
Model-Checking LTL with Regular Valuations
for Pushdown Systems1

Javier Esparza
Division of Informatics
University of Edinburgh

Edinburgh EH9 3JZ
United Kingdom

E-mail: jav@dcs.ed.ac.uk

and

Antońın Kučera2

Faculty of Informatics
Masaryk University

Botanická 68a
60200 Brno

Czech Republic
E-mail: tony@fi.muni.cz

and

Stefan Schwoon3

Institute for Informatics
Technische Universität München

Arcisstr. 21
80290 Munich

Germany
E-mail: schwoon@in.tum.de

Version: February 27, 2002

Recent works have proposed pushdown systems as a tool for analyzing programs with

(recursive) procedures, and the model-checking problem for LTL has been devoted special

attention. However, all these works impose a strong restriction on the possible valuations

of atomic propositions: whether a configuration of the pushdown system satisfies an atomic

proposition or not can only depend on the current control state of the pushdown automaton

and on its topmost stack symbol. In this paper we consider LTL with regular valuations:

the set of configurations satisfying an atomic proposition can be an arbitrary regular

language. The model-checking problem is solved via two different techniques, with an eye

on efficiency. The resulting algorithms are proved to be asymtotically optimal. We show

that the extension to regular valuations allows to model problems in different areas, like

1This work was partially supported by the project “Advanced Validation Techniques for
Telecommunication Protocols” of the Information Societies Technology Programme of the Eu-
ropean Union.

2On leave at the Institute for Informatics, TU Munich. Supported by a Research Fellowship
granted by the Alexander von Humboldt Foundation and by a grant GA ČR No. 201/00/1023.

3On leave at LFCS, Division of Informatics, University of Edinburgh.

1

data-flow analysis and analysis of systems with checkpoints. We claim that our model-

checking algorithms provide a general, unifying and efficient framework for solving them.

Key Words: Model-checking; linear-time logic; pushdown automata

1. INTRODUCTION

Pushdown systems can be seen as a natural abstraction of programs written
in procedural, sequential languages such as C. They generate infinite-state transi-
tion systems whose states are pairs consisting of a control location (which stores
global information about the program) and stack content (which keeps the track of
activation records, i.e., previously called procedures and their local variables).

Previous research has established applications of pushdown systems for the anal-
ysis of Boolean Programs [1, 8] and certain data-flow analysis problems [7]. The
model-checking problem has been considered for various logics, and quite efficient
algorithms have emerged for linear time logics [2, 6, 9].

In this paper we revisit the model-checking problem for LTL and pushdown
systems. The problem is undecidable for arbitrary valuations, i.e., the functions
that map the atomic propositions of a formula to the respective sets of pushdown
configurations that satisfy them. However, it remains decidable for some restricted
classes of valuations. In [2, 6, 9] valuations were completely determined by the
control location and/or the topmost stack symbol (we call these valuations ‘simple’
in the following). Here we study (and solve) the problem for valuations depending
on regular predicates over the complete stack content. We argue that this solution
provides a general, efficient, and unifying framework for problems from different
areas (e.g., data-flow analysis, analysis of systems with checkpoints, etc.)

We proceed as follows. Section 2 contains basic definitions. Most of the technical
content is in Section 3, where we formally define simple and regular valuations and
propose our solutions to the model-checking problem. The solutions are based on
a reduction to the case of simple valuations, which allows us to re-use most of the
theory from [6]. While the reduction itself is based on a standard method, we pay
special attention to ensuring its efficiency. This requires to modify the algorithm
of [6] to take advantage of specific properties of our constructions. We propose
two different techniques – one for regular valuations in general and another for a
restricted subclass – both of which increase the complexity by only a linear factor
(in the size of an automaton for the atomic regular predicates). By contrast, a blunt
reduction and analysis would yield up to a quadric (‘n4’) blowup. Even though one
technique is more powerful than the other at the same asymptotic complexity, we
present them both, because their efficiency in practice may depend on the concrete
application.

In Section 4 we show that the extension to regular valuations allows to model
problems in different application areas. The first one (Section 4.1) is interprocedu-
ral data-flow analysis. Here, regular valuations can be used to compute data-flow
information which dynamically depends on the history of procedure calls. As an
example, we show how to decide whether a given variable is dead at a given point
of a recursive program with dynamic scoping. A second application area are (Sec-
tion 4.2) systems with checkpoints. In these systems computation is suspended at
certain points to allow for a property of the stack content to be checked; resumption
of the computation depends on the result of this inspection. This part of our work
is motivated by the advent of programming languages which can enforce security

2

requirements. Newer versions of Java, for instance, enable programs to perform
local security checks in which the methods on the stack are checked for correct
permissions. Jensen et al [10] have proposed a formal framework for such systems.
Using their techniques one can prove the validity of control flow based global se-
curity properties as well as to detect (and remove) redundant checkpoints. The
formal framework of [10] can be reformulated in terms of pushdown systems with
checkpoints, to which our model-checking algorithms can be applied. Our results
are more general than those of [10]: we are not restricted to safety properties, our
model can also represent data-flow, and we can handle mutually recursive methods.
Moreover, we provide a detailed complexity analysis. In Section 4.3 we present a
third application of our results of a more theoretical nature: the extension to reg-
ular valuations leads to an elegant model-checking algorithm for CTL∗. In the
context of finite-state systems it is well-known that model-checking the more pow-
erful logic CTL∗ can be reduced to checking LTL [5]. We show that for pushdown
systems model-checking CTL∗can be reduced to model checking LTL with regular
valuations.

Our model-checking algorithms are polynomial in the size of certain parameters
of the problem which are usually small. However, in the worst case those parameters
can be exponential in the size of a problem instance, and so it is natural to ask if
polynomial algorithms in the size of the problem instance exist. In Section 5 we
provide a negative answer by establishing EXPTIME lower bounds. Hence, all of
our algorithms are asymptotically optimal. We draw our conclusions in Section 6.

2. PRELIMINARIES

2.1. The Logic LTL

Let At = {A,B,C, . . .} be a (countable) set of atomic propositions. LTL formu-
lae are built according to the following abstract syntax equation (where A ranges
over At):

ϕ ::= tt | A | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1 U ϕ2

where X and U are the next and until operators, respectively. Let At(ϕ) be the set
of atomic propositions which appear in ϕ (note that At(ϕ) is finite). Formulae are
interpreted on infinite words over the alphabet 2At(ϕ) (formally, an infinite word w
is a function w : IN0 → 2At(ϕ)). We denote that w satisfies a formula ϕ by w |= ϕ.
The satisfaction relation is defined inductively on the structure of ϕ as follows,
where wi denotes the suffix of w starting with w(i):

w |= tt

w |= A ⇐⇒ A ∈ w(0)
w |= ¬ϕ ⇐⇒ w 6|= ϕ
w |= ϕ1 ∧ ϕ2 ⇐⇒ w |= ϕ1 and w |= ϕ2

w |= Xϕ ⇐⇒ w1 |= ϕ
w |= ϕ1 U ϕ2 ⇐⇒ ∃i: (wi |= ϕ2) ∧ (∀j < i:wj |= ϕ1)

We also define 3ϕ ≡ ttU ϕ and 2ϕ ≡ ¬(3¬ϕ).
Hence, every LTL formula ϕ defines a language L(ϕ) consisting of all infinite

words w over the alphabet 2At(ϕ) such that w |= ϕ. It is well known (see, e.g., [12])
that given an LTL formula ϕ, one can effectively construct a Büchi automaton Bϕ

3

of size O(2|ϕ|) which recognizes the language L(ϕ). This Büchi automaton is a
tuple B = (Q, 2At(ϕ), δ, q0, F), where Q is the set of states, 2At(ϕ) is the alphabet,
q0 is the initial state, F is the set of accepting states, and δ:Q× 2At(ϕ) → 2Q is the
transition function. An infinite word w over the alphabet 2At(ϕ) is accepted by B
iff there is an (infinite) run of B over w that visits some accepting state infinitely
often.

2.2. Transition Systems

A transition system is a triple T = (S,→, r) where S is a set of states (not
necessarily finite), → ⊆ S × S is a transition relation, and r ∈ S is a distinguished
state called root.

As usual, we write s → t instead of (s, t) ∈ →. The reflexive and transitive
closure of → is denoted by →∗. We say that a state t is reachable from a state s if
s→∗ t. A state t is reachable if it is reachable from the root.

A run of T is an infinite sequence of states w = s0s1s2 . . . such that si → si+1

for each i ≥ 0. To interpret the logic LTL over runs and states of T , we first need to
fix the meaning of atomic predicates by a valuation, which is a function ν : At → 2S .
Given a valuation ν and a formula ϕ, each run w = s0s1s2 . . . determines a unique
infinite wordw[ν, ϕ] over the alphabet 2At(ϕ) given by w[ν, ϕ](i) = {A ∈ At(ϕ) | si ∈
ν(A)}. The run w satisfies ϕ w.r.t. ν, denoted by w |=ν ϕ, iff w[ν, ϕ] |= ϕ. Similarly,
ϕ is true at a state s ∈ S w.r.t. ν, written s |=ν ϕ, iff for each run w starting in s
we have that w |=ν ϕ.

Observe that whether ϕ holds for runs and states of T is influenced only by the
restriction of ν to At(ϕ). In the next sections we denote this restriction by νϕ (i.e.,
νϕ : At(ϕ) → 2S is a function from a finite domain which agrees with ν on every
argument).

2.3. Pushdown systems

A pushdown system is a tuple P = (P,Γ,∆, q0, ω) where P is a finite set of
control locations, Γ is a finite stack alphabet, ∆ ⊆ (P × Γ) × (P × Γ∗) is a fi-
nite set of transition rules, q0 ∈ P is an initial control location, and ω ∈ Γ is a
bottom stack symbol .

We use Greek letters α, β, . . . to denote elements of Γ, and small letters v, w, . . .
from the end of the alphabet to denote elements of Γ∗. We also adopt a more intu-
itive notation for transition rules, writing 〈p, α〉 →֒ 〈q, w〉 instead of ((p, α), (q, w)) ∈
∆.

A configuration of P is an element of P × Γ∗. To P we associate a unique
transition system TP whose states are configurations of P , the root is 〈q0, ω〉, and
the transition relation is the least relation → satisfying the following:

〈p, α〉 →֒ 〈q, v〉 =⇒ 〈p, αw〉 → 〈q, vw〉 for every w ∈ Γ∗

Without loss of generality we require that ω is never removed from the stack, i.e.,
whenever 〈p, ω〉 →֒ 〈q, w〉 then w is of the form vω.

Pushdown systems can be conveniently used as a model of recursive sequential
programs. In this setting, the (abstracted) stack of activation records increases if
a new procedure is invoked, and decreases if the current procedure terminates. In
particular, it means that the height of the stack can increase at most by one in a
single transition. Therefore, from now on we assume that all pushdown systems we

4

work with have this property. This assumption does not influence the expressive
power of pushdown systems, but it has some impact on the complexity analysis
carried out in Section 3.2.

3. LTL ON PUSHDOWN SYSTEMS

Let P = (P,Γ,∆, q0, ω) be a pushdown system, ϕ an LTL formula, and ν:At →
2P×Γ∗

a valuation. We deal with the following variants of the model-checking prob-
lem:

(I) The model-checking problem for the initial configuration: does 〈q0, ω〉 |=ν ϕ ?

(II) The global model-checking problem: compute (a finite description of) the set
of all configurations, reachable or not, that violate ϕ.

(III) The global model-checking problem for reachable configurations: compute (a
finite description of) the set of all reachable configurations that violate ϕ.

In this paper we use so-called P-automata to encode infinite sets of configurations
of a pushdown system P . As we shall see, in some cases we can solve the prob-
lems (II) and (III) by computing P-automata recognizing the above defined sets of
configurations.

Definition 1. Let P = (P,Γ,∆, q0, ω) be a pushdown system. A P-automaton
is a tuple A = (Q,Γ, δ, P, F) where Q is a finite set of states, Γ (i.e., the stack
alphabet of P) is the input alphabet, δ:Q × Γ → 2Q is the transition function, P
(i.e., the set of control locations of P) is the set of initial states, and F ⊆ Q is a
finite set of accepting states. We extend δ to elements of Q × Γ∗ in the standard
way. A configuration 〈p, w〉 of P is recognized by A iff δ(p, w) ∩ F 6= ∅. A set of
configurations is regular if it is recognized by some P-automaton.

In general, all of the above mentioned variants of the model-checking problem
are undecidable – if there are no ‘effectivity assumptions’ about valuations (i.e., if
a valuation is an arbitrary function ν:At → 2P×Γ∗

), one can easily express unde-
cidable properties of pushdown configurations just by atomic propositions. This
motivates the search for ‘reasonable’ restrictions which do not limit the expressive
power too much but allow to construct efficient model-checking algorithms at the
same time. In the valuations considered in [2, 6]), whether a configuration satisfies
an atomic proposition or not depends only on its control location and the topmost
stack symbol (it can be safely assumed that the stack is always nonempty). We
define these valuations formally:

Definition 2. Let P = (P,Γ,∆, q0, ω) be a pushdown system. A set of con-
figurations of P is simple if it has the form {〈p, αw〉 | w ∈ Γ∗} for some p ∈ P ,
α ∈ Γ. A valuation ν:At → 2P×Γ∗

is simple if ν(A) is a union of simple sets for
every A ∈ At .

In this paper, we propose a more general kind of valuations which are encoded by
finite-state automata. We advocate this approach in the next sections by providing
several examples of its applicability to practical problems; moreover, we show that
this technique often results in rather efficient (or, at least, asymptotically optimal)
algorithms by presenting relevant complexity results.

5

Definition 3. Let P = (P,Γ,∆, q0, ω) be a pushdown system. A valuation
ν:At → 2P×Γ∗

is regular if ν(A) is a regular set for every A ∈ At and it does not
contain any configuration with empty stack.

Notice that, since we assume a bottom stack symbol which is never removed,
the requirement that configurations with empty stack cannot satisfy any atomic
proposition is not a real restriction.

Since regular sets can be infinite, we need to represent regular valuations by
finite means. We fix an adequate representation for our purposes.

Notation 1. Let ν be a regular valuation. For every atomic proposition A and
control location p, we denote by Mp

A a deterministic finite-state automaton over
the alphabet Γ having a total transition function and satisfying

ν(A) = {〈p, w〉 | p ∈ P,wR ∈ L(Mp
A)}

where wR denotes the reverse of w.

Hence, A is true at 〈p, w〉 iff the automatonMp
A enters a final state after read-

ing the stack contents bottom-up. Since ν(A) does not contain any configuration
with empty stack, the initial state of Mp

A is not accepting. This will simplify our
constructions.

3.1. Model-Checking with Simple Valuations

The model-checking problems (I) to (III) of the previous section have been
solved in [6] for simple valuations. In this section we briefly recall the solutions.
The model-checking problem for the initial configuration (problem (I)) is solved in
three steps as follows:

(1) The problem is reduced to the emptiness problem for Büchi pushdown sys-
tems. A Büchi pushdown system is a pushdown system with a subset of
accepting control locations. A run of a Büchi pushdown system is accepting if
it visits some accepting control location infinitely often. A Büchi pushdown
system is empty if it has no accepting run.

(2) The emptiness problem for Büchi pushdown systems is reduced to computing
the set of predecessors of certain regular sets of configurations. The set of
predecessors of a set C of configurations, denoted by pre∗(C), contains the
configurations 〈p, w〉 such that 〈p, w〉 →∗ 〈p′, w′〉 for some 〈p′, w′〉 ∈ C.

(3) An algorithm is presented which, given an arbitrary P-automatonA recogniz-
ing a regular set C of configurations, computes another P-automaton Apre∗

recognizing the set pre∗(C). (It can be shown that if C is regular then so is
pre∗(C).)

We now give some more details about these steps.

Step 1. Let P = (P,Γ,∆, p0, ω) be a pushdown system and let ϕ be a formula
of LTL. We first construct a Büchi automaton B = (Q, 2At(ϕ), δ, q0, F) rec-
ognizing L(¬ϕ). We then construct a Büchi pushdown system BP = ((P ×
Q),Γ,∆′, (p0, q0), ω,G) (where G is the set of accepting control locations) by
“synchronizing” P and B as follows:

6

• 〈(p, q), α〉 →֒ 〈(p′, q′), v〉 ∈ ∆′ if

– 〈p, α〉 →֒ 〈p′, v〉; and

– q′ ∈ δ(q, σ) where σ is the set of all atomic propositions of At(ϕ)
which are true at the configuration 〈p, α〉.

• (p, q) ∈ G if q ∈ F .

If valuations are simple, then, whenever the rule 〈(p, q), α〉 →֒ 〈(p′, q′), v〉 ∈ ∆′

is applied to derive a transition 〈(p, q), αw〉 → 〈(p′, q′), vw〉, we always have
that A is true at the configuration 〈p, αw〉. Using this property, it is easy to
show that P has a run violating ϕ if and only if BP is nonempty.

Step 2. Let BP = (P,Γ,∆, p0, ω,G) be an arbitrary Büchi pushdown system. The
head of a transition rule 〈p, α〉 →֒ 〈p′, w〉 of ∆ is the configuration 〈p, α〉. A
head 〈p, α〉 is repeating if there exists v ∈ Γ∗ such that 〈p, αv〉 can be reached
from 〈p, α〉 by means of a sequence of transitions that visits some control
location of G. Let Rep be the set of repeating heads, and let RepΓ∗ denote
the set {〈p, αw〉 | 〈p, α〉 ∈ Rep, w ∈ Γ∗}. It is shown in [6] that BP is
nonempty if and only if 〈p0, ω〉 ∈ pre∗(RepΓ∗). Therefore, emptiness can be
decided by computing first Rep and then pre∗(RepΓ∗).

In order to compute Rep we construct a head reachability graph having all
heads of ∆ as nodes. There is an edge from 〈p, α〉 to 〈p′, β〉 if there is a rule
〈p, α〉 →֒ 〈p′′, v1βv2〉 in δ such that 〈p′′, v1〉 ∈ pre∗({〈p′, ε〉}). If 〈p′, ε〉 can be
reached from 〈p′′, v1〉 visiting a final control location along the way, then we
say that the edge is marked. It is shown in [6] that a head is repeating if and
only if it belongs to a strongly connected component of the head reachability
graph containing at least one marked edge.

These results show that the emptiness problem reduces to computing pre∗({〈p, ε〉 |
p ∈ P} for each control location p, and pre∗(RepΓ∗).

Step 3. Without loss of generality, we assume that A has no transition leading to
an initial state. We compute pre∗(C) by means of a saturation procedure.
The procedure adds new transitions to A, but no new states. New transitions
are added according to the following saturation rule:

If 〈p, γ〉 →֒ 〈p′, w〉 and p′
w
−→q in the current P-automaton, add a

transition (p, γ, q).

The saturation procedure eventually reaches a fixpoint because the number of
possible new transitions is finite. An efficient implementation of the procedure
is presented in [6].

This finishes the discussion of problem (I). Problem (II) has the same solution,
because the automaton recognizing pre∗(RepΓ∗) is a finite representation of all
the configurations violating ϕ. Problem (III) is solved by showing that the set
of reachable configurations of P is regular, and by proposing an algorithm – very
similar to that for pre∗(C) – that constructs a P-automaton recognizing this set.
The product of this automaton and that for pre∗(RepΓ∗) is a finite representation
of all the reachable configurations of P that violate ϕ. The following theorems are
taken from [6].

7

Theorem 1. Let P = (P,Γ,∆, q0, ω) be a pushdown system, ϕ an LTL formula,
and ν a simple valuation. Let B be a Büchi automaton for ¬ϕ. Then one can
compute

• a P-automaton R with O(|P |+ |∆|) states and O(|P | · |∆| · (|P |+ |∆)) transi-
tions in O(|P | · |∆| · (|P |+ |∆)) time and space such that R recognizes exactly
the reachable configurations of P;

• a P-automaton A of size O(|P | · |∆| · |B|2) in O(|P |2 · |∆| · |B|3) time using
O(|P | · |∆| · |B|2) space such that A recognizes exactly those configurations
〈p, w〉 of P (reachable or not) such that 〈p, w〉 6|=ν ϕ;

• a P-automaton A′ of size O(|P |·|∆|·(|P |+|∆|)2·|B|2) in O(|P |·|∆|·(|P |+|∆|)2·
|B|3) time using O(|P | · |∆| · (|P |+ |∆|)2 · |B|2) space such that A′ recognizes
exactly those reachable configurations 〈p, w〉 of P such that 〈p, w〉 6|=ν ϕ.

Theorem 2. Let P = (P,Γ,∆, q0, ω) be a pushdown system, ϕ an LTL formula,
and ν a simple valuation. Let B be a Büchi automaton which corresponds to ¬ϕ.

• Problems (I) and (II) can be solved in O(|P |2 · |∆| · |B|3) time and O(|P | · |∆| ·
|B|2) space.

• Problem (III) can be solved in either O(|P | · |∆| · (|P |+ |∆|)2 · |B|3) time and
O(|P | · |∆| · (|P |+ |∆|)2 · |B|2) space, or O(|P |3 · |∆| · (|P |+ |∆|) · |B|3) time
and O(|P |3 · |∆| · (|P |+ |∆|) · |B|2) space.

3.2. Model-Checking with Regular Valuations

Our aim here is to design efficient model-checking algorithms for regular valua-
tions. We show that one can actually build on top of Theorem 1.

For the rest of this section we fix a pushdown system P = (P,Γ,∆, q0, ω),
an LTL formula ϕ, and a regular valuation ν. The Büchi automaton which cor-
responds to ¬ϕ (see Section 2.1) is denoted by B = (R, 2At(ϕ), η, r0, G). Let
At(ϕ) = {A1, . . . , An}, and let Mp

Ai
= (Qp

i ,Γ, ̺
p
i , s

p
i , F

p
i) be the deterministic

finite-state automaton associated to (Ai, p) for all p ∈ P and 1 ≤ i ≤ n.
In the next subsections we design two algorithms for model-checking with regular

valuations. Actually, both of them reduce the problem to model-checking with
simple valuations discussed in Section 3.1; and in both cases, the idea is to encode
theMp

Ai
automata in the structure of P and simulate them ‘on-the-fly’ during the

computation of P . In practice, some of theMp
Ai

automata can be identical (we shall
see examples in Section 4.2). Of course, it does not have much sense to simulate
the execution of the same automaton within P twice and our constructions should
reflect this fact. For simplicity, we assume that whenever i 6= j or p 6= q, then the
Mp

Ai
and Mq

Aj
automata are either identical or have disjoint sets of states. So,

let {M1, . . . ,Mm} be the set of all Mp
Ai

automata where 1 ≤ i ≤ n and p ∈ P
(hence, if some of the Mp

Ai
automata are identical then m < n · |P |), and let Qj

be the set of states ofMj for each 1 ≤ j ≤ m. The Cartesian product
∏

1≤j≤mQj

is denoted by States. For given r ∈ States, p ∈ P , and 1 ≤ i ≤ n, we denote by
r

p
i the element of Qp

i which appears in r (observe that we can have r
p
i = r

q
j even if

i 6= j or p 6= q). The vector of initial states (i.e., the only element of States where
each component is the initial state of some Mp

Ai
) is denoted by s. Furthermore,

we write t = ̺(r, α) if t
p
i = ̺p

i (r
p
i , α) for all 1 ≤ i ≤ n, p ∈ P . Now we present and

evaluate two techniques for solving the model-checking problems with P , ϕ, and ν.

8

Remark 1 (On the complexity measures). The size of an instance of the model-
checking problem for pushdown systems and LTL with regular valuations is given
by |P|+|ϕ|+|νϕ|, where |νϕ| is the total size of all employed automata. However, in
practice we usually work with small formulae and a small number of rather simple
automata (see Section 4); therefore, we measure the complexity of our algorithms
in |B| and |States| rather than in |ϕ| and |νϕ| (in general, B and States can be
exponentially larger than ϕ and νϕ). This allows for a detailed complexity analysis
whose results better match the reality because |B| and |States| stay usually ‘small’.
This issue is discussed in greater detail in Section 5 where we provide some lower
bounds showing that all algorithms developed in this paper are also essentially
optimal from the point of view of worst-case analysis.

3.2.1. Technique 1 – extending the finite control

The idea behind this technique is to evaluate the atomic propositions A1, . . . , An

‘on the fly’ by storing the (product of) Mp
Ai

automata in the finite control of P
and updating the vector of states after each transition according to the (local)
change of stack contents. As we will see, we conveniently use the assumptions that
theMp

Ai
automata are deterministic, have total transition functions, and read the

stack bottom-up. However, we also need one additional assumption to make the
construction work:

Each automatonMp
Ai

is also backward deterministic, i.e., for every u ∈
Qp

i and α ∈ Γ there is at most one state t ∈ Qp
i such that ̺p

i (t, α) = u.

This assumption is truly restrictive – there are quite simple regular languages which
cannot be recognized by finite-state automata which are both deterministic and
backward deterministic (for example the language {ai | i > 0}).

We define a pushdown system P ′ = (P ′,Γ,∆′, q′0, ω) where P ′ = P × States,
q′0 = (q0, ̺(s, ω)), and the transition rules ∆′ are determined as follows: 〈(p, r), α〉 →֒′

〈(q,u), w〉 iff the following conditions hold:

• 〈p, α〉 →֒ 〈q, w〉,

• there is t ∈ States such that ̺(t, α) = r and ̺(t, wR) = u.

Observe that due to the backward determinism ofMp
Ai

there is at most one t with
the above stated properties; and thanks to determinism and the totality of the
transition functions of Mp

Ai
, we further obtain that for given 〈p, α〉 →֒ 〈q, w〉 and

r ∈ States there is exactly one u ∈ States such that 〈(p, r), α〉 →֒′ 〈(q,u), w〉. From
this it follows that |∆′| = |∆| · |States|.

A configuration 〈(q, r), w〉 of P ′ is consistent iff r = ̺(s, wR) (remember that
s is the vector of initial states of Mp

Ai
automata). In other words, 〈(q, r), w〉 is

consistent iff r ‘reflects’ the stack contents w. Let 〈p, w〉 be a configuration of P
and 〈(p, r), w〉 be the (unique) associated consistent configuration of P ′. Now we
can readily confirm that

(A) if 〈p, w〉 → 〈q, v〉, then 〈(p, r), w〉 → 〈(q,u), v〉 where 〈(q,u), v〉 is the unique
consistent configuration associated to 〈q, v〉;

(B) if 〈(p, r), w〉 → 〈(q,u), v〉, then 〈(q,u), v〉 is consistent and 〈p, w〉 → 〈q, v〉 is a
transition of TP .

9

As the initial configuration of P ′ is consistent, we see (due to (B)) that each reach-
able configuration of P ′ is consistent (but not each consistent configuration is nec-
essarily reachable). Furthermore, due to (A) and (B) we also have the following:

(C) let 〈p, w〉 be a configuration of P (not necessarily reachable) and let 〈(p, r), w〉
be its associated consistent configuration of P ′. Then the parts of TP and TP′

which are reachable from 〈p, w〉 and 〈(p, r), w〉, respectively, are isomorphic.

The simple valuation ν′ is defined by

ν′(Ai) = {〈(p, r), w〉 | (p, r) ∈ P ′, rp
i ∈ F

p
i , w ∈ Γ+}

for all 1 ≤ i ≤ n. Now it is easy to see (due to (C)) that for all p ∈ P and w ∈ Γ∗

we have
〈p, w〉 |=ν ϕ ⇐⇒ 〈(p, r), w〉 |=ν′

ϕ where r = ̺(s, wR) (1)

During the construction of P ′ we observed that |P ′| = |P | · |States| and |∆′| =
|∆| · |States|. Applying Theorem 2 näıvely, we obtain that using Technique 1, the
model-checking problems (I) and (II) can be solved in cubic time and quadratic
space (w.r.t. |States|), and that model-checking problem (III) takes even quadric
time and space. However, closer analysis reveals that we can do much better.

Theorem 3. Technique 1 (extending the finite control) gives us the following
bounds on the model-checking problems with regular valuations:

1. Problems (I) and (II) can be solved in O(|P |2 · |∆| · |States | · |B|3) time and
O(|P | · |∆| · |States| · |B|2) space.

2. Problem (III) can be solved in either O(|P | · |∆| · (|P |+ |∆|)2 · |States | · |B|3)
time and O(|P | · |∆| · (|P |+ |∆|)2 · |States | · |B|2) space, or O(|P |3 · |∆| · (|P |+
|∆|) · |States | · |B|3) time and O(|P |3 · |∆| · (|P |+ |∆|) · |States | · |B|2) space.

In other words, all problems take only linear time and space in |States |. Be-
fore proving the theorem, we need to introduce further notions and formulate two
auxiliary lemmata.

We say that a P ′-automaton is well-formed iff its set of states is of the form
Q × States where Q is a set such that P ⊆ Q. A transition ((p, t), α, (p′,u)) of a
well-formed P ′-automaton is consistent (w.r.t. ̺) iff ̺(u, α) = t. A P ′-automaton
is consistent iff it is well-formed and contains only consistent transitions.

Now we revisit the algorithms presented in [6]. Algorithm 1 (see Table 1) shows
the computation of pre∗ from [6], restated for the special case of consistent P ′-
automata. We first show that computation of pre∗ upholds the consistency of a
P ′-automaton.

Lemma 1. When receiving a consistent P ′-automaton as input, Algorithm 1
will output a consistent P ′-automaton.

Proof. Recall that Algorithm 1 implements the saturation procedure of [2], in
which transitions are added to the original automaton A according to the following
rule:

If 〈(p,u), α〉 →֒ 〈(p′,u′), w〉 in ∆′ and (p′,u′)
w
−−→(q,u′′) in the current

automaton, then add a transition ((p,u), α, (q,u′′)).

10

Algorithm 1

Input: a pushdown system P ′ = (P × States,Γ,∆′, q0, ω);
a consistent P ′-automaton A = (Q× States,Γ, δ, P × States, F)

Output: the set of transitions of Apre∗

1 rel ← ∅; trans ← δ; ∆′′ ← ∅;
2 for all 〈(p,u), α〉 →֒ 〈(p′,u′), ε〉 ∈ ∆′ do trans ← trans ∪ {((p,u), α, (p′,u′))};

3 while trans 6= ∅ do

4 pop t = ((q,u), α, (q′,u′)) from trans;
5 if t /∈ rel then

6 rel ← rel ∪ {t};
7 for all 〈(p1,u1), α1〉 →֒ 〈(q,u), α〉 ∈ (∆′ ∪∆′′) do

8 trans ← trans ∪ {((p1,u1), α1, (q
′,u′))};

9 for all 〈(p1,u1), α1〉 →֒ 〈(q,u), αα2〉 ∈ ∆′ do

10 ∆′′ ← ∆′′ ∪ {〈(p1,u1), α1〉 →֒ 〈(q′,u′), α2〉};
11 for all ((q′,u′), α2, (q

′′,u′′)) ∈ rel do

12 trans ← trans ∪ {((p1,u1), α1, (q
′′,u′′))};

13 return rel

TABLE 1
An algorithm for the computation of pre∗

From the existence of the transition rule in ∆′ we know that there exists t ∈ States
such that ̺(t, α) = u and ̺(t, wR) = u′. Provided that the automaton is consistent,
we know that ̺(u′′, wR) = u′. Exploiting the backward determinism we get t = u′′,
and hence the added transition is consistent.

The fact that the algorithm only has to deal with consistent transitions influ-
ences the complexity analysis:

Lemma 2. Given a consistent P ′-automaton A = (Q×States,Γ, δ, P×States, F),
we can compute pre∗(L(A)) in O(|Q|2 · |∆| · |States |) time and O(|Q| · |∆| · |States |+
|δ|) space.

Proof. The lemma can be proved by adding to the proof of Theorem 1 in [6] the
following considerations holding for the special case of consistent automata.

• Line 10 will be executed once for every combination of a rule 〈(p1,u1), α1〉 →֒
〈(q,u), αα2〉 and a (consistent) transition ((q,u), α, (q′,u′)). Since u′ is the
single state for which ̺(u′, α) = u holds, there are O(|∆′| · |Q|) = O(|Q| · |∆| ·
|States|) such combinations. Thus, the size of ∆′′ is also O(|Q| · |∆| · |States |).

• For the loop starting at line 11, (q′,u′) and α2 (and hence u′′) are fixed, so
line 12 is executed O(|Q|2 · |∆| · |States |) times.

• Line 8 is executed once for every combination of rules 〈(p1,u1), α1〉 →֒ 〈(q,u), α〉
in ∆′∪∆′′ and transitions ((q,u), α, (q′,u′)). Since the size of ∆′′ isO(|Q|·|∆|·
|States|) and u′ is unique, we have O(|Q|2 ·|∆|·|States |) such combinations.

Lemma 3. The repeating heads of the product of P ′ and B can be computed in
O(|P |2 · |∆| · |States | · |B|3) time and O(|P | · |∆| · |States| · |B|2) space.

11

Proof. (analogous to [6]) As we saw in Section 3.1, we first compute the set
pre∗({ 〈p′, ε〉 | p′ ∈ P ′ × R }) (recall that R is the set of states of the Büchi
automaton). Since this set can be represented by a consistent automaton with
|P | · |R| · |States | many states and no transitions, this step is bounded by the limita-
tions on time and space of the lemma. From the results a head reachability graph
of size O(|P | · |∆| · |States| · |B|2) is constructed. To find the repeating heads, we
identify its strongly connected components, which takes time linear in its size.

We can now conclude the proof of Theorem 3. The steps required to solve the
model-checking problems are as follows:

• Compute the set of repeating heads Rep of the product of P ′ and B. According
to Lemma 3, this takes O(|P |2 ·|∆|·|States|·|B|3) time and O(|P |·|∆|·|States|·
|B|2) space, and we have |Rep| = O(|∆| · |States| · |B|).

• Construct an automaton A accepting exactly the consistent subset of RepΓ∗.
Take A = (((P ×R)∪{s})×States,Γ, δ, P ×{r0}×States, {(s, s)}). For every
repeating head 〈(p, r,u), α〉, add to δ the unique transition ((p, r,u), α, (s,u′))
with ̺(u′, α) = u. For every triple (u, α,u′) such that ̺(u′, α) = u add to δ
the transition ((s,u), α, (s,u′)). There are at most O(|States | · |Γ|) ⊆ O(|∆| ·
|States|) such triples. This automaton is consistent and hasO(|P |·|States |·|B|)
states and O(|∆| · |States | · |B|) transitions.

• Compute the automaton A′ = (((P × R) ∪ {s}) × States ,Γ, δ′, P × {r0} ×
States, {(s, s)}) corresponding to pre∗(L(A)). According to Lemma 2, this
takes O(|P |2 · |∆| · |States | · |B|3) time and O(|P | · |∆| · |States| · |B|2) space.
(Recall that the size of B is also a factor in the size of the product transition
rules.)

• Due to Lemma 1, A′ is consistent and accepts only consistent configurations.
According to Proposition 3.1 in [6] we have c 6|=ν′

ϕ for every configuration in
L(A′). According to (1), we then have 〈p, w〉 6|=ν′

ϕ for every c = 〈(p,u), w〉
in L(A′). Hence, we can solve the problem (II) by modifying A′ slightly; let
A′′ be the automaton A′′ = (((P × R) ∪ {s})× States ∪ P,Γ, δ′′, P, {(s, s)})
where δ′′ = δ′ ∪ { (p, α, q) | ((p, r,u), α, q) ∈ δ′ }. Problem (I) is solved
by checking whether 〈q0, ω〉 ∈ L(A′′). Since none of the steps required to
compute A′′ takes more than O(|P |2 · |∆| · |States| · |B|3) time and O(|P | · |∆| ·
|States| · |B|2) space, the first part of our theorem is proven.

• To prove the second part we simply need to synchronize A′′ with an au-
tomaton R recognizing all reachable configurations of P . Computing R
takes O(|P | · |∆| · (|P | + |∆|)) time and space according to Theorem 1. The
synchronization is performed as follows: For all transitions (p, α, p′) of A′′

and (q, α, q′) of R we add a transition ((p, q), α, (p′, q′)) to the product. A
straightforward procedure however requires too much computation time. We
can do better by employing the following trick from [6]: first all transitions
(q, α, q′) of R are sorted into buckets labeled by α. Then each transition of
A′′ is synchronized with the transitions in the respective bucket. As R has
O(|P | + |∆|) states, each bucket contains O((|P | + |∆|)2) items. Hence, the
product can be computed in O(|P | · |∆| · (|P |+ |∆|)2 · |States| · |B|2) time and
space. Alternatively, we can sort the transitions of A′′ into buckets of size
O(|P |2 · |B|2 · |States|) (exploiting the consistency of |A′′|) and construct the

12

product in O(|P |3 · |∆| · (|P |+ |∆|) · |States| · |B|2) time and space. If we add
the time and space which is needed to construct A′′ and R, we get the results
stated in the second part of Theorem 3.

3.2.2. Technique 2 – extending the stack

An alternative approach to model-checking with regular valuations is to store
the vectors of States in the stack of P . This technique works without any additional
limitations, i.e., we do not need the assumption of backward determinism of Mp

Ai

automata.
We define a pushdown system P ′ = (P,Γ′,∆′, q0, ω

′) where Γ′ = Γ × States,
ω′ = (ω, s) where s is the vector of initial states of Mp

Ai
automata, and the set of

transition rules ∆′ is determined as follows:

• 〈p, (α, r)〉 →֒′ 〈q, ε〉 ⇐⇒ 〈p, α〉 →֒ 〈q, ε〉

• 〈p, (α, r)〉 →֒′ 〈q, (β, r)〉 ⇐⇒ 〈p, α〉 →֒ 〈q, β〉

• 〈p, (α, r)〉 →֒′ 〈q, (β,u)(γ, r)〉 ⇐⇒ 〈p, α〉 →֒ 〈q, βγ〉 ∧ u = ̺(r, γ)

Intuitively, the reason why we do not need the assumption of backward determinism
in our second approach is that the stack carries complete information about the
computational history of the Mp

Ai
automata.

A configuration 〈q, (αk, rk) · · · (α1, r1)〉 is called consistent iff r1 = s and rj+1 =
̺(rj , αj) for all 1 ≤ j < k.

The simple valuation ν′ is defined by

ν(Ai) = {〈p, (α, r)w〉 | p ∈ P, α ∈ Γ, ̺p
i (r

p
i , α) ∈ F p

i , w ∈ (Γ′)∗}

It is easy to see that 〈q, αk · · ·α1〉 |=ν ϕ ⇐⇒ 〈q, (αk, rk) · · · (α1, r1)〉 |=ν′

ϕ where
〈q, (αk, rk) · · · (α1, r1)〉 is consistent.

Theorem 4. Technique 2 (extending the stack) gives us the same bounds on
the model-checking problems with regular valuations as Technique 1, i.e.:

1. Problems (I) and (II) can be solved in O(|P |2 · |∆| · |States | · |B|3) time and
O(|P | · |∆| · |States| · |B|2) space.

2. Problem (III) can be solved in either O(|P | · |∆| · (|P |+ |∆|)2 · |States | · |B|3)
time and O(|P | · |∆| · (|P |+ |∆|)2 · |States | · |B|2) space, or O(|P |3 · |∆| · (|P |+
|∆|) · |States | · |B|3) time and O(|P |3 · |∆| · (|P |+ |∆|) · |States | · |B|2) space.

Proof. Since |∆′| = |∆| · |States| (here we use the fact that each Mp
Ai

is deter-
ministic), we can compute a P-automaton D = (D,Γ′, γ, P,G) of size O(|P | · |∆| ·
|States| · |B|2) in O(|P |2 · |∆| · |States | · |B|3) time and O(|P | · |∆| · |States | · |B|2) space
such that D recognizes all configurations of P ′ which violate ϕ (see Theorem 1);
then, to solve problem (I), we just look if D accepts 〈q0, ω′〉.

The problem with D is that it can also accept inconsistent configurations of
P ′. Fortunately, it is possible to perform a kind of ‘synchronization’ with the
reversedMp

Ai
automata. We define A = (Q,Γ, δ, P, F) where Q = (D×States)∪P ,

F = G× {s}, and δ is defined as follows:

• if g
(α,r)
−→ h is a transition of γ, then δ contains a transition (g, t)

α
−→ (h, r)

where t = ̺(r, α);

13

• if (p, r)
α
→ (g, t), p ∈ P , is a transition of δ, then p

α
→ (g, t) is also a transition

of δ.

Notice thatA is the same size as D since in every transition t is uniquely determined
by r and α. Now, for every configuration 〈p, (αk, rk) · · · (α1, r1)〉, one can easily
prove (by induction on k) that

γ(p, (αk, rk) · · · (α1, r1)) = q where rj+1 = ̺(rj , αj) for all 1 ≤ j < k

iff
δ((p, r), αk · · ·α1) = (q, r1) where r = ̺(rk, αk).

From this we immediately obtain that A indeed accepts exactly those configurations
of P which violate ϕ. Moreover, the size of A and the time and space bounds to
compute it are the same as for D which proves the first part of the theorem.

To solve problem (III), one can try out the same strategies as in Theorem 3.
Again, it turns out that the most efficient way is to synchronize A with the P-
automaton R which recognizes all reachable configurations of P . Employing the
same trick as in Theorem 3 (i.e., sorting transitions of R into buckets according to
their labels), we obtain that the size ofA′ isO(|P |·|∆|·(|P |+|∆|)2 ·|States|·|B|2) and
it can be computed in O(|P | · |∆| · (|P |+ |∆|)2 · |States| · |B|3) time using O(|P | · |∆| ·
(|P |+ |∆|)2 · |States| · |B|2) space. Using the alternative method (sorting transitions
of A into buckets instead and exploiting determinism) we get an automaton of size
O(|P |3 · |∆| · (|P |+ |∆|) · |States| · |B|2) in O(|P |3 · |∆| · (|P |+ |∆|) · |States| · |B|3)
in time and O(|P |3 · |∆| · (|P |+ |∆|) · |States| · |B|2) space.

4. APPLICATIONS

4.1. Interprocedural Data-Flow Analysis

Pushdown systems provide a very natural formal model for programs with re-
cursive procedures. Hence, it should not be surprising that efficient analysis tech-
niques for pushdown automata can be applied to some problems of interprocedural
data-flow analysis (see, e.g., [7, 11]). Here we briefly discuss the convenience of
regular valuations in this application area. We do not present any detailed results
about the complexity of concrete problems, because this would necessarily lead to
a quite complicated and lengthy development which is beyond the scope of our
work (though the associated questions are very interesting on their own). Our
aim is just to provide convincing arguments demonstrating the importance of the
technical results achieved in Section 3.

A standard way of abstracting recursive programs for purposes of interprocedu-
ral data-flow analysis it to represent each procedure P by its associated flow graph.
Intuitively, the flow graph of P is a labeled binary graph whose nodes correspond to
‘program points’, and an arc n

c
−→ n′ indicates that the control flow is shifted from

the point n to n′ by performing the instruction c. The entry and exit points of P
are modeled by distinguished nodes. To avoid undecidabilities, the if-then-else

command (and related instructions) are modeled by nondeterminism, i.e., there can
be several arcs from the same node. Moreover, there are special arcs with labels of
the form call Q(args) which model procedure calls (where args is a vector of terms
which are passed as parameters). Flow graphs can be easily translated to push-
down systems; as transitions of pushdown systems are not labeled, we first perform
a ‘technical’ modification of the flow graph, replacing each arc n

c
−→ n′ where n

14

is a nondeterministic node (i.e., a node with more than one successor) by two arcs

n
ε
−→ n′′ c

−→ n′ where n′′ is a new node and ε is a ‘dummy’ instruction without
any effect. This allows to associate the instruction of each arc n

c
−→ n′ directly

to n (some nodes are associated to the dummy instruction). Now suppose there is
a recursive system of procedures P1, . . . , Pn, S, where S is a distinguished starting
procedure which cannot be called recursively. Their associated flow graphs can be
translated to a pushdown automaton in the following way:

• for each node n of each flowgraph we introduce a fresh stack symbol Xn;

• for each arc of the form n
c
−→ n′ we add a rule 〈·, Xn〉 →֒ 〈·, Xn′〉, where · is

the (only) control location;

• for each arc of the form n
call Q(args)
−−−−−−−→n′ we add the rule 〈·, Xn〉 →֒ 〈·, QentryXn′〉

where Qentry is the stack symbol for the entry node of (the flow graph of) Q.
Observe that one can also push special symbols corresponding to arguments
if needed;

• for each procedure P different from S we add the rule 〈·, Pexit 〉 →֒ 〈·, ε〉, where
Pexit corresponds to the exit node of P . For the starting procedure S we add
the rule 〈·, Sexit〉 →֒ 〈·, Sexit 〉.

In other words, the top stack symbol corresponds to the current program point (and
to the instruction which is to be executed), and the stack carries the information
about the history of activation calls. Now, many of the well-known properties
of data-flow analysis (e.g., liveness, reachability, very business, availability) can
be expressed in LTL and verified by a model-checking algorithm (in some cases
the above presented construction of a pushdown automaton must be modified so
that all necessary information is properly reflected – but the principle is still the
same). For example, if we want to check that a given variable Y is dead at a given
program point n (i.e., whenever the program point n is executed, in each possible
continuation we have that Y is either not used or it is redefined before it is used),
we can model-check the formula

2(topn =⇒ ((¬usedY U defY) ∨ (2¬usedY)))

in the configuration 〈·, Sentry〉, where usedY , usedY , and defY are atomic proposi-
tions which are valid in exactly those configurations where the topmost stack symbol
corresponds to the program point n, to an instruction which uses the variable Y , or
to an instruction which defines Y , respectively. Regular valuations become useful
even in this simple example – if we have a language with dynamic scoping (e.g.,
LISP), we cannot resolve to which Y the instruction Y := 3 at a program point
n refers to without examining the stack of activation records (the Y refers to a
local variable Y of the topmost procedure in the stack of activation records which
declares it). So, usedY and defY would be interpreted by regular valuations in this
case.

The example above is quite simple. The ‘real’ power of regular valuations would
become apparent in a context of more complicated problems where we need to
examine complex relationships among dynamically gathered pieces of information.
This is one of the subjects of intended future work.

15

4.2. Pushdown Systems with Checkpoints

Another area where the results of Section 3.2 find a natural application is the
analysis of recursive computations with local security checks. Modern program-
ming languages contain methods for performing run-time inspections of the stack
of activation records, and processes can thus take dynamic decisions based on the
gathered information. An example is the class AccessController implemented
in Java Development Kit 1.2 offering the method checkPermission which checks
whether all methods stored in the stack are granted a given permission. If not, the
method rises an exception.

We propose a (rather general) formal model of such systems called pushdown
system with checkpoints. Our work was inspired by the paper [10] which deals with
the same problem. Our model is more general, however. The model of [10] is
suitable only for checking safety properties, does not model data-flow, and forbids
mutually recursive procedure calls whereas our model has none of these restrictions.
Properties of pushdown systems with checkpoints can be expressed in LTL and we
provide an efficient model-checking algorithm for LTL with regular valuations.

Definition 4. A pushdown system with checkpoints is a triple C = (P , ξ, η)
where

• P = (P,Γ,∆, q0, ω) is a pushdown system.

• ξ ⊆ P × Γ is a set of checkpoints. Each checkpoint (p, α) is implemented by
its associated deterministic finite-state automaton Mp

α = (Qp
α,Γ, δ

p
α, s

p
α, F

p
α).

For technical convenience, we assume that δp
α is total, sp

α 6∈ F
p
α, and L(Mp

α) ⊆
{wα | w ∈ Γ∗}.

• η: ∆→ {+,−, 0} is a function which partitions the set of transition rules into
positive, negative, and independent ones. We require that if (p, α) is not a
checkpoint, then all rules of the form 〈p, α〉 →֒ 〈q, v〉 are independent.

The function η determines whether a rule can be applied when an inspection of
the stack at a checkpoint yields a positive or negative result, or whether it is
independent of such tests. Using positive and negative rules, we can model systems
which perform if-then-else commands where the condition is based on dynamic
checks; hence, these checks can be nested to an arbitrary level. The fact that a rule
〈p, α〉 →֒ 〈q, v〉 is positive, negative, or independent is denoted by 〈p, α〉 →֒+ 〈q, v〉,
〈p, α〉 →֒− 〈q, v〉, or 〈p, α〉 →֒0 〈q, v〉, respectively.

To C we associate a unique transition system TC where the set of states is the
set of all configurations of P , 〈q0, ω〉 is the root, and the transition relation is the
least relation → satisfying the following:

• if 〈p, α〉 →֒+ 〈q, v〉, then 〈p, αw〉 → 〈q, vw〉 for all w ∈ Γ∗ s.t. wRα ∈ L(Mp
α);

• if 〈p, α〉 →֒− 〈q, v〉, then 〈p, αw〉 → 〈q, vw〉 for all w ∈ Γ∗ s.t. wRα 6∈ L(Mp
α);

• if 〈p, α〉 →֒0 〈q, v〉, then 〈p, αw〉 → 〈q, vw〉 for all w ∈ Γ∗.

Some natural problems for pushdown processes with checkpoints are listed below.

• The reachability problem: given a pushdown system with checkpoints, is a
given configuration reachable?

16

• The checkpoint-redundancy problem: given a pushdown system with check-
points and a checkpoint (p, α), is there a reachable configuration where the
checkpoint (p, α) is (or is not) satisfied?

This problem is important because redundant checkpoints can be safely re-
moved together with all negative (or positive) rules, declaring all remaining
rules as independent. Thus, one can decrease the runtime overhead.

• The global safety problem: given a pushdown system with checkpoints and a
formula ϕ of LTL, do all reachable configurations satisfy ϕ?

An efficient solution to this problem allows to make ‘experiments’ with check-
points with the aim of finding a solution with a minimal runtime overhead.

Actually, it is quite easy to see that all these problems (and many others) can
be encoded by LTL formulae and regular valuations. For example, to solve the
reachability problem, we take a predicate A which is satisfied only by the configu-
ration 〈p, w〉 whose reachability is in question (the associated automaton Mp

A has
length(w) states) and then we check the formula 2(¬A). Observe that this formula
in fact says that 〈p, w〉 is unreachable; the reachability itself is not directly express-
ible in LTL (we can only say that 〈p, w〉 is reachable in every run). However, it
does not matter because we can simply negate the answer of the model-checking
algorithm.

4.2.1. Model-Checking LTL for Pushdown Systems with Checkpoints

Let C = (P , ξ, η) be a pushdown system with checkpoints, where P = (P,Γ,∆, q0, ω).
We define a pushdown system P ′ = (P ×{+,−, 0},Γ,∆′, (q0, 0), ω) where ∆′ is the
least set of rules satisfying the following (for each x ∈ {+,−, 0});

• if 〈p, α〉 →֒+ 〈q, v〉 ∈ ∆, then 〈(p, x), α〉 →֒ 〈(q,+), v〉 ∈ ∆′;

• if 〈p, α〉 →֒− 〈q, v〉 ∈ ∆, then 〈(p, x), α〉 →֒ 〈(q,−), v〉 ∈ ∆′;

• if 〈p, α〉 →֒0 〈q, v〉 ∈ ∆, then 〈(p, x), α〉 →֒ 〈(q, 0), v〉 ∈ ∆′.

Intuitively, P ′ behaves in the same way as the underlying pushdown system P of
C, but it also ‘remembers’ what kind of rule (positive, negative, independent) was
used to enter the current configuration.

Let ν be a regular valuation for configurations of C (see Definition 3), and let ϕ
be an LTL formula. Let Check , Neg, and Pos be fresh atomic propositions which
do not appear in ϕ. We define a regular valuation ν′ for configurations of P ′ as
follows:

• If A ∈ At \ {Check ,Neg,Pos}, then ν′(A) = {〈(p, x), w〉 | 〈p, w〉 ∈ ν(A), x ∈

{+,−, 0}}. Hence, the automatonM
(p,x)
A is the same as the automatonMp

A

for each x ∈ {+,−, 0}.

• ν′(Check) =
⋃

(p,α)∈ξ{〈(p, x), w〉 | w
R ∈ L(Mp

α), x ∈ {+,−, 0}}. Hence, for

each x ∈ {+,−, 0},M
(p,x)
Check is the product automaton (constructed out of all

Mp
α) which accepts the union of all L(Mp

α). Notice that we need to perform

a product because M
(p,x)
Check has to be deterministic.

• ν′(Neg) = {〈(p,−), w〉 | p ∈ P,w ∈ Γ+}. So, M
(p,−)
Neg is an automaton with

two states which accepts Γ+.

17

• ν′(Pos) = {〈(p,+), w〉 | p ∈ P,w ∈ Γ+}.

Now we can readily confirm the following:

Theorem 5. Let 〈p, w〉 be a configuration of C. We have that

〈p, w〉 |=ν ϕ ⇐⇒ 〈(p, 0), w〉 |=ν′

ψ =⇒ ϕ

where ψ ≡ 2((Check =⇒ X (¬Neg)) ∧ (¬Check =⇒ X (¬Pos))).

Proof. It suffices to observe that

〈p, w〉 ≡ 〈p0, w0〉 → 〈p1, w1〉 → 〈p2, w2〉 → 〈p3, w3〉 → · · ·

is an infinite path in TC iff

〈(p, 0), w〉 ≡ 〈(p0, x0), w0〉 → 〈(p1, x1), w1〉 → 〈(p2, x2), w2〉 → · · ·

is an infinite path in TP′ satisfying ψ (where each xi for i > 0 is either +, −, or 0;
notice that all xi are determined uniquely). Indeed, ψ ensures that all transitions in
the latter path are ‘consistent’ with possible checkpoints in the former path. As all
atomic propositions which appear in ϕ are evaluated identically for pairs 〈pi, wi〉,
〈(pi, xi), wi〉 (see the definition of ν′ above), we can conclude that both paths either
satisfy or do not satisfy ϕ.

The previous theorem in fact says that the model-checking problem for LTL
and pushdown systems with checkpoints can be reduced to the model-checking
problem for LTL and ‘ordinary’ pushdown systems. As the formula ψ is fixed and
the atomic propositions Check , Neg, and Pos are regular, we can evaluate the
complexity bounds for the resulting model-checking algorithm using the results of
Section 3.2. Let {A1, . . . , An} be the set of all atomic propositions which appear
in ϕ, and let N = {M1, . . . ,Mm} be the set of all Mp

Ai
automata. Let States be

the Cartesian product of the sets of states of all Mp
α automata and the automata

of N . Let B be a Büchi automaton which corresponds to ¬ϕ. Now we can state
our theorem (remember that P is the set of control states and ∆ the set of rules of
the underlying pushdown system P of C).

Theorem 6. We have the following bounds on the model-checking problems for
LTL with regular valuations and pushdown systems with checkpoints:

1. Problems (I) and (II) can be solved in O(|P |2 · |∆| · |States | · |B|3) time and
O(|P | · |∆| · |States| · |B|2) space.

2. Problem (III) can be solved in either O(|P | · |∆| · (|P |+ |∆|)2 · |States | · |B|3)
time and O(|P | · |∆| · (|P |+ |∆|)2 · |States | · |B|2) space, or O(|P |3 · |∆| · (|P |+
|∆|) · |States | · |B|3) time and O(|P |3 · |∆| · (|P |+ |∆|) · |States | · |B|2) space.

Proof. We apply Theorem 5, which says that we can equivalently consider the
model-checking problem for the pushdown system P ′, formula ψ =⇒ ϕ, and val-
uation ν′. First, let us realize that the Büchi automaton which corresponds to
¬(ψ =⇒ ϕ) can be actually obtained by ‘synchronizing’ B with the Büchi au-
tomaton for ψ, because ¬(ψ =⇒ ϕ) ≡ ψ ∧ ¬ϕ. As the formula ψ is fixed, the
synchronization increases the size of B just by a constant factor. Hence, the au-
tomaton for ¬(ψ =⇒ ϕ) is asymptotically of the same size as B. The same can be

18

said about the sizes of P ′ and P , and about the sizes of ∆′ and ∆. Moreover, if
we collect all the automata which represent atomic predicates of At(ψ =⇒ ϕ) (see
above) and consider the state space of their product, we see that it has exactly the
size 2 · States because all of the automata associated to Pos and Neg are the same
and have only two states.

4.3. Model-checking CTL∗

In this section, we apply the model-checking algorithm to the logic CTL∗ which
extends LTL with existential path quantification [4]. More precisely, CTL∗ formulae
are built according to the following abstract syntax equation:

ϕ ::= tt | A | ¬ϕ | ϕ1 ∧ ϕ2 | Eϕ | Xϕ | ϕ1 U ϕ2

whereA ranges over the atomic propositions (interpreted, say, by a regular valuation
represented by a finite automaton of size |States|).

For finite-state systems, model-checking CTL∗ can be reduced to checking LTL
as follows [5]: For a CTL∗ formula ϕ, call the path depth of ϕ the maximal nesting
depth of existential path quantifiers within ϕ. Subformulae of ϕ can be checked
in ascending order of path depth; subformulae of the form E ϕ′ where ϕ′ is E-free
are checked with an LTL algorithm which returns the set of states Sϕ′ satisfying
ϕ′. Then E ϕ′ is replaced by a fresh atomic proposition whose valuation yields true
exactly on Sϕ′ , and the procedure is repeated for subformulae of higher path depth.
The method can be transferred to the case of pushdown systems; running the LTL
algorithm on E ϕ′ returns an automatonMϕ′ . We can then replace E ϕ′ by a fresh
atomic proposition whose valuation is given by Mϕ′ . This method was already
proposed in [9], but without any complexity analysis.

Let us review the complexity of this procedure. For the rest of this subsection
fix a pushdown system P = (P,Γ,∆, q0, ω). Given an E-free formula ϕ, let B =
(R, 2At , η, r0, G) be a Büchi automaton corresponding to ϕ, and let |States| be the
size of the Mp

Ai
automata encoding the regular valuations of propositions in At .

The algorithms from section 3.2 (in general we can only use Technique 2) yield
an automatonMϕ which accepts exactly the configurations satisfying E ϕ. Observe
thatMϕ is nondeterministic, reads the stack top-down, and has O(|P |·|B|·|States |)
states. We need to modify the automaton before we can use it as an encoding for
the regular valuation of E ϕ. More precisely, we need to reverse the automaton
(i.e. make it read the stack bottom-up) and then determinize it. Reversal does
not increase the size, and due to the determinism ofMp

Ai
(in bottom-up direction)

the determinization explodes only the ‘P × R part’ of the states, i.e. we get an
automatonM′

ϕ of size O(|States | · 2|P |·|R|).
To check subformulae of higher path depth we replace E ϕ by a fresh atomic

proposition Aϕ. With (Aϕ, p) we associate the automaton Mp
Aϕ

which is a copy

of M′
ϕ where the set F p

ϕ of accepting states is taken as { (q, s) | q ∈ 2P×R, q ∋
(p, r0), s ∈ States }. The cross product of these new automata with the ‘old’ Mp

Ai

automata takes only O(|States | · 2|P |·|R|) states again; we need just one copy of the
new automaton, and all reachable states are of the form ((q, s), s) where q ∈ 2P×R

and s ∈ States.
As we go up in path depth, we can repeat this procedure: First we produce

a deterministic valuation automaton by taking the cross product of the automata
corresponding the atomic propositions and those derived from model-checking for-
mulae of lower path depth. Then we model-check the subformula currently under

19

consideration, and reverse and determinize the resulting automaton. By the pre-
vious arguments, each determinization only blows up the nondeterministic part of
the automaton, i.e. after each stage the size of the valuation automaton increases
by a factor of 2|P |·|Bi| where Bi is a Büchi automaton for the subformula currently
under consideration.

With this in mind, we can compute the complexity for formulae of arbitrary
path depth. Let B1, . . . ,Bn be the Büchi automata corresponding to the individual
subformulae of a formula ϕ. Adding the times for checking the subformulae and
using Theorem 4 we get that the model-checking procedure takes at most

O
(

|P |2 · |∆| · |States| · 2|P |·Σn
i=1

|Bi| ·
n

∑

i=1

|Bi|
3
)

time and

O

(

|P | · |∆| · |States | · 2|P |·Σn
i=1

|Bi| ·
n

∑

i=1

|Bi|
2

)

space. The algorithm hence remains linear in both |∆| and |States |. The algorithm
of Burkart and Steffen [3], applied to CTL∗ formulae which are in the second level
of the alternation hierarchy, would yield an algorithm which is cubic in |∆|. On
the other hand, the performance of our algorithm in terms of the formula is less
clear. In practice, it would depend strongly on the size of the Büchi automata for
the subformulae, and on the result of the determinization procedures.

5. LOWER BOUNDS

In previous sections we established reasonably-looking upper bounds for the
model-checking problem for pushdown systems (first without and then also with
checkpoints) and LTL with regular valuations. However, the algorithms are poly-
nomial in |P|+ |B|+ |States|, and not in the size of problem instance which is (as we
already mentioned in Remark 1) |P|+ |ϕ|+ |νϕ|. In Remark 1 we also explained why
we use these parameters – it has been argued that typical formulae (and their asso-
ciated Büchi automata) are small, hence the size of B is actually more relevant (a
model-checking algorithm whose complexity is exponential just due to the blowup
caused by the transformation of ϕ into B is usually efficient in practice). The same
can be actually said about |States| – in Section 4 we have seen that there are inter-
esting practical problems where the size of |States| does not explode. Nevertheless,
from the point of view of worst-case analysis (where we measure the complexity in
the size of a problem instance) our algorithms are exponential. A natural question
is whether this exponential blowup is indeed necessary, i.e., whether we could (in
principle) solve the model-checking problems more efficiently by some other tech-
nique. In this section we show it is not the case, because all of the considered
problems are EXPTIME-hard (even in rather restricted forms).

We start with the natural problems for pushdown systems with checkpoints
mentioned in the previous section (the reachability problem, the checkpoint redun-
dancy problem, etc.) All of them are (polynomially) reducible to the model-checking
problem for pushdown systems with checkpoints and LTL with regular valuations
and therefore are solvable in EXPTIME. The next theorem says that this strat-
egy is essentially optimal, because even the reachability problem provably requires
exponential time.

20

Theorem 7. The reachability problem for pushdown systems with checkpoints
(even for those with just three control states and no negative rules) is EXPTIME-
complete.

Proof. The membership to EXPTIME follows from Theorem 6. We show
EXPTIME-hardness by reduction from the acceptance problem for alternating
linearly bounded automata (which is known to be EXPTIME-complete). An al-
ternating linearly bounded automaton (LBA) is a tuple M = (Q,Σ, δ, q0,⊢,⊣, p)
where Q,Σ, δ, q0,⊢, and ⊣ are defined as for ordinary nondeterministic LBA (in
particular, ⊢ ∈ Σ and ⊣ ∈ Σ are the left-end and the right-end markers, resp.), and
p:Q → {∀, ∃, acc, rej} is a function which partitions the states of Q into univer-
sal, existential, accepting, and rejecting, respectively. We assume (w.l.o.g.) that δ
is defined so that ‘terminated’ configurations (i.e., the ones from which there are
no further computational steps) are exactly accepting and rejecting configurations.
Moreover, we also assume that M always halts and that its branching degree is 2
(i.e., each universal and existential configuration has exactly two immediate succes-
sors). A computational tree forM on a word w ∈ Σ∗ is any (finite) tree T satisfying
the following: the root of T is (labeled by) the initial configuration q0⊢w⊣ of M,
and if N is a node ofM labeled by a configuration uqv where u, v ∈ Σ∗ and q ∈ Q,
then the following holds:

• if q is accepting or rejecting, then N is a leaf;

• if q is existential, then N has one successor labeled by a configuration reach-
able from uqv in one computational step (according to δ);

• if q is universal, then N has two successors labeled by the two configurations
reachable from uqv in one computational step.

M accepts w iff there is a computational tree T such that all leaves of T are
accepting configurations.

Now we describe a polynomial algorithm which for a given alternating LBA
M = (Q,Σ, δ, q0,⊢,⊣, p) and a word w ∈ Σ∗ of length n constructs a pushdown
system with checkpoints C = (P , ξ, η) and a configuration 〈a, ω〉 such that 〈a, ω〉
is reachable from the initial configuration of C iff M accepts w. Intuitively, the
underlying system P of C simulates the execution of M and the checkpoints are
used to verify that there was no cheating during the simulation. We start with
the definition of P . Configurations of M will be represented by words over the
alphabet Σ× (Q∪{−}) of length n+2 (notice that w is surrounded by the ‘⊢’ and
‘⊣’ markers). Each such word contains exactly one symbol (X, t) ∈ Σ × Q which
encodes the current control state and the current position of the head. We put
P = ({g, a, r},Γ,∆, g, ω) where

• Γ = Σ× (Q∪{−})∪{β1, · · · , βn+3}∪{γ1, · · · , γn}∪{#
e
1,#

e
2,#

u
1 ,#

u
2 , A,R, ω}

• ∆ contains the following (families of) rules:

1. 〈g, ω〉 →֒ 〈g, β1ω〉

2. 〈g, βi〉 →֒ 〈g, βi+1̺〉 for all 1 ≤ i ≤ n+ 2 and ̺ ∈ Σ× (Q ∪ {−})

3. 〈g, βn+3〉 →֒ 〈g, γ1̺〉 for every ̺ ∈ {#e
1,#

u
1 , A,R}

4. 〈g, γi〉 →֒ 〈g, γi+1〉 for every 1 ≤ i ≤ n− 1

5. 〈g, γn〉 →֒ 〈g, ε〉

21

6. 〈g,A〉 →֒ 〈a, ε〉, 〈g,R〉 →֒ 〈r, ε〉, 〈g,#e
1〉 →֒ 〈g, β1#

e
1〉, 〈g,#

u
1 〉 →֒ 〈g, β1#

u
1 〉

7. 〈a, ̺〉 →֒ 〈a, ε〉 for every ̺ ∈ Σ× (Q ∪ {−})

8. 〈a,#u
1 〉 →֒ 〈g, β1#

u
2 〉, 〈a,#

u
2 〉 →֒ 〈a, ε〉, 〈a,#

e
1〉 →֒ 〈a, ε〉, 〈a,#

e
2〉 →֒ 〈a, ε〉

9. 〈r, ̺〉 →֒ 〈r, ε〉 for every ̺ ∈ Σ× (Q ∪ {−})

10. 〈r,#e
1〉 →֒ 〈g, β1#

e
2〉, 〈r,#

e
2〉 →֒ 〈r, ε〉, 〈r,#

u
1 〉 →֒ 〈r, ε〉, 〈r,#

u
2 〉 →֒ 〈r, ε〉

Intuitively, the execution of P starts by entering the state 〈g, β1ω〉 (rule 1). Then,
exactly n+2 symbols of Σ× (Q∪{−}) are pushed to the stack. During this phase,
the family of βi symbols is used as a ‘counter’ (rules 2). The last symbol βn+3 is then
rewritten to γ1̺, where ̺ is one of #e

1,#
u
1 , A,R (rules 3). The purpose of ̺ is to keep

information about the just stored configuration (whether it is existential, universal,
accepting, or rejecting) and the index of a rule which is to be used to obtain the
next configuration (always the first one; remember that accepting and rejecting
configurations are terminal). After that, γ1 is successively rewritten to all of the
γi symbols and disappears (rules 4,5). The only purpose of γi symbols is to invoke
several consistency checks – as we shall see, each pair (g, γi) is a checkpoint and all
rules of 4,5 are positive. Depending on the previously stored ̺ (i.e., on the type
of the just pushed configuration), we either continue with guessing the next one,
or change the control state to a or r (if the configuration is accepting or rejecting,
resp.) Hence, the guessing goes on until we end up with an accepting or rejecting
configuration. This must happen eventually, becauseM always halts. If we find an
accepting configuration, we successively remove all existential configurations and
those universal configuration for which we have already checked both successors. If
we find a universal configuration with only one successor checked – it is recognized
by the ‘#u

1 ’ symbol – we change ‘#u
1 ’ to ‘β1#

u
2 ’ and check the other successor

(rules 7 and 8). Similar things are done when a rejecting configuration is found.
The control state is switched to r and then we remove all configurations until
we (possibly) find an existential configuration for which we can try out the other
successor (rules 9 and 10). We see that w is accepted by M iff we eventually pop
the initial configuration when the control state is ‘a’, i.e., iff the state 〈a, ω〉 is
reachable.

To make all that work we must ensure that P cannot gain anything by ‘cheating’,
i.e., by pushing inconsistent sequences of symbols which do not model a compu-
tation of M in the above described way. This is achieved by declaring all pairs
(g, γi) for 1 ≤ i ≤ n + 1 as checkpoints. The automaton Mg

γi
for 1 ≤ i ≤ n

accepts those words of the form ωv1̺1v2̺2 · · · vm̺mγi, where length(vj) = n + 2,
̺j ∈ #e

1,#
e
2,#

u
1 ,#

u
2 , A,R for every 1 ≤ j ≤ m, such that the triples of symbols

at positions i, i + 1, i + 2 in each pair of successive substrings vk, vk+1 are consis-
tent with the symbol ̺k w.r.t. the transition function δ of M. Furthermore, the
first configuration must be the initial one, and the last configuration vm must be
consistent with ̺m. Observe thatMg

γi
needs just O(|M|6) states to store the two

triples (after checking subwords vk, ̺k, vk+1, the triple of vk is ‘forgotten’) the ini-
tial configuration, a ‘counter’ of capacity n + 2, and some auxiliary information.
Moreover,Mg

γi
is deterministic and we can also assume that its transition function

is total. As all rules associated with checkpoints are positive, any cheating move
eventually results in entering a configuration where the system ‘gets stuck’, i.e.,
cheating cannot help to reach the configuration 〈a, ω〉.

From the (technical) proof of Theorem 7 we can easily deduce the following:

22

Theorem 8. The model-checking problem (I) for pushdown systems with check-
points (even for those with just three control states and no negative rules) is EXPTIME-
complete even for a fixed LTL formula 2(¬fin) where fin is an atomic predicate
interpreted by a simple valuation ν.

Proof. Let us consider the pushdown system with checkpoints C = (P , ξ, η)
constructed in the proof of Theorem 7. To ensure that each finite path in TC
is a prefix of some run, we extend the set of transition rules of ∆ by a family of
independent rules of the form 〈s, α〉 →֒ 〈s, α〉 for each control state s and each stack
symbol α. Now it suffices to realize that the initial configuration 〈g, ω〉 cannot reach
the state 〈a, ω〉 iff it cannot reach any state of the form 〈a, ωv〉 (where v ∈ Γ∗) iff
〈g, ω〉 |=ν

2(¬fin) where ν is a simple valuation such that ν(fin) = {〈a, ωw〉 | w ∈
Γ∗}.

Hence, model-checking LTL for pushdown systems with checkpoints is EXPTIME-
complete even when we have only simple valuations.

Now we analyze the complexity of model-checking for (ordinary) pushdown sys-
tems and LTL formulae with regular valuations. First, realize that if we take any
fixed formula and a subclass of pushdown systems where the number of control
states is bounded by some constant, the model-checking problem is decidable in
polynomial time. Now we prove that if the number of control states is not bounded,
the model-checking problem becomes EXPTIME-complete even for a fixed for-
mula. At this point, one is tempted to apply Theorem 5 to the formula 2(¬fin) of
Theorem 8. Indeed, it allows to reduce the model-checking problem for pushdown
systems with checkpoints and 2(¬fin) to the model-checking problem for ordinary
pushdown systems and another fixed formula ψ =⇒ 2(¬fin). Unfortunately, this
reduction is not polynomial because the atomic proposition Check occurring in ψ is
interpreted with the help of several product automata constructed out of the orig-
inal automata which implement checkpoints (see the previous section). Therefore
we need one more technical proof.

Theorem 9. The model-checking problem (I) for pushdown systems and LTL
formulae with regular valuations is EXPTIME-complete even for a fixed formula
(2correct) =⇒ (2¬fin).

Proof. This proof is similar to the proof of Theorem 7. Again, we construct a
pushdown system P which simulates the execution of an alternating LBA M =
(Q,Σ, δ, q0,⊢,⊣, p) on an input word w ∈ Σ∗ of length n. The difference is that,
since there are no checkpoints, we must find a new way of ‘cheating-detection’,
i.e., we must be able to recognize situations when the next configuration of M
has not been guessed correctly. It is achieved by adding a family of control states
c1, . . . , cn; after guessing a new configuration, P successively switches its control
state to c1, . . . , cn without modifying its stack. The constructed regular valuation
ν assigns to each pair (correct, ci) a deterministic automatonMci

correct which checks
that the triples of symbols at positions i, i + 1, i + 2 in each pair of successive
configurations previously pushed to the stack are ‘consistent’ (Mci

correct is almost
the same automaton as the Mg

γi
of the proof of Theorem 7). All other pairs of

the form (correct, p) are assigned an automaton accepting Γ+. The P is formally
defined as follows: P = ({g, a, r, c1, . . . , cn},Γ,∆, g, ω) where

• Γ = Σ× (Q ∪ {−}) ∪ {β1, · · · , βn+3} ∪ {#e
1,#

e
2,#

u
1 ,#

u
2 , A,R, ω}

• ∆ contains the following (families of) rules:

23

1. 〈g, ω〉 →֒ 〈g, β1ω〉

2. 〈g, βi〉 →֒ 〈g, βi+1̺〉 for all 1 ≤ i ≤ n+ 2 and ̺ ∈ Σ× (Q ∪ {−})

3. 〈g, βn+3〉 →֒ 〈c1, ̺〉 for every ̺ ∈ {#e
1,#

u
1 , A,R}

4. 〈ci, ̺〉 →֒ 〈ci+1, ̺〉 for every 1 ≤ i ≤ n− 1 and ̺ ∈ {#e
1,#

u
1 , A,R}

5. 〈cn, ̺〉 →֒ 〈g, ̺〉 for every ̺ ∈ {#e
1,#

u
1 , A,R}

6. 〈g,A〉 →֒ 〈a, ε〉, 〈g,R〉 →֒ 〈r, ε〉, 〈g,#e
1〉 →֒ 〈g, β1#

e
1〉, 〈g,#

u
1 〉 →֒ 〈g, β1#

u
1 〉

7. 〈a, ̺〉 →֒ 〈a, ε〉 for every ̺ ∈ Σ× (Q ∪ {−})

8. 〈a,#u
1 〉 →֒ 〈g, β1#

u
2 〉, 〈a,#

u
2 〉 →֒ 〈a, ε〉, 〈a,#

e
1〉 →֒ 〈a, ε〉, 〈a,#

e
2〉 →֒ 〈a, ε〉

9. 〈r, ̺〉 →֒ 〈r, ε〉 for every ̺ ∈ Σ× (Q ∪ {−})

10. 〈r,#e
1〉 →֒ 〈g, β1#

e
2〉, 〈r,#

e
2〉 →֒ 〈r, ε〉, 〈r,#

u
1 〉 →֒ 〈r, ε〉, 〈r,#

u
2 〉 →֒ 〈r, ε〉

11. 〈x, ̺〉 →֒ 〈x, ̺〉 for every control state x and every ̺ ∈ Γ.

Hence, the rules are almost the same as in the proof of Theorem 7, except for some
changes in 3.,4.,5., and 11. Now we put ν(fin) = {〈a, ωw〉 | w ∈ Γ∗}. We see
thatM accepts w iff there is a run starting in 〈g, ω〉 along which correct holds and
fin holds in at least one of its states. In other words, M accepts w iff 〈g, ω〉 6|=ν

(2correct) =⇒ (2¬fin) where ν is the constructed regular valuation.

Observe that model-checking with pushdown systems and any fixed LTL formula
whose predicates are interpreted by a simple valuation is already polynomial (see
Theorem 1).

6. CONCLUSION

We have presented two different techniques for checking LTL with regular val-
uations on pushdown systems. Both techniques rely on a reduction to (and slight
modification of) the problem for simple valuations discussed in [6]. Both techniques
take linear time and space in |States| where States is the set of states of an automa-
ton representing the regular predicates used in the formula. Since both take the
same asymptotic time it would be interesting to compare their efficiency in practice
(for cases where both techniques can be used).

The solution can be seamlessly combined with the concept of symbolic pushdown
systems in [8]. These are used to achieve a succinct representation of Boolean
Programs, i.e., programs with (recursive) procedures in which all variables are
boolean.

The ability to represent data is a distinct advantage over the approaches hith-
erto made in our areas of application, namely data-flow analysis [7] and security
properties [10]. For the latter, we have indicated that our model is more general.
Our approach provides a unifying framework for these applications without losing
efficiency. Both techniques take linear time in |States| whereas the methods used
in [7] were cubic (though erroneously reported as linear there, too). In [10] no
complexity analysis was conducted.

REFERENCES

[1] T. Ball and S.K. Rajamani. Bebop: A symbolic model checker for boolean
programs. In SPIN 00: SPIN Workshop, volume 1885 of LNCS, pages 113–
130. Springer, 2000.

24

[2] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model checking. In Proc. CONCUR’97, LNCS 1243,
pages 135–150.

[3] O. Burkart and B. Steffen. Model checking the full modal mu-calculus for
infinite sequential processes. In Proc. ICALP’97, volume 1256 of LNCS, pages
419–429. Springer, 1997.

[4] E.A. Emerson. Temporal and modal logic. Handbook of Theoretical Comp.
Sci., B, 1991.

[5] E.A. Emerson and C. Lei. Modalities for model checking: Branching time logic
strikes back. Science of Computer Programming, 8(3):275–306, 1987.

[6] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proc. CAV’00, LNCS 1855, pages 232–
247. Springer, 2000. Full version available as Technical Report TUM I0002,
SFB-Bericht 342/1/00 A, Technische Universität München, February 2000.

[7] J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In Proceedings of FoSSaCS’99, volume 1578 of LNCS, pages
14–30. Springer, 1999.

[8] J. Esparza and S. Schwoon. A BDD-based model checker for recursive pro-
grams. In Proc. CAV’01, LNCS 2102, pages 324–336. Springer, 2001.

[9] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. Electronic Notes in Theoretical Computer Sci-
ence, 9, 1997.

[10] T. Jensen, D. Le Métayer, and T. Thorn. Verification of control flow based
security properties. In IEEE Symposium on Security and Privacy, pages 89–
103, 1999.

[11] B. Steffen, A. Claßen, M. Klein, J. Knoop, and T. Margaria. The fixpoint-
analysis machine. In Proceedings of CONCUR’95, volume 962 of LNCS, pages
72–87. Springer, 1995.

[12] M. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proceedings of LICS’86, pages 322–331. IEEE Computer
Society Press, 1986.

25

