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1 IntroductionWe study the decidability of bisimulation-like equivalences between in�nite-state processes and �nite-state ones. The motivation is that the intended be-havior of a process is often easy to specify (by a �nite-state system), but a`real' implementation can contain components which are essentially in�nite-state (e.g., counters, bu�ers). The aim of formal veri�cation is to check if the�nite-state speci�cation and the in�nite-state implementation are semanticallyequivalent (i.e., bisimilar). First we examine this problem in a general setting,extracting its core in a form of two rather special subproblems (which are nat-urally not decidable in general). A special variant of this method which worksfor strong bisimilarity has been described in [14]; here we extend and gener-alize the concept, obtaining a universal mechanism for proving decidability ofbisimulation-like equivalences between in�nite-state and �nite-state processes.We show that �nite-state processes can be encoded up to bisimilarity in for-mulae of the temporal logic EF (more precisely, in a slightly extended versionof EF which can also express constraints on sequences of atomic actions). Sucha formula is called a characteristic formula for the given �nite-state process.The characteristic formula �f of a �nite-state process f has the property thatfor any (general) process g whose set of actions is contained in the one of f wehave that g is bisimilar to f if and only if g satis�es �f . Previous works usedthe modal �-calculus to construct characteristic formulae [33]. We show thatthe much simpler logic EF (a fragment of CTL and the modal �-calculus)su�ces. This is signi�cant, because model checking with EF is decidable formany more classes of in�nite-state systems than with the modal �-calculus[10,20,24].Then we apply the designed method to the class of PAD processes (de�ned in[21]), which properly subsumes all PA and pushdown processes. We prove thata large class of bisimulation-like equivalences (including, e.g., strong and weakbisimilarity) is decidable between PAD and �nite-state processes, utilizing pre-viously established results on decidability of the model-checking problem forthe logic EF [23,20,24,19]. We also provide several undecidability results tocomplete the picture�we show that any `reasonable' bisimulation-like equiv-alence is undecidable between state-extended PA processes and �nite-stateones. Moreover, even in the case of state-extended BPP processes (which forma natural subclass of Petri nets) the problem of weak bisimilarity with �nite-state processes is undecidable.Decidability of bisimulation-like equivalences has been intensively studied forvarious process classes (see [28] for a survey). The majority of the results areabout the decidability of strong bisimilarity, e.g., [3,9,8,34,7,16,12].Strong bisimilarity with �nite-state processes is known to be decidable for2



(labeled) Petri nets [15], PA, and pushdown processes [14]. Another positiveresult of this kind is presented in [22], where it is shown that weak bisimilarityis decidable between BPP and �nite-state processes. However, weak bisimila-rity with �nite-state processes is undecidable for Petri nets [13]. In this paperwe obtain original positive results for PAD (and hence also PA and PDA) pro-cesses, and an undecidability result for state-extended BPP processes. More-over, all positive results are proved using the same general strategy which canalso be adapted to the previously established ones.In Section 2 we de�ne process rewrite systems, the formalism we use to de-scribe in�nite-state systems. In Section 3 we describe the general method fordeciding bisimilarity between in�nite-state systems and �nite-state systems.In Section 4 we use this method to construct characteristic formulae and applythem to prove the main positive decidability result. In Section 5 we prove sev-eral undecidability results for strong and weak bisimilarity. In the last sectionwe summarize the results and outline possible future work.2 De�nitionsTransition systems are widely accepted as structures which can exactly de�nethe operational semantics of processes. In the rest of this paper we understandprocesses as (being associated with) nodes in transition systems of certaintypes.De�nition 1 A transition system (TS) T is a triple (S;Act ;!) where S isa set of states, Act is a �nite set of actions (or labels), and !� S �A� Sis a transition relation.We de�ned Act as a �nite set; it is somewhat nonstandard, but we can al-low this as all classes of process descriptions we consider generate transitionsystems of this kind. As usual, we write s a! t instead of (s; a; t) 2! andwe extend this notation to elements of Act� in an obvious way (we sometimeswrite s!� t instead of s w! t if w 2 Act� is irrelevant). A state t is reachablefrom a state s i� s!� t.Let Const = fX; Y; Z; : : :g be a countably in�nite set of process constants.The set of (general) process expressions, denoted G, is de�ned by the followingabstract syntax equation: E ::= " j X j EkE j E:EHere X ranges over Const and " is a special constant that denotes the emptyexpression. Intuitively, the `:' operator corresponds to a sequential composi-3



tion, while the `k' operator models a simple form of parallelism.In the rest of this paper we do not distinguish between expressions related bystructural congruence which is the smallest congruence relation over processexpressions such that the following laws hold:� associativity for `:' and `k'� commutativity for `k'� `"' as a unit for `:' and `k'.A process rewrite system [21] is speci�ed by a �nite set � of rules which areof the form E a! F , where E; F are process expressions and a is an elementof a �nite set Act . The sets of process constants which are used in the rulesof � is denoted by Const(�), and the set of all process expressions built overConst(�) is denoted by G(�).Each process rewrite system � determines a unique transition system wherestates are process expressions of G(�), the set of labels is Act , and transitionsare determined by � and the following inference rules (remember that `k' iscommutative):(E a! F ) 2 �E a! F E a! E 0E:F a! E 0:F E a! E 0EkF a! E 0kFVarious subclasses of process rewrite systems can be obtained by imposingcertain restrictions on the form of the rules. To specify those restrictions,we �rst de�ne the classes S and P of sequential and parallel expressions,composed of all process expressions which do not contain the `k' and the `:'operator, respectively. For short, we also use `1' to denote the set of processconstants. A hierarchy of process rewrite systems is presented in Figure 1; therestrictions are speci�ed by a pair (A;B), where A and B are the classes ofexpressions which can appear on the left-hand and the right-hand side of rules,respectively. The set of states of a system � which belongs to the subclassdetermined by (A;B) is then formed by all process expressions of B \ G(�).It is important to realize that, e.g., every BPA system � can also be seen asa PA system, but the sets of states (processes) of � are di�erent in the tworespective cases.The hierarchy of Figure 1 contains almost all classes of in�nite-state systemswhich have been studied so far; BPA, BPP, and PA processes are well-known[4], PDA correspond to pushdown processes (as proved by Caucal in [6]), PNcorrespond to Petri nets (see, e.g., [31]), etc. This hierarchy is strict w.r.t.strong bisimulation, i.e., `higher' classes are strictly more expressive [21].4
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Fig. 1. A hierarchy of process rewrite systemsA convenient way how to extend expressibility of process rewrite systems is toequip them with a �nite-state control unit. In order to do that, we �rst needto introduce the notion of Step. Let � be a PRS. Observe that each transitionE a! F is due to some rule H a! K of � (i.e., H is rewritten to K within E,yielding the expression F ). Generally, there can be more than one rule of �with this property�if, e.g., � = fX a! XkY; Y a! Y kY g, then the transitionXkY a! XkY kY can be derived in one step in two di�erent ways. For eachtransition E a! F we denote the set of all rules of � which allow to derive thetransition in one step by Step(E a! F ).A state-extended PRS (StExt(PRS)) is a triple (�; Q;BT) where � is a PRS,Q is a �nite set of control states, and BT � ��Q�Q is a set of basic tran-sitions. The transition system generated by a state-extended PRS (�; Q;BT)has Q�G(�) as the set of states (its elements are called state-extended PRSprocesses, or StExt(PRS) processes for short), Act is the set of labels, andthe transition relation is determined by the following rule: (p; E) a! (q; F ) i�E a! F and there is H a! K 2 Step(E a! F ) such that (H a! K; p; q) 2 BT.This construction also applies to the aforementioned subclasses of PRS. It can(but does not have to) increase the expressive power of a given subclass. Forexample, if we add a �nite-state control to a FS, PDA, or PN process, weobtain a process which can be equivalently described by another FS, PDA, orPN process, respectively (here the word `equivalent' means `the same up toisomorphism'). In the other cases, the mentioned extension brings strictly morepower�StExt(BPA) are in fact PDA processes, StExt(BPP) form a proper5



subclass of PN processes (which is also a proper superclass of BPP), and if weadd �nite-state control to PA (or to any of its superclasses), we obtain systemswith full Turing power. The last fact will be demonstrated in Section 5. Let usnote that PRS themselves are not Turing-powerful, because the reachabilityproblem is decidable for them�see [21].
3 A General Method for Bisimulation-Like EquivalencesIn this section we design a general method for proving decidability of bisimulation-like equivalences between in�nite-state processes and �nite-state ones.De�nition 2 Let R : Act ! 2Act� be a (total) function, assigning to eachaction its corresponding set of responses. We say that R is closed under sub-stitution if the following conditions hold:� a 2 R(a) for each a 2 Act .� If b1b2 : : : bn 2 R(a) and w1 2 R(b1); w2 2 R(b2); : : : ; wn 2 R(bn), then alsow1w2 : : : wn 2 R(a).In order to simplify our notation, we adopt the following conventions in thissection:� G = (G;Act ;!) always denotes a (general) transition system.� F = (F;Act ;!) always denotes a �nite-state transition system with kstates.� R always denotes a function from Act to 2Act� which is closed under substi-tution.� N always denotes a decidable binary predicate de�ned for pairs (s; t) ofnodes in transition systems (which will be clear from the context). Moreover,N is re�exive, symmetric, and transitive.Note that G and F have the same set of actions Act . All de�nitions andpropositions which are formulated for G should be considered as general; ifwe want to state some speci�c property of �nite-state transition systems, werefer to F . We also assume that G, F , R, and N are de�ned in a `reasonable'way so that we can allow natural decidability assumptions on them (e.g., it isdecidable whether g a! g0 for all g; g0 2 G and a 2 Act , or whether w 2 R(a)for a given w 2 Act�, etc.)De�nition 3 The extended transition relation )� G � Act � G is de�nedas follows: s a) t i� s w! t for some w 2 R(a).6



De�nition 4 A relation P � G � G is an R-N-bisimulation if whenever(s; t) 2 P , then N(s; t) is true and for each a 2 Act :� If s a! s0, then t a) t0 for some t0 2 G such that (s0; t0) 2 P .� If t a! t0, then s a) s0 for some s0 2 G such that (s0; t0) 2 P .States s; t 2 G are R-N-bisimilar, written s RN� t, if there is an R-N-bisimulationrelating them.Various special versions of R-N -bisimilarity appeared in the literature, e.g.,strong and weak bisimilarity (see [30,26]). The corresponding versions of R(denoted by S and W , respectively) are de�ned as follows (N0 denotes the setof all nonnegative integers):� S(a) = fag for each a 2 Act .� W (a) = 8><>: f� i j i 2 N0g if a = � ;f� ia� j j i; j 2 N0g otherwise.The `� ' is a special (silent) action, usually used to model an internal commu-nication. As the predicate N is not used in the de�nitions of strong and weakbisimilarity, we can assume it is always true (we use T to denote this specialcase of N in the rest of this paper). One can also argue that the N predicatecould be omitted from the de�nition of R-N -bisimilarity, as it is not employedby any known bisimulation-like equivalence. This is not completely true, as,e.g., the version of strong bisimilarity introduced in [28] uses such a predi-cate to distinguish between `terminal' and `�nal' states of pushdown processes(in this way it is possible to distinguish between a `successful' terminationcaused by emptying the stack, and an `unsuccessful' one (deadlock) caused byentering a state (p; E), where E 6= ", from which there are no transitions).Generally, every R-N -bisimilarity is a re�nement of R-T -bisimilarity and thisfact also suggests the way how to use the predicate N ; its basic purposeis to impose some additional conditions on pairs of states which cannot bespeci�ed by R, but which should be satis�ed by (pairs of) equivalent states. Weillustrate this approach by designing a natural re�nement of weak bisimilarity.Example 5 It is a well-known fact that weak bisimilarity does not distinguishbetween a state which cannot emit any action (deadlock), and a state whichcan emit only an in�nite number of silent `� ' actions (livelock). However, thesetwo behaviors are considered to be di�erent in many situations; for example,there are very good reasons to distinguish between deadlock and livelock in thecontext of operating systems. Therefore, it is natural to ask whether there issome re�nement of weak bisimilarity which preserves most of its properties buteliminates the mentioned drawback at the same time. A simple solution is to7



de�ne the D predicate in the following way:D(s; t) is true i� (Init(s) = ; () Init(t) = ;)Here Init(s) denotes the set of initial actions, de�ned as follows: Init(s) =fa 2 Act j s a! s0 for some s0g. Now W-D-bisimilarity is a good candidate forthe equivalence we are looking for; it is very similar to weak bisimilarity, but itdistinguishes between deadlock and livelock. As we shall see, W-D-bisimilarityis also decidable between PAD processes and �nite-state ones.The concept of R-N -bisimilarity covers many equivalences which have notbeen explicitly investigated so far; for example, we can de�ne the function Rlike this:� K(a) = fai j i 2 N0g for each a 2 Act .� L(a) = fw 2 Act� j w begins with ag.� M(a) = 8><>:Act� if a = � ;fw 2 Act� j w contains at least one ag otherwise.The predicate N can also have various forms. We have already mentioned the`T ' (always true) and `D' (deadlock equivalence). Another natural example isthe `I' predicate: I(s; t) is true i� Init(s) = Init(t). It is easy to see that, e.g.,ST� coincides with SI�, while WI� re�nes WD� .An important example of a bisimulation-like equivalence which cannot beseen as R-N -bisimilarity is branching bisimilarity (introduced in [35]). Thisrelation places additional requirements on `intermediate' nodes that extendedtransitions pass through, and this brings further di�culties. Therefore, we donot consider branching bisimilarity in our paper.R-N -bisimilarity can also be de�ned in terms of the so-called R-N-bisimulationgame. Imagine that there are two tokens initially placed in states s and tsuch that N(s; t) is true. Two players, Al and Ex, now start to play a gameconsisting of a (possibly in�nite) sequence of rounds, where each round isperformed as follows:1. Al chooses one of the two tokens and moves it along an arbitrary (butsingle!) transition, labeled by some a 2 Act .2. Ex has to respond by moving the other token along a �nite sequence oftransitions in such a way that the corresponding sequence of labels belongsto R(a) and the predicate N is true for the pair of states where the tokenslie after Ex �nishes his move.Al wins the R-N -bisimulation game, if after a �nite number of rounds Excannot respond to Al's �nal attack. Now it is easy to see that the states s and8



ss?a c ts����� �c AAAU c? ?a bc c
us?b cFig. 2. A transition system considered in Example 6t are R-N -bisimilar i� Ex has a universal defending strategy (i.e., Ex can playin such a way that Al cannot win).A natural way how to approximate R-N -bisimilarity is to de�ne the family ofrelations RN�i� G�G, i 2 N0 , as follows: s RN�i t i� N(s; t) is true and Ex hasa defending strategy within the �rst i rounds in the R-N -bisimulation game.However, RN�i does not have to be an equivalence relation. Moreover, it is notnecessarily true that s RN� t() 8i 2 N0 : s RN�i t.Example 6 It is a well-known fact that in the case of weak bisimilarity (i.e.,W-T-bisimilarity) the equivalences WT� t () 8i 2 N0 : s RN�i tdoes not hold in general ( `(=' does not have to be valid). Moreover, WT� i isnot transitive for i � 1. To see this, consider the states s; t; u in the transitionsystem of Figure 2; we have s WT� 1 t and t WT� 1 u, but s 6WT� 1 u.Now we show how to overcome those di�culties; to do this, we �rst introducethe extended R-N -bisimulation relation:De�nition 7 A relation P � G � G is an extended R-N-bisimulation ifwhenever (s; t) 2 P , then N(s; t) is true and for each a 2 Act :� If s a) s0, then t a) t0 for some t0 2 G such that (s0; t0) 2 P .� If t a) t0, then s a) s0 for some s0 2 G such that (s0; t0) 2 P .States s; t 2 G are extended R-N-bisimilar if there is an extended R-N-bisimulation relating them.Naturally, we can also de�ne the extended R-N -bisimilarity by means of theextended R-N -bisimulation game; we simply allow Al to use the `long' moves(i.e., Al can play the same kind of moves as Ex). Moreover, we can de�ne thefamily of approximations of extended R-N -bisimilarity in the same way as inthe case of R-N -bisimilarity�for each i 2 N0 we de�ne the relation RN'i� G�Gas follows: s RN'i t i� N(s; t) is true and Ex has a defending strategy withinthe �rst i rounds in the extended R-N -bisimulation game where tokens are9



initially placed in s and t.Lemma 8 Two states s; t of G are R-N-bisimilar i� s and t are extendedR-N-bisimilar.PROOF. Every extended R-N -bisimulation is also an R-N -bisimulation; herewe need that a 2 R(a) for each a 2 Act . Conversely, every R-N -bisimulationis also an extended R-N -bisimulation; each extended transition is a �nite se-quence of transitions, hence we can concatenate `responses' to those individualtransitions, obtaining a valid response to the original extended transition. Herewe need the second requirement of De�nition 2, that the relation R is closedunder substitution. 2Lemma 9 The following properties hold:(1) RN'i is an equivalence relation for each i 2 N0 .(2) Let s; t be states of G. Then 8i 2 N0 : s RN�i t i� 8i 2 N0 : s RN'i t.PROOF.(1) For the �rst part, re�exivity and symmetry are obvious. Transitivity fol-lows from the condition that the relation R is closed under substitution.(2) It follows from the de�nition of RN' that s RN'i t =) s RN�i t. Hence, itsu�ces to realize that if s 6RN'i t, then s 6RN�j t for some j 2 N0�as Al canforce his win using i `long' moves and each of those moves consists of a�nite number of `short' moves, Al could actually `decompose' his attacks,playing only (a �nite number of) short moves. 2Remark 10 For all states s; t of G and i 2 N0 we have that if s RN'i t then alsos RN�i t. However, there is no `reverse correspondence'�it can be easily shownthat for arbitrarily large j the implication s RN�j t =) s RN'1 t is generallyinvalid (the implication is invalid even in the case when t is a state in a one-state TS). See Section 5 for details.Now we examine some special properties of R-N -bisimilarity on �nite-statetransition systems (remember that F is a �nite-state TS with k states).Lemma 11 Two states s; t of F are R-N-bisimilar i� s RN'k�1 t.PROOF. As F has k states and RN'i+1 re�nes RN'i for each i 2 N0 , we havethat RN'k�1= RN'k, hence RN'k�1= RN�. 210



Theorem 12 States g 2 G and f 2 F are R-N-bisimilar i� the followingconditions hold:1. g RN'k f .2. For each state g0 which is reachable from g there is a state f 0 2 F such thatg0 RN'k f 0.PROOF.`=)': Obvious.`(=': We prove that the relationP = f(g0; f 0) j g !� g0 and g0 RN'k f 0gis an extended R-N -bisimulation. Let (g0; f 0) 2 P and let g0 a) g00 for somea 2 Act (the case when f 0 a) f 00 is handled in the same way). By de�nitionof RN'k, there is an f 00 such that f 0 a) f 00 and g00 RN'k�1 f 00. It su�ces to showthat g00 RN'k f 00; as g !� g00, there is a state f of F such that g00 RN'k f . Bytransitivity of RN'k�1 we have f RN'k�1 f 00, hence f RN'k f 00 (due to Lemma 11).Now g00 RN'k f RN'k f 00 and thus g00 RN'k f 00 as required. Clearly (g; f) 2 P andthe proof is �nished. 2Remark 13 We have already mentioned that the equivalences RN� t () 8i 2 N0 : s RN'i tis generally invalid (e.g., in the case of weak bisimilarity). However, as soon aswe assume that t is a state in a �nite-state transition system, the equivalenceholds. This is an immediate consequence of the previous theorem. Moreover,the second part of Lemma 9 says that we could also use the RN�i approximationson the right-hand side of the equivalence.The previous theorem in fact says that one can use the following strategy todecide whether g RN� f :1. Decide whether g RN'k f (if not, then g 6RN� f).2. Check whether g can reach a state g0 such that g0 6RN'k f 0 for every state f 0of F (if there is such a g0 then g 6RN� f ; otherwise g RN� f).However, none of these tasks is easy in general. Our aim is to examine bothsubproblems in detail, keeping the general setting. Hence, we cannot expectany `universal' (semi)decidability result, because even the problems g WT' 1 fand g 6WT' 1 f are not semidecidable in general (see Section 5).11



As F has �nitely many states, the extended transition relation) is �nite ande�ectively constructible. Therefore, we can e�ectively replace the transitionrelation of F with its corresponding extended transition relation. Al and Excan now play only `short' moves consisting of exactly one transition wheneverplaying within the modi�ed system F�each such move corresponds to someextended transition of the original system F and vice versa. This observa-tion leads to the notion of branching tree, which allows to `extract' from Fthe information which is relevant for the �rst k moves in the extended R-N -bisimulation game. The aim of the following de�nition is to describe all suchtrees up to isomorphism (remember that Act is a �nite set).De�nition 14 For each i 2 N0 we de�ne the set of Trees with depth at mosti (denoted Treei) inductively as follows:� A Tree with depth 0 is any tree with no arcs and a single node (the root)which is labeled by an element of F [ f?g.� A Tree with depth at most i+1 is any directed tree with root r whose nodesare labeled by elements of F [ f?g, arcs are labeled by elements of Act ,which satis�es the following conditions:� If r a! s, then the subtree rooted by s is a Tree with depth at most i.� If r a! s and r a! s0 for s 6= s0, then the subtrees rooted by s and s0 arenot isomorphic.It is clear that the set Treej is �nite for every j 2 N0 . More precisely, itscardinality (denoted NT(j)) is given by:� NT(0) = k + 1� NT(i+ 1) = (k + 1) � 2n�NT(i), where n = card(Act)The set Treej is e�ectively constructible for every j 2 N0 . As each Tree canbe seen as a transition system, we can also speak about Tree-processes whichare associated with roots of Trees (we do not distinguish between Trees andTree-processes in the rest of this paper).Now we introduce special rules which replace the standard ones whenever weconsider an extended R-N-bisimulation game with initial state (g; p), whereg 2 G and p is a Tree process (formally, this is a di�erent game�however, itdoes not deserve a special name in our opinion).� Al and Ex are allowed to play only `short' moves consisting of exactly onetransition whenever playing within the Tree process p (transitions of Treescorrespond to the extended transitions of F).12



� The predicate N(g0; p0), where g0 2 G and p0 is a state of the Tree processp, is evaluated as follows:
N(g0; p0) = 8>>>>>>>><>>>>>>>>:

true if label(p0) = ? andN(g0; f) = false for every f 2 Ffalse if label(p0) = ? andN(g0; f) = true for some f 2 FN(g0; label(p0)) otherwiseWhenever we write g RN'i p, where g 2 G and p is a Tree process, we mean thatEx has a defending strategy within the �rst i rounds in the `modi�ed' extendedR-N -bisimulation game. The importance of Tree processes is clari�ed by thetwo lemmas below:Lemma 15 Let g be a state of G, j 2 N0 . Then g RN'j p for some p 2 Treej.PROOF. We proceed by induction on j:� j = 0 : Then p is a Tree with no arcs and just one node labeled by somef 2 F such that N(g; f) is true; if there is no such f , then it is labeled by?. Clearly g RN'0 p.� Induction step: We need to construct a Tree p such that g RN'j+1 p. TheTree p has a root r whose label is determined in the same way as in the casewhen j = 0. The successors of r are de�ned byr a! s i� g a) g0 and g0 RN'j sNote that for each g0 there is s 2 Treej such that g0 RN'j s by inductionhypothesis. Thus, we have g RN'j+1 p as required. 2Lemma 16 Let f be a state of F , j 2 N0 , and p 2 Treej such that f RN'j p.Then for every state g of G we have that g RN'j f i� g RN'j p.PROOF.`=)': By induction on j:� j = 0 : As f RN'0 p and g RN'0 f , we have that N(g; f) is true and (the rootof) p is labeled by some f 0 such that N(f; f 0) is true. Hence, N(g; f 0) is trueand g RN'0 p.� Induction step: Let f RN'j+1 p and g RN'j+1 f . We prove that g RN'j+1 p.Clearly N(g; label(p)) is true (see above). Let g a) g0 (the case when p a! p0can be done similarly). We need to show that p a! p0 for some p0 with13



g0 RN'j p0. As g RN'j+1 f , there is f 0 2 F such that f a) f 0 and g0 RN'j f 0.Furthermore, as f RN'j+1 p and f a) f 0, there is p0 such that p a! p0 andf 0 RN'j p0. To sum up, we have f 0 RN'j p0 and g0 RN'j f 0, hence g0 RN'j p0 byinduction hypotheses.`(=': In a similar way. 2Now we can extract the core of both subproblems which appeared in the pre-viously mentioned general strategy in a (hopefully) nice way by de�ning twonew and rather special problems�the Step-problem and the Reach-problem:The Step-problemInstance: (g; a; j; p) where g is a state of G, a 2 Act , 0 � j < k, and p 2 Treej.Question: Is there a state g0 of G such that g a) g0 and g0 RN'j p?A decision algorithm may use an oracle which for any state g00 of G answerswhether g00 RN'j p.The Reach-problemInstance: (g; p) where g is a state of G and p is a Tree-process of depth � k.Question: Is there a state g0 of G such that g !� g0 and g0 RN'k p?A decision algorithm may use an oracle which for any state g00 of G answerswhether g00 RN'k p.Formally, the transition system F should also be given in the instances of theaforementioned problems, as it determines the sets Treej and the constant k;we prefer the simpli�ed form to make the following proofs more readable.Theorem 17 If the Step-problem is decidable (possibly using the mentionedoracle), then RN'k is decidable between all states g and f of G and F , respec-tively.PROOF. We prove by induction on j that RN'j is decidable for every 0 � j �k. First, RN'0 is decidable because the predicate N is decidable. Let us assumethat RN'j is decidable (hence the mentioned oracle can be used). It remains toprove that if the Step-problem is decidable, then RN'j+1 is decidable as well.We need to introduce two auxiliary �nite sets:� The set of Compatible Steps, denoted CSfj , is composed exactly of all pairsof the form (a; p), where a 2 Act and p 2 Treej, such that f a) f 0 for some14



f 0 with f 0 RN'j p.� The set of INCompatible Steps, denoted INCSfj , is a complement of CSfjw.r.t. Act � Treej.The sets CSfj and INCSfj are e�ectively constructible. By de�nition, g RN'j+1 fi� N(g; f) is true and the following conditions hold:1. If f a) f 0, then g a) g0 for some g0 with g0 RN'j f 0.2. If g a) g0, then f a) f 0 for some f 0 with g0 RN'j f 0.The �rst condition in fact says that (g; a; j; p) is a positive instance of theStep-problem for every (a; p) 2 CSfj (see Lemma 15 and 16). It can be checkede�ectively due to the decidability of the Step-problem.The second condition does not hold i� g a) g0 for some g0 such that g0 RN'j pwhere (a; p) is an element of INCSfj (due to Lemma 15 and 16). This is clearlydecidable due to the decidability of the Step-problem again. 2It is worth mentioning that the Step-problem is generally semidecidable (pro-vided it is possible to enumerate all �nite paths starting in g). However, itdoes not su�ce for semidecidability of RN'i or 6RN'i between states of G and F .Theorem 18 Decidability of the Step-problem and the Reach-problem (possi-bly using the indicated oracles) implies decidability of the problem whether foreach g0 which is reachable from a given state g of G there is a state f 0 of Fwith g0 RN'k f 0.PROOF. First, the oracle indicated in the de�nition of Reach-problem canbe used because we already know that decidability of the Step-problem impliesdecidability of RN'k between states of G and F (see the previous theorem). To�nish the proof, we need to de�ne one auxiliary set:� The set of INCompatibleTrees, denoted INCT , is composed of all p 2 Treeksuch that f 6RN'k p for every state f of F .The set INCT is �nite and e�ectively constructible. The state g can reach astate g0 such that g0 6RN'k f for every state f of F (i.e., g is a negative instance ofthe problem speci�ed in the second part of this theorem) i� (g; p) is a positiveinstance of the Reach problem for some p 2 INCT (due to Lemma 15 and 16).215



4 Characteristic FormulaeIn this section we show how to apply the previously designed general methodto construct characteristic formulae for �nite-state systems in the temporallogic EFC (we show that the Step-problem as well as the Reach-problem canbe encoded by EFC formulae). Consequently, we reduce the problem of R-N -bisimilarity between in�nite-state processes and �nite-state ones to the modelchecking problem for EFC. Therefore it is possible to apply decidability resultsfrom this area. In this way we prove that a large class of R-N -bisimulationequivalences is decidable between PAD processes and �nite-state ones (theclass includes all versions of R-N -bisimulation equivalences we de�ned in thispaper and many others). First we de�ne the logic EFC (it is an extended versionof the logic EF [10] with constraints on sequences of actions). Let C be a �niteset of unary predicates on sequences of atomic actions. The formulae of EFChave the following syntax (where a 2 Act and C 2 C):� ::= true j :� j �1 ^ �2 j hai� j 3C�Let T = (S;Act ;!) be a transition system. The denotation [[�]] of a formula� is a set of states of T where the formula holds; it is de�ned as follows(sequences of atomic actions are denoted by w):[[true]] :=S[[:�]] :=S � [[�]][[�1 ^ �2]] := [[�1]] \ [[�2]][[hai�]] := fs 2 S j 9s0 2 S: s a! s0 ^ s0 2 [[�]]g[[3C�]] := fs 2 S j 9w; s0: s w! s0 ^ C(w) ^ s0 2 [[�]]gThe predicates of C are used to express constraints on sequences of actions. Aninstance of the model checking problem is given by a state s in S and an EFCformula �. The question is whether s 2 [[�]]. This property is also denoted bys j= �.A characteristic formula �f for a �nite-state process f w.r.t. R-N-bisimulationhas the property that for every (general) process g whose set of actions iscontained in the set of actions of f we haveg RN� f () g j= �fFor every R-N -bisimulation we de�ne the set of predicates R as follows:R = fCa j a 2 Act ; Ca(w)() w 2 R(a)g [ ftrue; falseg16



As usual, we write 3� instead of 3true�.Let us �x a general TS G = (G;Act ;!) and a �nite-state TS F = (F;Act ;!)with k states in the same way as in the previous section. We show how toencode the Step and the Reach problems by EFR formulae. The �rst di�cultyis the N predicate. Although it is decidable, this fact is generally of no usebecause we cannot make any assumptions on `strategies' of model checkingalgorithms. Instead, we restrict our attention to those predicates which canbe encoded by EFR formulae in the following sense: for each f 2 F there isan EFR formula 	f such that for each g 2 G we have that g j= 	f i� N(g; f)is true. In this case we also de�ne the formula 	? := Vf2F :	f .A concrete example of a predicate which can be encoded by EFR formulaeis, e.g., the `I' predicate de�ned in the previous section: For every f 2 F letAf := fa 2 Act j 9f 0: f a! f 0g. Then	f := ^a2Afhaitrue ^ ^a2Act�Af :haitrueThe `D' predicate can be encoded in a similar way.Now we design the family of �j;p formulae, where 0 � j � k and p 2 Treej, insuch a way that for every g 2 G the following equivalence holds:g RN'j p () g j= �j;pHaving these formulae, the Step and the Reach problems can be encoded in arather straightforward way:� (g; a; j; p) is a positive instance of the Step problem i� g j= 3Ca(�j;p)� (g; p) is a positive instance of the Reach problem i� g j= 3(�k;p)The family of �j;p formulae is de�ned inductively on j as follows:� �0;p := 	f ; where f = label(p)� �j+1;p := 	f ^ 0@ ^a2Act ^p02S(p;a)3Ca�j;p01A ^ 0@ ^a2Act(:3Ca( ^p02S(p;a):�j;p0))1A,where f = label(p) and S(p; a) = fp0 j p a! p0g. Empty conjunctions areequivalent to true. 17



Thus, the characteristic formula �f for a process f of a �nite-state systemF = (F;Act ;!) with k states is de�ned by�f � �k;f ^ :30@ ^f 02F :�k;f 01AThe decidability of the model checking problem for the logic EFC dependson properties of the family of constraints C. It has been shown in [23] thatthe model checking problem for PA processes and the logic EFC is decidablefor the class of decomposable constraints (see also [19] where the same resultwas proved later using a completely di�erent technique). This result has beengeneralized to PAD processes in [20,24]. These constraints are called decom-posable, because they can be decomposed w.r.t. sequential and parallel compo-sition. A formal de�nition is as follows: a set of decomposable constraints DCis a �nite set of unary predicates on �nite sequences of actions that containsthe predicates true and false and satis�es the following conditions:1. For every C 2 DC there is a �nite index set I and a �nite set of decomposableconstraints fC1i ; C2i 2 DC j i 2 Ig s.t.8w;w1; w2: w1w2 = w =)  C(w) () _i2I C1i (w1) ^ C2i (w2)!2. For every C 2 DC there is a �nite index set J and a �nite set of decompos-able constraints fC1i ; C2i 2 DC j i 2 Jg s.t.8w1; w2: (9w 2 interleave(w1; w2): C(w)) () _i2J(C1i (w1) ^ C2i (w2))!where interleave(w1; w2) is the set of all interleavings of w1 and w2 de�nedby interleave("; w) := fwginterleave(w; ") := fwginterleave(a1w1; a2w2) := fa1w j w 2 interleave(w1; a2w2)g [fa2w j w 2 interleave(a1w1; w2)gIt is easy to see that the closure of a set of decomposable constraints underdisjunction is again a set of decomposable constraints (see [19,32] for more ondecomposable constraints and decomposable languages). All the previouslymentioned examples of relations R can be expressed by decomposable con-straints. Consider the relation W for weak bisimulation. There we have thefollowing constraints:W� (w) := (w = � i for some i 2 N0)18



Wa(w) := (w = � ia� j for some i; j 2 N0)These constraints can be decomposed w.r.t. sequential and parallel composi-tion. For W� this is trivial. For Wa we haveWa(w1w2)() (Wa(w1) ^W� (w2)) _ (W� (w1) ^Wa(w2))(9w2 interleave(w1; w2):Wa(w))() (Wa(w1) ^W� (w2)) _ (W� (w1) ^Wa(w2))Now we show decomposability for some other (nonstandard) relations thatwere de�ned in Section 3. For the relation K the decomposition is trivial. Forthe relation L we have the constraintLa(w) := w begins with aThe decomposition is La(w1w2) () La(w1)(9w 2 interleave(w1; w2): La(w)) () La(w1) _ La(w2)For the relation M we have the constraintsM� (w) := trueMa(w) :=w contains at least one aThe decomposition of M� is trivial. The decomposition of Ma isMa(w1w2) () Ma(w1) _Ma(w2)(9w 2 interleave(w1; w2):Ma(w)) () Ma(w1) _Ma(w2)However, there are also relations R that are closed under substitution, butwhich yield non-decomposable constraints. For example, let Act = fa; bg andR(a) := fw j #aw > #bwg and R(b) := fbg, where #aw is the number ofactions a in w. The function R is obviously closed under substitution, butthe corresponding set of constraints is not decomposable. On the other hand,there are decomposable constraints that are not closed under substitution like,e.g., R(a) := fai j 1 � i � 5g. Now we can formulate a general decidabilitytheorem:Theorem 19 The problem g RN� f , where R yields a set of constraints Rcontained in a set DC of decomposable constraints, N is expressible in EFR,g is a PAD processes, and f is a �nite-state process, is decidable.Corollary 20 Weak bisimilarity between PAD processes and �nite-state onesis decidable. 19



Remark 21 (Complexity of the problem)The complexity of our algorithm for the problem g RN� f depends on the com-plexity of the model checking problem for EFC and PAD, which is not knownexactly yet. The algorithm for PAD in [20,24] and the di�erent algorithmsfor PA in [23] and [19] all have non-elementary complexity. For BPP, modelchecking with EFC is PSPACE -complete [22,24] (see also Section 6). The EFRformulae that are constructed for a �nite-state system F with k states haveexponential size in k, but a nesting-depth of the operator 3 that is only poly-nomial in k. Model checking can be done `on-the-�y' while these formulae areconstructed and thus polynomial space su�ces. Hence, the problem g RN� f isin PSPACE for BPP.For BPA and PDA, model checking with EFC is known to be in EXPTIME[36,5]. It was claimed in [5] that it is even in PSPACE , but the given proof con-tains an error (it assumed that an accepting polynomial space-bounded Turingmachine always has an accepting computation of polynomial length; however,there are cases where the shortest accepting computation has an exponentiallength). Thus the question about the complexity of model checking pushdownsystems with EFC is open again. Still we conjecture PSPACE -completenessto be most likely, because the number of alternations between conjunction anddisjunction in the model checking problem is bounded by the size of the formulaand thus polynomial. So far, our construction yields an EXPTIME algorithmfor the problem g RN� f for BPA and PDA.The known lower bounds for the model checking problem are PSPACE -hardnessfor BPP [10] and BPA [25] (and thus also for for PDA, PA and PAD). How-ever, unlike the upper bounds, the lower bounds for the model checking problemdo not carry over to the bisimulation problem g RN� f . For example, it has re-cently been shown that weak bisimilarity between BPA and �nite-state systemsis decidable in polynomial time [18], while model checking BPA with EFC isPSPACE -hard [25].Decidability of the model checking problem for the EFR logic in a certainclass of transition systems K is a su�cient but not necessary condition fordecidability of R-N -bisimilarity between processes of K and �nite-state ones.For example, model checking the `pure' EF (without any constraints) is unde-cidable for Petri nets, but the Step and the Reach problems are decidable forS-T -bisimilarity [15]. In fact, strong bisimilarity is the simplest form of R-N -bisimilarity and the EF formulae which encode the two problems are thereforevery simple as well. An exact formulation of this observation is given in thefollowing theorem:Theorem 22 An EF formula is simple i� it is of the form 3� where the sub-formula � does not contain any 3-operator (i.e., � is a formula of Hennessy-Milner logic [26]). If the model checking problem for simple EF formulae is20



decidable in a class K of transition systems, then strong bisimilarity is decid-able between processes of K and �nite-state ones.PROOF. The ST'j equivalence with a given Tree process p can be encoded bya formula of Hennessy-Milner logic for every j 2 N0 . Consequently, the Stepproblem can also be encoded by a formula of Hennessy-Milner logic, and theReach problem is encoded by a formula of the form 3� where � is a formulaof Hennessy-Milner logic. 2The model checking problem for simple EF formulae is essentially a kindof generalized reachability problem (one checks whether there is a reachablestate that satis�es a given formula of Hennessy-Milner logic). Of course, it ismuch easier than the general model checking problem for EF. Thus, decidabil-ity issues can be di�erent�we have already mentioned that model checkingEF logic is undecidable for Petri nets; however, model checking simple EFis decidable (due to the decidability of the Reach problem�see below). Forexample, in the case of Petri nets we can observe that the markings whichsatisfy some formula of H.M. logic can be characterized by boolean combi-nations of constraints of the form p � k or p � k, meaning that there areat least/at most k tokens in place p. This leads to a generalized reachabilityproblem which is decidable [11].Now we show that the model checking problem for simple EF formulae canbe seen as a reformulation of the Step and the Reach problems in the caseof strong bisimilarity (the Step problem is trivially decidable, and the Reachproblem is `equivalently hard' to the model checking problem for the simpleEF logic). This shows the essence of the whole problem in a new light.Theorem 23 The model checking problem for simple EF formulae and thespecial variant of the Reach problem for strong bisimilarity are inter-reduciblein the Turing sense (i.e., decidability of one of the two problems implies de-cidability of the other one).PROOF. Decidability of the model checking problem for simple EF formulaeimplies decidability of the Reach problem, as shown in Theorem 22. We provethe other direction; let 3� be a simple EF formula. First, let us realize thatthe sub-formula � cannot distinguish between states related by ST'n, wheren = length(�). Due to Lemma 15 we know that for every state g of thetransition system G there is a p 2 Treen such that g ST'n p (as the predicate Tis trivial, we do not have to label the nodes of Trees; hence the constructionof Treen does not depend on the transition system F�see De�nition 14). For21



each p 2 Treen we check whether p j= �. Now it is easy to see that g0 j= 3�i� Reach(g0; p) = true for some p 2 Treen such that p j= �. 25 Undecidability ResultsIn this section we provide several negative (undecidability) results which helpto clarify the decidability/undecidability border in the area of comparingin�nite-state processes with �nite-state ones.Intuitively, any `nontrivial' equivalence with �nite-state processes should beundecidable for a class of processes having `full Turing power', which can beformally expressed as, e.g., the ability to simulate Minsky counter machines.De�nition 24 A counter machine M with nonnegative counters c1; c2; :::; cmis a sequence of instructions1 : INS12 : INS2...n� 1 : INSn�1n : haltwhere each INSi (i = 1; 2; :::; n � 1) is in one of the following two forms(assuming 1 � k; k1; k2 � n, 1 � j � m)� cj := cj + 1; goto k� if cj = 0 then goto k1 else (cj := cj � 1; goto k2)The halting problem is undecidable even for Minsky machines with two coun-ters initialized to zero values [27]. Any such machine M can be easily `mim-icked' by a StExt(PA) process P (M) = (�; Q;BT) where� � contains the following rules:� Zj a! Ij:Zj, Zj a! Zj� Ij a! Ij:Ij, Ij a! "where j 2 f1; 2g.� Q = fq1; : : : ; qng, where n is the number of instructions of M.� BT is determined by the following rules:(1) If the program of M contains an instruction of the forml : cj := cj + 1; goto kthen BT contains the elements (Zj a! Ij:Zj; ql; qk) and (Ij a! Ij:Ij; ql; qk).22



(2) If the program of M contains an instruction of the forml : if cj = 0 then goto k1 else (cj := cj � 1; goto k2)then BT contains the elements (Zj a! Zj; ql; qk1) and (Ij a! "; ql; qk2).(3) Each element of BT can be derived using the rule 1 or 2.Intuitively, the (two) counters of the machineM are modeled by a simple PAprocess (I1:I1 : : : I1:Z1)k(I2:I2 : : : I2:Z2) where the number of Ij's means thecurrent value of the counter cj, j 2 f1; 2g (the starting zero point being mod-eled by Z1kZ2). The control states q1; : : : ; qn correspond to the instructions ofM (more precisely, to their labels). Each state determines the unique transi-tion to be performed next with the exception of qn which is the `halting state'.The process (q1; Z1kZ2) is able either to perform the action a boundedly manytimes and to stop (its behavior can be de�ned as am for some m 2 N0) or todo a forever (its behavior being a!); this depends on whether the machineMhalts or not. Notice that a! is the behavior of the one-state process f whereff a! fg is the underlying PRS. When we declare as reasonable any equiva-lence which distinguishes between (processes with) behaviors a! and am, wecan conclude:Theorem 25 Any reasonable equivalence between StExt(PA) processes and�nite-state ones is undecidable.It is obvious that (almost) any R-N -bisimilarity is reasonable in the abovesense, except for some trivial cases. For weak bisimilarity, we can even showthat none of the problems g WT' 1 f , g 6WT' 1 f is semidecidable when g is aStExt(PA) process. It su�ces to realize that we can label all transitions inP (M) by � and add a special a-transition enabled in the (halting) stateqn. Now q1(Z1kZ2) WT' 1 �! i� the machine M does not halt, and similarlyq1(Z1kZ2) WT' 1 f where ff �! f; f a! gg i� the machine M halts.Now, the claim of Remark 10 is also easy to see; if we take the modi�ed processP (M) of the previous paragraph, we can observe that q1(Z1kZ2) WT� j �! forevery j which is less than the number of computational steps of M. On theother hand, if M halts then q1(Z1kZ2) 6WT' 1 �!. Therefore, the implicationq1(Z1kZ2) WT� j �! =) q1(Z1kZ2) WT' 1 �! is invalid for any j 2 N , because foreach such j there is a machine with more then j computational steps whichhalts.Once seeing that StExt(PA) are strong enough to make our equivalences un-decidable, it is natural to ask what happens when we add �nite-state controlparts to processes from subclasses of PA, namely to BPA and BPP.We have already shown that every R-N -bisimilarity such that R yields de-23
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��?f a �� bb cc �Fig. 3. A �nite-state system used in the proof of Theorem 26composable constraints and N is expressible within EFR is decidable be-tween StExt(BPA) (i.e., PDA) processes and �nite-state ones. In the case ofStExt(BPP), strong bisimilarity with �nite-state processes is decidable [15].Here we demonstrate that the problem for weak bisimilarity is undecidable.Our proof is obtained by modifying the construction which has been used in[13] to show the undecidability of weak bisimilarity between Petri nets and�nite-state systems. To make this paper self-contained, we now give a concisedescription of this modi�ed construction.Theorem 26 Weak bisimilarity is undecidable between StExt(BPP) processesand �nite-state ones.PROOF. Consider a Minsky machine M as in De�nition 24 with just twocounters (m = 2). In a stepwise manner, we show how to construct a StExt(BPP)process P (M) such that P (M) is weakly bisimilar to the process f of Figure 3i� M does not halt.We begin with using just the action � , the process constants Z; I1; I2; D; S andthe control states p1; : : : ; pn; q1; : : : ; qn. The states (p1; Z), (q1; Z) are consid-ered as two possible starting ones. Basic transitions of P (M) are determinedas follows: for every machine instructionl : cj := cj + 1; goto kwe have (Z �! IjkSkZ; pl; pk) and (Z �! IjkSkZ; ql; qk). For every machineinstruction l : if cj = 0 then goto k1 else (cj := cj � 1; goto k2)we have (Ij �! DkS; pl; pk2); (Z �! SkZ; pl; pk1); (Ij �! IjkS; pl; qk1);and (Ij �! DkS; ql; qk2); (Z �! SkZ; ql; qk1):24



We observe that, for every reachable state (r; E), exactly one occurrence of Zappears in the expression E; the constant Z only serves as an auxiliary symbolwhich is used to model the `empty left-hand side' of rules. The number of I1(I2) in E is meant to correspond to the current value of counter c1 (c2). By(the occurrences of) S we count the number of steps, and by D the numberof `decreasing steps'.Thus both (p1; Z) and (q1; Z) can simulate the computation of M (withcounters initialized to zero). Nevertheless, also `cheating steps' (performinga `zero step' instead of a decreasing one) are possible; it re�ects the inabilityof StExt(BPP) (more generally, Petri nets) to test for zero. Note that by (andonly by) a cheating step we can go from the `p-domain' to the `q-domain'.Now we shall re�ne the transitions mentioned so far. The idea is to viewthe sequence of steps as a string of 0's (non-decreasing steps) and 1's (de-creasing steps), and to enable D to `count' the respective binary number.We introduce an additional auxiliary constant C, and replace every transition(E1 �! E2; r1; r2) by the set(E1 �! E2; r1; r0); (D �! CkC; r0; r0); (Z �! Z; r0; r00);(C �! D; r00; r00); (Z �! Z; r00; r2)where r0; r00 are newly added control states. It allows (though does not force) todouble the number ofD's in each step (after adding 1 in the case of a decreasingstep). Now we add a control state h and the basic transition (Z �! DkZ; qn; h).De�ning vec(E) as the 5-dimensional vector giving the numbers of (occur-rences of) I1; I2; C;D; S in E, we can easily derive (similarly as in [12]) thatthe set f vec(E) j 9r such that (r; E) is reachable from (p1; Z) g is a subset off vec(E) j 9r such that (r; E) is reachable from (q1; Z) g; moreover, the twosets are equal i� M does not halt.To proceed with the construction of our desired P (M), we now take a disjointunion of the so far constructed StExt(BPP) system with its isomorphic dupli-cate. For a control state r (or a process constant X), we denote the respectiveduplicate by r (or X).We now introduce new control states s1; s2; s3; moreover, the pairs (s; r),(s; r)�where s 2 fs1; s2; s3g and r is `old'�will also serve as control states.The process P (M) is de�ned as ((s1; q1); ZkZ) when we also include the fol-lowing basic transitions (adding actions a; b; c): for every (E �! E 0; r; r0) weadd (E �! E 0; (s1; r); (s1; r0)); (E �! E 0; (s2; r); (s2; r0)):25



For every r, we add (Z �! Z; (s1; r); s1); (Z �! Z; (s2; r); s2):We also add (Z a! Z; s1; (s2; p1)) and (Z b! Z; s2; s3). Finally, for every X 2fI1; I2; C;D; Sg we add a new control state sX and(X c! X; s3; s3); (X c! X; s3; s3); (X �! "; s3; sX);(X �! "; sX; s3); (Z c! Z; sX ; sX)Checking that P (M) is weakly bisimilar to f i�M does not halt can be doneanalogously to [13]. 26 Conclusions, Future WorkWe designed a general method for proving decidability of R-N -bisimilaritybetween in�nite-state processes and �nite-state ones (Theorem 12) by reduc-ing this problem to two other problems�the Step and the Reach problem(Theorem 17 and 18). We also showed how to encode these special problemsby formulae of EFR logic. In this way we constructed characteristic formu-lae for �nite-state systems up to bisimulation in the logic EFC. As this logicis decidable for PAD (and hence also PA and PDA) processes, we obtaineda general decidability theorem (Theorem 19), which says that every R-N -bisimilarity such that R yields decomposable constrains on sequences of ac-tions and N can be expressed by EFR formulae is decidable between PAD and�nite-state processes. This class of R-N -bisimilarities includes all versions ofR-N -bisimulation equivalences mentioned in this paper. Examples are the re-lations KI�, LT�, MI�, or WD� , but most importantly ST� and WT� (i.e., strong and weakbisimilarity).Then we demonstrated that each `reasonable' R-N -bisimilarity is undecid-able between StExt(PA) processes and �nite-state ones (Theorem 25); this iscaused by the fact that StExt(PA) processes have full Turing power. Moreover,even if we restrict our attention to StExt(BPP), we get an undecidability resultfor weak bisimilarity (Theorem 26). This proof is obtained by a modi�cationof the one which has been used for Petri nets.A complete summary of the results on decidability of bisimulation-like equiv-alences with �nite-state processes is given in the table below. As we wantto clarify what results have been previously obtained by other researchers,our table contains more rows than it is necessary (e.g., the positive result for26



PAD and RN�, where R and N have the above indicated properties, `covers' allpositive results for BPA, BPP, PA, and PDA).We also add a special column which indicates decidability of the model-checking problem for the logic EF. The decidability of EF for pushdown pro-cesses (PDA) and BPA follows from a much stronger result by Muller andSchupp [29] who showed the decidability of monadic second order logic forpushdown automata. Later, model checking PDA with EF was shown to bein EXPTIME [36,5] (see also Remark 21). Model checking BPP with EF wasshown to be decidable by Esparza [10] and PSPACE -complete by Mayr [22,24].Decidability of EF for PA was shown by Mayr [23] and later by Lugiez andSchnoebelen [19], who used a completely di�erent method. The decidability forPAD was shown in [20,24]. The undecidability of EF for Petri nets was shownby Esparza in [10]. The undecidability of EF for StExt(BPP) and StExt(PA)follows directly from the undecidability results on bisimilarity in this paper.ST� WT� RN� EFBPA Yes [9] YES YES Yes [29,5]BPP Yes [8] Yes [22] YES Yes [10,22,24]PA Yes [14] YES YES Yes [23,19]StExt(BPA), i.e., PDA Yes [14] YES YES Yes [29,5]StExt(BPP), i.e., PPDA Yes [15] NO NO NOStExt(PA) No [14] No [14] No [14] NOPAD YES YES YES Yes [20,24]Petri nets Yes [15] No [13] No [13] No [10]The results obtained in this paper are in boldface. Note that although model-checking EF logic is undecidable for StExt(BPP) processes and Petri nets,strong bisimilarity with �nite-state systems is decidable. The original proof in[15] in fact demonstrates decidability of the Reach problem (the Step problemis trivially decidable), hence our general strategy applies also in this case.A unifying concept similar to R-N -bisimulation can also be used for simulation-like equivalences�we can de�ne the R-N -simulation relation in the very sameway as R-N -bisimulation (which can be then seen as a special case of R-N -simulation with the property that its inverse is also an R-N -simulation). Thepredicate N becomes more important in this context, as it allows to de�nesome of the known and studied simulation-like equivalences (e.g., the readysimulation equivalence). An interesting open problem is whether it is possibleto design a general strategy for deciding R-N -simulation equivalence betweenin�nite-state and �nite-state processes in a similar way as for R-N -bisimilarity27



(recently, the decidability/tractability border for strong simulation (i.e., S-T -simulation) with �nite-state systems has been established in [17]). Another setof open problems is the decidability of branching bisimilarity with �nite-stateprocesses.References[1] Proceedings of CONCUR'96, volume 1119 of Lecture Notes in ComputerScience. Springer, 1996.[2] Proceedings of CONCUR'97, volume 1243 of Lecture Notes in ComputerScience. Springer, 1997.[3] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulationequivalence for processes generating context-free languages. Journal of theAssociation for Computing Machinery, 40:653�682, 1993.[4] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in CambridgeTracts in Theoretical Computer Science. Cambridge University Press, 1990.[5] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdownautomata: application to model checking. In Proceedings of CONCUR'97 [2],pages 135�150.[6] D. Caucal. On the regular structure of pre�x rewriting. Theoretical ComputerScience, 106:61�86, 1992.[7] I. �erná, M. K°etínský, and A. Ku£era. Comparing expressibility of normedBPA and normed BPP processes. Acta Informatica, 36(3):233�256, 1999.[8] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for allbasic parallel processes. In Proceedings of CONCUR'93, volume 715 of LectureNotes in Computer Science, pages 143�157. Springer, 1993.[9] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidablefor all context-free processes. Information and Computation, 121:143�148, 1995.[10] J. Esparza. Decidability of model checking for in�nite-state concurrent systems.Acta Informatica, 34:85�107, 1997.[11] P. Jan£ar. Decidability of a temporal logic problem for Petri nets. TheoreticalComputer Science, 74:71�93, 1990.[12] P. Jan£ar. Undecidability of bisimilarity for Petri nets and some relatedproblems. Theoretical Computer Science, 148(2):281�301, 1995.[13] P. Jan£ar and J. Esparza. Deciding �niteness of Petri nets up to bisimilarity. InProceedings of ICALP'96, volume 1099 of Lecture Notes in Computer Science,pages 478�489. Springer, 1996. 28
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