and � contains an unnormed constant. Hence � a) �
 and (�
; g0) 2 Cl(K)due to the last rule of De�nition 5.The notion of expansion allows to approximate B in the following way: B0 = G,Bi+1 = Exp(Bi).Theorem 11 There is a j 2 N, bounded by O(nm2), such that Bj = Bj+1.Moreover, Bj = B.PROOF. Exp (viewed as a function on the complete lattice of well-formedrelations) is monotonic, hence the greatest �xed-point exists and must bereached afterO(nm2) steps, as the size of G isO(nm2). We prove that Bj = B.`�:' First, let us realize that B = Exp(B) (it follows immediately from De�-nition 4, De�nition 9, and Theorem 8). The inclusion B � Bj can be proved12



by a simple inductive argument; clearly B � B0, and if B � Bi, we also haveB � Bi+1 by de�nition of the expansion and the fact B = Exp(B).`�:' As Exp(Bj) = Bj, we know that Cl(Bj) is a weak bisimulation due toLemma 10. Thus, processes of every pair in Bj are weakly bisimilar.In other words, B can be obtained from G in O(nm2) re�nement steps whichcorrespond to the construction of the expansion. The only thing which remainsto be shown is that Exp(K) is e�ectively constructible in polynomial time. Todo that, we employ a `symbolic' technique which allows to represent in�nitesubsets of BPA state-space in an elegant and succinct way.Theorem 12 For all X 2 Const(�), a 2 Act(�) there is a �nite-state au-tomaton A(X;a) of size O(n2) constructible in O(n2) time such that L(A(X;a)) =f� j X a) �gPROOF. We de�ne a left-linear grammar G(X;a) of size O(n2) which gen-erates the mentioned language. This grammar can be converted to A(X;a)by a standard algorithm known from automata theory (see, e.g., [19]). Notethat the size of A(X;a) is essentially the same as the size of G(X;a). First, letus realize that we can compute in O(n2) time the sets M� and Ma consist-ing of all Y 2 Const(�) such that Y �) " and Y a) ", respectively. LetG(X;a) = (N;�; �; S) where� N = fY a; Y � j Y 2 Const(�)g [ fSg. Intuitively, the index indicateswhether the action `a' has already been emitted.� � = Const(�)� � is de�ned as follows:� We add the production S ! Xa to �, and if X a) " then we also add theproduction S ! ".� For every transition Y a! Z1 � � �Zk of � and every i such that 1 � i � kwe test whether Zj �) " for every 0 � j < i. If this is the case, we add to� the productionsY a ! ZiZi+1 � � �Zk and Y a ! Z�i Zi+1 � � �Zk� For every transition Y �! Z1 � � �Zk of � and every i such that 1 � i � kwe do the following:We test whether Zj �) " for every 0 � j < i. If this is the case, weadd to � the productionsY a ! Zai Zi+1 � � �Zk, Y � ! Z�i Zi+1 � � �Zk and Y � ! ZiZi+1 � � �ZkWe test whether there is a t < i such that Zt a) " and Zj �) " forevery 0 � j < i, j 6= t. If this is the case, we add to � the productionsY a ! Z�i Zi+1 � � �Zk and Y a ! ZiZi+1 � � �ZkThe fact that G(X;a) generates the mentioned language is intuitively clear and13



a formal proof of that is easy. The size of G(X;a) is O(n2), as � contains O(n)basic transitions of length O(n).The crucial part of our algorithm (the `re�nement step') is presented in theproof of the next theorem. Our complexity analysis is based on the followingfacts: Let A = (Q;�; �; q0; F ) be a non-deterministic automaton with "-rules,and let t be the total number of states and transitions of A.� The problem whether a given w 2 �� belongs to L(A) is decidable inO(jwj � t) time.� The problem whether L(A) = ; is decidable in O(t) time.Theorem 13 Let K be a well-formed relation. The relation Exp(K) can bee�ectively constructed in O(n4m5) time.PROOF. First we construct the automata Ag of Theorem 6 for every g 2Const(�). This takes O(nm3) time. Then we construct the automataA(X;a) ofTheorem 12 for allX; a. This takes O(n4) time. Furthermore, we also computethe set of all pairs of the form (f; g); ("; g) which belong to Cl(K). It can bedone in O(m2) time. Now we show that for each pair of K we can decide inO(n3m3) time whether this pair expands in K.The pairs of the form (f; g) and ("; g) are easy to handle; there are at most mstates f 0 such that f a! f 0, and at mostm states g0 with g a) g0, hence we needto check only O(m2) pairs to verify the �rst (and consequently also the second)condition of De�nition 9. Each such pair can be checked in constant time,because the set of all pairs (f; g); ("; g) which belong to Cl(K) has alreadybeen computed at the beginning.Now let us consider a pair of the form (Y; g). First we need to verify that foreach Y a! � there is some g a) h such that (�; h) 2 Cl(K). This requiresO(nm) tests whether � 2 L(Ah). As the length of � is O(n) and the sizeof Ah is O(nm2), each such test can be done in O(n2m2) time, hence weneed O(n3m3) time in total. As for the second condition of De�nition 9,we need to �nd out whether for each g a! h there is some X a) � such that(�; h) 2 Cl(K). To do that, we simply test the emptiness of L(A(X;a))\L(Ah).The size of the product automaton is O(n3m2) and we need to perform onlyO(m) such tests, hence O(n3m3) time su�ces.Pairs of the form (Y f; g) are handled in a similar way; the �rst condition ofDe�nition 9 is again no problem, as we are interested only in the ` a!' movesof the left component. Now let g a! g0. An existence of a `good' a) move of14



Y f can be veri�ed by testing whether one of the following conditions holds:� L(A(Y;a)) � ffg \ L(Ag0) is nonempty.� Y a) " and there is some f �) f 0 such that (f 0; g0) 2 Cl(K).� Y �) " and there is some f a) f 0 such that (f 0; g0) 2 Cl(K).All those conditions can be checked in O(n3m3) time (the required analysishas been in fact done above). As K contains O(nm2) pairs, the total timewhich is needed to compute Exp(K) is O(n4m5).As the BPA process E (introduced at the beginning of this section) is anelement of Const(�), we have that E � F i� (E; F ) 2 B. To compute B,we have to perform the computation of the expansion O(nm2) times (seeTheorem 11). This gives us the following main theorem:Theorem 14 Weak bisimilarity is decidable between BPA and �nite-stateprocesses in O(n5m7) time.4 Termination-Sensitive BisimilarityAs we already mentioned in the previous section, weak bisimilarity is not acongruence w.r.t. sequential composition. This is a major drawback, as anyequivalence which is to be considered as `behavioral' should have this prop-erty. We propose a solution to this problem by designing a natural re�nementof weak bisimilarity called termination-sensitive bisimilarity. This relation re-spects some of the main features of sequencing which are `overlooked' by weakbisimilarity; consequently, it is a congruence w.r.t. sequential composition. Wealso show that termination-sensitive bisimilarity is decidable between BPA and�nite-state processes in polynomial time by adapting the method of the pre-vious section. It should be noted right at the beginning that we do not aimto design any new `fundamental' notion of the theory of sequential processes(that is why the properties of termination-sensitive bisimilarity are not stud-ied in detail). We just want to demonstrate that our method is applicable to alarger class of bisimulation-like equivalences and the relation of termination-sensitive bisimilarity provides a (hopefully) convincing evidence that some ofthem might be interesting and useful.In our opinion, any `reasonable' model of sequential behaviors should be ableto express (and distinguish) the following `basic phenomena' of sequencing:� successful termination of the process which is currently being executed. Thesystem can then continue to execute the next process in the queue;15



� unsuccessful termination of the executed process (deadlock). This models asevere error which causes the whole system to `get stuck';� entering an in�nite internal loop (cycling).The di�erence between successful and unsuccessful termination is certainlysigni�cant. The need to distinguish between termination and cycling has alsobeen recognized in practice; major examples come, e.g., from the theory ofoperating systems.BPA processes are a very natural model of recursive sequential behaviors.Successful termination is modeled by reaching `"'. There is also a `hidden'syntactical tool to model deadlock|note that by the de�nition of BPA systemsthere can be an X 2 Const(�) such that � does not contain any rule of theform X a! � (let us call such constants unde�ned). A state X� models thesituation when the executed process reaches a deadlock|there is no transition(no computational step) from X�, the process is `stuck'. It is easy to see thatwe can safely assume that � contains at most one unde�ned constant (theother ones can be simply renamed to X), which is denoted � by convention[2]. Note that � is unnormed by de�nition. States of the form �� are calleddeadlocked.In the case of �nite-state systems, we can distinguish between successful andunsuccessful termination in a similar way. Deadlock is modeled by a distin-guished unde�ned constant �, and the other unde�ned constants model suc-cessful termination.Note that � � " by de�nition of weak bisimilarity. As `"' represents a successfultermination, this is de�nitely not what we want. Before we de�ne the promisedrelation of termination-sensitive bisimilarity, we need to clarify what is meantby cycling; intuitively, it is the situation when a process enters an in�niteinternal loop. In other words, it can do `� ' forever without a possibility to doanything else or to terminate (either successfully or unsuccessfully).De�nition 15 The set of initial actions of a process E, denoted I(E), isde�ned by I(E) = fa 2 Act j E a! F for some Fg. A process E is cycling i�every state F which is reachable from E satis�es I(F ) = f�g.Note that it is easily decidable in quadratic time whether a given BPA processis cycling; in the case of �nite-state systems we only need linear time.De�nition 16 We say that an expression E is normal i� E is not cycling,deadlocked, or successfully terminated.A binary relation R over process expressions is a termination-sensitive bisi-16



mulation i� whenever (E; F ) 2 R then the following conditions hold:� if one of the expressions E; F is cycling then the other is also cycling;� if one of the expressions E; F is deadlocked then the other is either normalor it is also deadlocked;� if one of the expressions E; F is successfully terminated then the other iseither normal or it is also successfully terminated;� if E a! E 0 then there is F a) F 0 such that (E 0; F 0) 2 R;� if F a! F 0 then there is E a) E 0 such that (E 0; F 0) 2 R.Processes E; F are termination-sensitive bisimilar, written E ' F , i� there isa termination-sensitive bisimulation relating them.Termination-sensitive bisimilarity seems to be a natural re�nement of weakbisimilarity which better captures an intuitive understanding of `sameness' ofsequential processes. It distinguishes among the phenomena mentioned at thebeginning of this section, but it still allows to ignore internal computationalsteps to a large extent. For example, a deadlocked process is still equivalent toa process which is not deadlocked yet but which necessarily deadlocks after a�nite number of � transitions (this example also explains why the �rst threeconditions of De�nition 16 are stated so carefully).The family of 'i approximations is de�ned in the same way as in case of weakbisimilarity; the only di�erence is that'0 relates exactly those processes whichsatisfy the �rst three conditions of De�nition 16. The following theorem followsimmediately from this de�nition.Theorem 17 Termination-sensitive bisimilarity is a congruence w.r.t. se-quential composition.The technique which has been used in the previous section also works fortermination-sensitive bisimilarity.Theorem 18 Termination-sensitive bisimilarity is decidable between BPA and�nite-state processes in O(n5m7) time.PROOF. First, all assumptions about � and � which were mentioned at thebeginning of Section 3 are also safe w.r.t. termination-sensitive bisimilarity;note that it would not be true if we also assumed the existence of a � -loopf �! f for every f 2 Const(�). Now we see why the assumptions about �are formulated so carefully. The only thing which has to be modi�ed is thenotion of well-formed relation; it is de�ned in the same way, but in additionwe require that processes of every pair which is contained in a well-formedrelation K are related by '0. It can be easily shown that processes of pairscontained in Cl(K) are then also related by '0. In other words, we do not17



have to take care about the �rst two requirements of De�nition 16 in ourconstructions anymore; everything works without a single change.The previous proof indicates that the `method' of Section 3 can be adapted toother bisimulation-like equivalences. See the �nal section for further comments.5 Normed BPP ProcessesIn this section we prove that weak bisimilarity is decidable in polynomial timebetween normed BPP and �nite-state processes. The basic structure of ourproof is similar to the one for BPA. The key is that the weak bisimulationproblem can be decomposed into problems about the single constants andtheir interaction with each other. In particular, a normed BPP process is�nite w.r.t. weak bisimilarity i� every single reachable process constant is�nite w.r.t. weak bisimilarity. This does not hold for general BPP and thusour construction does not carry over to general BPP.Example 19 Consider the unnormed BPP that is de�ned by the followingrules. Xi ai+1�! XikYi; Yi ai�! " for 1 � i � n� 1Xn a1�! XnkYn; Yn an�! "Then the process X1kX2k : : : kXn is �nite w.r.t. bisimilarity, but every subpro-cess (e.g. X3kX4kX7 or every single constant Xi) is in�nite w.r.t. bisimilarity.Even for normed BPP, we have to solve some additional problems. The bisi-mulation base and its closure are simpler due to the normedness assumption,but the `symbolic' representation of BPP state-space is more problematic (seebelow). The set of states which are reachable from a given BPP state in one` a)' move is no longer regular, but it can be in some sense represented bya CF-grammar. In our algorithm we use the facts that emptiness of a CFlanguage is decidable in polynomial time, and that CF languages are closedunder intersection with regular languages.Let E be a BPP process and F a �nite-state process with the underlyingsystems � and �, respectively. We can assume w.l.o.g. that E 2 Const(�).Elements of Const(�) are denoted by X; Y; Z; : : :, elements of Const(�) byf; g; h; : : : The set of all parallel expressions over Const(�) is denoted byConst(�)
 and its elements by Greek letters �; �; : : : The size of � is denotedby n, and the size of � by m. 18



In our constructions we represent certain subsets of Const(�)
 by �nite au-tomata and CF grammars. The problem is that elements of Const(�)
 areconsidered modulo commutativity; however, �nite automata and CF gram-mars of course distinguish between di�erent `permutations' of the same word.As the classes of regular and CF languages are not closed under permutation,this problem is important. As we want to clarify the distinction between �and its possible `linear representations', we de�ne for each � the set Lin(�)as follows:Lin(X1k � � � kXk) = fXp(1) � � �Xp(k) j p is a permutation of the set f1; � � � ; kggFor example, Lin(XkY kZ) = fXY Z; XZY; Y XZ; Y ZX; ZXY; ZY Xg. Wealso assume that each Lin(�) contains some (unique) element called canonicalform of Lin(�). It is not important how the canonical form is chosen; we needit just to make some constructions deterministic (for example, we can �x somelinear order on process constants and let the canonical form of Lin(�) be thesorted order of constants of �).De�nition 20 A relation K is well-formed i� it is a subset of G = (Const(�)[f"g) � Const(�). The bisimulation base for � and �, denoted B, is de�nedas follows:B= f(X; f) j X � fg [ f("; f) j " � fgDe�nition 21 Let K be a well-formed relation. The closure of K, denotedCl(K), is the least relation M which satis�es(1) K �M ,(2) if (X; g) 2 K, (�; h) 2M , and f � gkh, then (�kX; f) 2 M ,(3) if ("; g) 2 K, (�; h) 2M , and f � gkh, then (�; f) 2M .The family ofCl(K)i approximations is de�ned in the same way as in Section 3.Lemma 22 Let (�; f) 2 Cl(K), (�; g) 2 Cl(K), fkg � h. Then (�k�; h) 2Cl(K).PROOF. Let (�; f) 2 Cl(K)i. By induction on i.� i = 0. Then (�; f) 2 K and we can immediately apply the rule 2 or 3 ofDe�nition 21.� Induction step. Let (�; f) 2 Cl(K)i+1. There are two possibilities.I. � = Xk
 and there are r; s such that (X; r) 2 K, (
; s) 2 Cl(K)i, andrks � f . Clearly rkskg � h, hence also skg � t for some t. By induction19



hypothesis we have (
k�; t) 2 Cl(K). Now (Xk
k�; h) 2 Cl(K) due tothe second rule of De�nition 21 (note that rkt � h).II. (�; r) 2 Cl(K)i and there is some s such that ("; s) 2 K and rks � f .As rkskg � h, there is some t such that rkg � t. By induction hypothesiswe obtain (�k�; t) 2 Cl(K), and hence (�k�; h) 2 Cl(K) due to the thirdrule of De�nition 21.Again, the closure of the bisimulation base is the greatest weak bisimulationbetween processes of � and �.Theorem 23 Let � 2 Const(�)
, f 2 Const(�). We have that � � f i�(�; f) 2 Cl(B).PROOF. The `if' part is obvious. The `only if' part can be proved by induc-tion on length(�).� � = ". Then ("; f) 2 B.� � = Xk�. As � is normed and Xk� � f , there are w; v 2 Act� such thatXk� w! �, Xk� v! X. The process f must be able to match the sequencesw; v by entering weakly bisimilar states|there are g; h 2 Const(�) suchthat � � g, X � h, and consequently also f � gkh (here we need the factthat weak bisimilarity is a congruence w.r.t. the parallel operator). Clearly(X; h) 2 B and (�; g) 2 Cl(B) by induction hypothesis, hence (Xk�; f) 2Cl(B) by De�nition 21.The closure of any well-formed relation can in some sense be represented bya �nite-state automaton, as stated in the next theorem. For this constructionwe �rst need to compute the set f(fkg; h) j fkg � hg. We consider the parallelcomposition of the �nite-state system with itself, i.e., the states of this systemare of the form fkg. Let our new system be the union of this system with theold system. The new system has size O(m2) and its states are of the form fkgor h. Then we apply the usual cubic-time partition re�nement algorithm todecide bisimilarity on the new system (see Section 2). This gives us the setf(fkg; h) j fkg � hg in O(m6) time.Theorem 24 Let K be a well-formed relation. For each g 2 Const(�) thereis a �nite-state automaton Ag of size O(nm) constructible in O(nm) timesuch that the following conditions hold:� whenever Ag accepts an element of Lin(�), then (�; g) 2 Cl(K)� if (�; g) 2 Cl(K), then Ag accepts at least one element of Lin(�)20



PROOF. We design a regular grammar of size O(nm) such that L(Gg) hasthe mentioned properties. Let Gg = (N;�; �; S) where� N = Const(�) [ fSg� � = Const(�)� � is de�ned as follows:� for each (X; f) 2 K we add the rule S ! Xf .� for each ("; f) 2 K we add the rule S ! f .� for all f; r; s 2 Const(�), X 2 Const(�) such that (X; r) 2 K, f � rkswe add the rule s! Xf .� for all f; r; s 2 Const(�) such that ("; r) 2 K, f � rks we add the rules! f .� we add the rule g ! ".The �rst claim follows from an observation that whenever we have � 2 Lin(�)such that �f is a sentence of Gg, then (�; f) 2 Cl(K). This can be easilyproved by induction on the length of the derivation of �f . For the secondpart, it su�ces to prove that if (�; f) 2 Cl(K)i, then there is � 2 Lin(�) suchthat �f is a sentence of Gg. It can be done by a straightforward induction oni.It is important to realize that if (�; g) 2 Cl(K), then Ag does not necessarilyaccept all elements of Lin(�). For example, if K = f(X; f); (Y; r); (Z; h)g,Const(�) = ff; g; h; r; sg with fkr � s, skh � g, and fkh 6� p for any p 2Const(�), thenAg accepts the stringXY Z but not the stringXZY . Generally,Ag cannot be `repaired' to do so (see the beginning of this section); however,there is actually no need for such `repairs', because Ag has the following niceproperty:Lemma 25 Let K be a well-formed relation such that B � K. If � � g, thenthe automaton Ag of (the proof of) Theorem 24 constructed for K accepts allelements of Lin(�).PROOF. Let Gg be the grammar of the previous proof. First we prove thatfor all s; r; f 2 Const(�), 
 2 Const(�)
 such that 
 � r, skr � f there is aderivation s!� 
f in Gg for every 
 2 Lin(
). By induction on length(
).� 
 = ". As " � r, the pair ("; r) belongs to B. Hence s! f by de�nition ofGg.� Let length(
) = i + 1 and let X� 2 Lin(
). Then 
 is of the form Xk�where � 2 Lin(�). As Xk� � r and � is normed, there are u; v 2 Const(�)such that X � u, � � v, and ukv � r. Hence we also have skukv � f , thussku � t for some t 2 Const(�). As X � u, the pair (X; u) belongs to B.21



Clearly s! Xt by de�nition of Gg. As � � v and vkt � f , we can use theinduction hypothesis and conclude t!� �f . Hence s!� X�f as required.Now let � � g. As � is normed, there is some r 2 Const(�) such that " � r.Hence ("; r) 2 B and S ! r by de�nition of Gg. Clearly rkg � g and due tothe above proved property we have r !� �g for every � 2 Lin(�). As g ! "is a rule of Gg, we obtain S ! r !� �g ! �.The set of states which are reachable from a given X 2 Const(�) in one ` a)'move is no longer regular, but it can, in some sense, be represented by a CFgrammar.Theorem 26 For all X 2 Const(�), a 2 Act(�) there is a context-free gram-mar G(X;a) in 3-GNF (Greibach normal form, i.e., with at most 2 variables atthe right hand side of every production) of size O(n4) constructible in O(n4)time such that the following two conditions hold:� if G(X;a) generates an element of Lin(�), then X a) �� if X a) �, then G(X;a) generates at least one element of Lin(�)PROOF. Let G(X;a) = (N;�; �; Xa) where� N = fY a; Y � j Y 2 Const(�)g [ fSg� � = Const(�)� � is de�ned as follows:� the rule S ! Xa is added to �.� for each transition Y a! Z1k � � � kZk of � we add the ruleY a ! Z�1 � � �Z�k(if k = 0, we add the rule Y a ! ").� for each transition Y �! Z1k � � � kZk of � we add the ruleY � ! Z�1 � � �Z�k(if k = 0, we add Y � ! "). Moreover, if k � 1 then for each 1 � i � k wealso add the ruleY a ! Z�1 � � �Zai � � �Z�k� for each Y 2 Const(�) we add the ruleY � ! Y .The fact that G(X;a) satis�es the above mentioned conditions follows directlyfrom its construction. Note that the size of G(X;a) isO(n2) at the moment. Nowwe transform G(X;a) to 3-GNF by a standard procedure of automata theory(see [19]). It can be done in O(n4) time and the size of resulting grammar isO(n4). 22



The notion of expansion is de�ned in a di�erent way (when compared to theone of the previous section).De�nition 27 Let K be a well-formed relation. We say that a pair (X; f) 2K expands in K i� the following two conditions hold:� for each X a! � there is some f a) g such that � 2 L(Ag), where � is thecanonical form of Lin(�).� for each f a! g the language L(Ag) \ L(G(X;a)) is non-empty.A pair ("; f) 2 K expands in K i� f a! g implies a = � , and for each f �! gwe have that " 2 L(Ag). The set of all pairs of K which expand in K is denotedby Exp(K).Theorem 28 Let K be a well-formed relation. The set Exp(K) can be com-puted in O(n11m8) time.PROOF. First we compute the automata Ag of Theorem 24 for all g 2Const(�). This takes O(nm2) time. Then we compute the grammars G(X;a)of Theorem 26 for all X 2 Const(�), a 2 Act . This takes O(n6) time. Nowwe show that it is decidable in O(n10m7) time whether a pair (X; f) of Kexpands in K.The �rst condition of De�nition 27 can be checked in O(n3m2) time, as thereare O(n) transitions X a! �, O(m) states g such that f a) g, and for eachsuch pair (�; g) we verify whether � 2 L(Ag) where � is the canonical formof Lin(�); this membership test can be done in O(n2m) time, as the size of� is O(n) and the size of Ag is O(nm).The second condition of De�nition 27 is more expensive. To test the emptinessof L(Ag) \ L(G(X;a)), we �rst construct a pushdown automaton P which rec-ognizes this language. P has O(m) control states and its total size is O(n5m).Furthermore, each rule pX a! q� of P has the property that length(�) � 2,because G(X;a) is in 3-GNF. Now we transform this automaton to an equivalentCF grammar by a well-known procedure described, e.g., in [19]. The size ofthe resulting grammar is O(n5m3), and its emptiness can be thus checked inO(n10m6) time (cf. [19]). This construction has to be performed O(m) times,hence we need O(n10m7) time in total.Pairs of the form ("; f) are handled in a similar (but less expensive) way. AsK contains O(nm) pairs, the computation of Exp(K) takes O(n11m8) time.The previous theorem is actually a straightforward consequence of De�ni-tion 27. The next theorem says that Exp really does what we need.23



Theorem 29 Let K be a well-formed relation such that Exp(K) = K. ThenCl(K) is a weak bisimulation.PROOF. Let (�; f) 2 Cl(K)i. We prove that for each � a! � there is somef a) g such that (�; g) 2 Cl(K) and vice versa. By induction on i.� i = 0. Then (�; f) 2 K, and we can distinguish the following two possibili-ties:(1) � = XLet X a! �. By De�nition 27 there is f a) g such that � 2 L(Ag) forsome � 2 Lin(�). Hence (�; g) 2 Cl(K) due to the �rst part of Theo-rem 24.Let f a! g. By De�nition 27 there is some string w 2 L(Ag)\L(G(X;a)).Let w 2 Lin(�). We have X a) � due to the �rst part of Theorem 26, and(�; g) 2 Cl(K) due to Theorem 24.(2) � = "Let f a! g. Then a = � and " 2 L(Ag) by De�nition 27. Hence ("; g) 2Cl(K) due to Theorem 24.� Induction step. Let (�; f) 2 Cl(K)i+1. There are two possibilities.I. � = Xk
 and there are r; s such that (X; r) 2 K, (
; s) 2 Cl(K)i, andrks � f .Let Xk� a! �. The action `a' can be emitted either by X or by �. Wedistinguish the two cases.1) Xk
 a! �k
. As (X; r) 2 K and X a! �, there is some r a) r0such that (�; r0) 2 Cl(K). As rks � f and r a) r0, there is some f a) gsuch that r0ks � g. To sum up, we have (�; r0) 2 Cl(K), (
; s) 2 Cl(K),r0ks � g, hence (�k
; g) 2 Cl(K) due to Lemma 22.2) Xk
 a! Xk�. As (
; s) 2 Cl(K)i and 
 a! �, there is s a) s0 suchthat (�; s0) 2 Cl(K). As rks � f and s a) s0, there is f a) g such that(rks0) � g. Due to Lemma 22 we obtain (Xk�; g) 2 Cl(K).Let f a! g. As rks � f , there are r x) r0, s y) s0 where x = a^ y = � orx = � ^ y = a such that r0ks0 � g. As (X; r) 2 K, (
; s) 2 Cl(K)i, thereare X x) �, 
 y) � such that (�; r0); (�; s0) 2 Cl(K). Clearly Xk
 a) �k�and (�k�; g) 2 Cl(K) due to Lemma 22.II. (�; r) 2 Cl(K)i and there is some s such that ("; s) 2 K and rks � f .The proof can be completed along the same lines as above.Now we can approximate (and compute) the bisimulation base in the sameway as in the Section 3.Theorem 30 There is a j 2 N, bounded by O(nm), such that Bj = Bj+1.Moreover, Bj = B. 24



PROOF. `�:' It su�ces to show that Exp(B) = B. Let (�; f) 2 B. Then� � f , and � = X for some X 2 Const(�) or � = ". We show that (X; f)expands in B (a proof for the pair ("; f) is similar).Let X a! �. As X � f , there is f a) g such that � � g. Let � be the canonicalform of Lin(�). Due to Lemma 25 we have � 2 L(Ag).Let f a! g. As X � f , there is X a) � such that � � g. Due to Theorem 26there is � 2 Lin(�) such that � 2 L(G(X;a)). Moreover, � 2 L(Ag) due toLemma 25. Hence, L(Ag) \ L(G(X;a)) is nonempty.`�:' It follows directly from Theorem 29.Theorem 31 Weak bisimilarity between normed BPP and �nite-state pro-cesses is decidable in O(n12m9) time.PROOF. By Theorem 30 the computation of the expansion of Theorem 28(which costs O(n11m8) time) has to be done O(nm) times.6 ConclusionsWe have proved that weak bisimilarity is decidable between BPA processesand �nite-state processes in O(n5m7) time, and between normed BPP and�nite-state processes in O(n12m9) time. It may be possible to improve the al-gorithm by re-using previously computed information, for example about setsof reachable states, but the exponents would still be very high. This is becausethe whole bisimulation basis is constructed. To get a more e�cient algorithm,one could try to avoid this. Note however, that once we have constructed B(for a BPA/nBPP system � and a �nite-state system �) and the automatonAg of Theorem 6/Theorem 24 (for K = B and some g 2 Const(�)), we candecide weak bisimilarity between a BPA/nBPP process � over � and a pro-cess f 2 Const(�) in time O(j�j)|it su�ces to test whether Af accepts �(observe that there is no substantial di�erence between Af and Ag except forthe initial state).The technique of bisimulation bases has also been used for strong bisimilarityin [17,18]. However, those bases are di�erent from ours; their design and theway how they generate `new' bisimilar pairs of processes rely on additionalalgebraic properties of strong bisimilarity (which is a full congruence w.r.t.sequencing, allows for unique decompositions of normed processes w.r.t. se-quencing and parallelism, etc.). The main di�culty of those proofs is to showthat the membership in the `closure' of the de�ned bases is decidable in polyno-25
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