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We consider the problem of simulation preorder/equivaebetween infinite-
state processes and finite-state ones. First, we descrilemexray method how
to utilize the decidability of bisimulation problems to gel(certain instances of)
the corresponding simulation problems. For certain pmadssses, the method
allows to design effective reductions of simulation profdeto their bisimulation
counterparts and some new decidability results for sirarahave already been
obtained in this way.

Then we establish thdecidability borderfor the problem of simulation pre-
order/equivalence between infinite-state processes aité-$tate ones w.r.t. the
hierarchy of process rewrite systems. In particular, wensti@at simulation pre-
order (in both directions) and simulation equivalence @&edhble inEXPTIME
between pushdown processes and finite-state ones. On #rehatid, simulation
preorder is undecidable between PA and finite-state presdssboth directions.
These results also hold for those PA and finite-state preseaich are deter-
ministic and normed, and thus immediately extend to traeengler. Regularity
(finiteness) w.r.t. simulation and trace equivalence is al®wn to be undecidable
for PA.

Finally, we prove that simulation preorder (in both direo8) and simulation
equivalence arintractable between all classes of infinite-state systems (in the hi-
erarchy of process rewrite systems) and finite-state onleis. résult is obtained by
showing that the problem whether a BPA (or BPP) process sit@sih finite-state one
is PSPACE-hard, and the other direction is d6-hard; consequently, simulation
equivalence between BPA (or BPP) and finite-state procésséso coA/P-hard.
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1. INTRODUCTION

We study the decidability and computational complexitytedcking simulation preorder
and equivalence between certain infinite-state systemfirdtedstate ones. The motivation
is that the intended behavior of a process can often be egsdlgified by a finite-state
system, while the actual implementation may contain coreptswhich are infinite-state
(e.g., counters, buffers, recursive procedures). Thedffirmal verification is to prove
that the specification and the implementation are equitalen

The same problem has been studied recently for strong ardisilarity [14, 23, 16,
13], and it has been shown that these equivalences are yatesitiable but alsaractable
between certain infinite-state processes and finite-sta#s.oThose issues (namely the
complexity ones) are dramatically different from the ‘syetnc’ case when we compare
two infinite-state processes. Here we consider (and ansaverjogous questions for
simulation, establishing both the decidability and tradity border w.r.t. the hierarchy of
process rewrite systems [25] (see Fig. 2).

The state of the art: Simulation preorder/equivalence is known to be undecilédn
BPA [9] and BPP [11] processes. An interesting positive ltdsy1] which shows that
simulation preorder (and hence also equivalence) is delddar one-counter nets, which
are ‘weak’ one-counter automata where the counter canntedted for zero explicitly
(one-counter nets are computationally equivalent to tihelsaiss of Petri nets with at most
one unbounded place). A simpler proof has been given lat¢t 7h where it is also
shown that simulation preorder/equivalence for ‘genesa-counter automata is already
undecidable. Simulation with finite-state systems has fiegtrstudied in [16]; in contrast
to the ‘symmetric’ case, simulation preorder between Retts and finite-state processes
is decidablein both directions. Moreover, a related problemredularity (finiteness) of
Petri nets w.r.t. simulation equivalence is proved to beagidhble. Recently, it has been
shown in [21] that simulation preorder between one-coumt¢s and finite-state processes
is decidable impolynomialtime in both directions (while, for example, weak bisimitgar
between one-counter nets and finite-state processeslimstictable—aDP-hardness
results for this problem has been demonstrated in [20]).edeer, in [21] it is also shown
that simulation equivalence between one-counter autoaradafinite-state processes is
already coA/P-hard.

Our contribution: In Section 3 we study the relationship between bisimilaabd
simulation equivalence. Our effort is motivated by a geh&end that problems for
bisimilarity (equivalence, regularity) are often decitigtbut the corresponding problems
for simulation equivalence are not. We propose a method bavsé existing algorithms
for ‘bisimulation’ problems to solve certain instances toé ttorresponding (and possibly
undecidable) ‘simulation’ ones. Such techniques areéstarg from a practical point of
view, as only small instances of undecidable problems caoled in an ad-hoc fashion,
and some kind of computer support is necessary for problérnsad’ size. Recently, the
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method has also been used in [15] to reduce certain simnlptimblems for one-counter
nets to the corresponding bisimulation problems for ongater automata (which had been
known to be decidable); some new decidability results hasnhlobtained in this way.

In Section 4 we establish the decidability border of Fig. 2irstFwe prove that
simulation preorder between pushdown processes (PDA) aitd-fitate ones igecid-
ablein EXPTIME in both directions. Consequently, simulation equivaleiscalso in
EXPTIME. Then we show that simulation preorder between PA and fgtédte processes
is undecidablen both directions. It is rather interesting that the undability results
hold even for those PA and finite-state processes whictdaterministicand normed
Simulationequivalencdetween such processes is decidable (it coincides witibésity
[14]); however, as soon as we allow just one nondeterminsttite in the PA processes,
simulation equivalence becomes undecidable. We also shainatl the obtained unde-
cidability results can be formulated in a ‘stronger’ formis possible tdfix a PA or a
finite-state process in each of the mentioned undecidabl@gms. Then we demonstrate
that regularity of (normed) PA processes w.r.t. simuladqgnivalence is also undecidable.
Again, it contrasts with regularity w.r.t. bisimilarity fomormed PA processes, which is
decidable in polynomial time [19]. All of the obtained unéability results also hold for
trace preorder and trace equivalence, and therefore thglytré also interesting from a
point of view of ‘classical’ automata theory (see the lastisa for further comments).

In Section 5 we concentrate on the complexity issues forgitiaun preorder and equiva-
lence with finite-state processes. We prove thatthe problleether a BPA (or BPP) process
simulates a finite-state one®SPA CE-hard, and the other direction is ¢¢#-hard. Con-
sequently, simulation equivalence between BPA (or BPPfiaiitd-state processes is also
co-N"P-hard. Hence, the main message of this section is that siimlaith finite-state
systems isntractablefor all classes of infinite-state systems of the hierarchgnshin
Fig. 2. It contrasts sharply with the complexity issues tooisg and weak bisimilarity; for
example, weak bisimilarity between BPA and finite-statecpsses, and between normed
BPP and finite-state processes igii23].

In the last section we give a summary of existing resultséreifea of comparing infinite-
state systems with finite-state ones and discuss langhageetic aspects of the obtained
results.

2. DEFINITIONS

In concurrency theory, processs typically defined to be a state int@nsition system
(which is a general and widely accepted model of discretepys).

DEFINITION 2.1. A transition systenis a tripleT = (S, A, —) whereS is a set of
states A is a set ofactions and— C S x A x S is atransition relation

As usual, we writes % ¢ instead of(s,a,t) € — and we extend this notation in the
natural way to elements of*. We say that a stateis reachablefrom a states iff s = ¢
for somew € A*. FurthermoreT is said to bemage-finiteff for all s € S anda € A the
set{t | s 5 t} is finite; T is deterministidf each such set is of size at mdst
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2.1. Trace, Simulation, and Bisimulation Equivalence
In this paper we compare infinite-state processes with fgtaée ones w.r.t. certain ‘lev-
els’ of their semantical sameness. Those ‘levels’ are ftymdafined as certain preorders
and equivalences over the class of all processes (i.eesstatransition systems).
We start withtrace preorderandtrace equivalencewhich are very similar to the ‘clas-
sical’ notions of language inclusion and language equinadef automata theory.

DEFINITION 2.2. LetT = (S, A, —) be a transition system. We say thate Act* is
atraceof a process € S iff s 3 s’ for somes’ € S. Let Tr(s) be the set of all traces of
s. We writes C; t iff Tr(s) C Tr(t). Moreover, we say thatandt aretrace equivalent
written s =, ¢, iff Tr(s) = Tr(t).

In concurrency theory, trace equivalence is usually casidl as being too coarse.
A plethora of finer ‘behavioral’ equivalences have been psepgl (see, e.g., [30] for an
overview). Simulationand bisimulationequivalence are of special importance and their
accompanying theory has been developed very intensively.

DEFINITION 2.3. LetT = (S,A,—) be a transition system. A binary relation
R C S x S is asimulationif whenever(s, t) € R then for eaclu € Act

if s % s', thent 2 t' for somet’ such thais’,t') € R

A symmetric simulation is called bisimulation A processs is simulatedby a process,
written s C; ¢, if there is a simulatior? such that(s,t) € R. We say that andt¢ are
simulation equivalentwritten s =, ¢, iff s T, t andt Ty s. Similarly, we say that and¢
arebisimilar (or bisimulation equivalent written s ~ ¢, iff there is a bisimulation relating
them.

It follows immediately from Definition 2.2 and 2.3 that traeguivalence is coarser than
simulation equivalence which is coarser than bisimilarMoreover, these containments
are proper. To see this, consider the procegsgsh of Fig. 1. Obviouslyf =; g =; h.

Furthermoref =; gbutf #5 h #5 g, andf £ g £ h £ f.

REMARK 2.1. All of the introduced equivalences can also be used to redtttes of
differenttransition systems. Formally, we can consider two transifystems to be a single
one by taking their disjoint union.
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Another natural (and studied) problem is the decidabilftyegularity (i.e., ‘semantical
finiteness’) of processes w.r.t. a given behavioral eqaivee.

DEFINITION 2.4. A processs is regular w.r.t. bisimulation (or simulation, trace)
equivalence iff there is a finite-state proceSsuch thats ~ f (or s =5 f, s = f,
respectively).

2.2. Process Rewrite Systems

In this paper, we use the syntax mbcess rewrite systenf25] to describe processes.
This model is especially suitable for our purposes as itnalto define most of the known
(i.e., studied) classes of infinite-state systems in a wmifand succinct way. Similar
formalisms for describing processes are used in [4]. Howegwecess rewrite systems
have the advantage that they can also describe classesarhsyfike PA, that contain both
the operators for sequential and parallel composition. Wnfd definition is as follows:
Let Act = {a,b,c,...} and Const = {X,Y, Z,...} be countably infinite sets @fctions
andprocess constantsespectively. The set @feneral process expressiqrenoteds, is
defined by the following abstract syntax equation:

E == ¢ | X | E|E | EE

Here X ranges overConst ande denotes the empty expression. Intuitively, the *
operator corresponds to a sequential composition, whdé|floperator models a simple
form of parallelism. In the rest of this paper we do not digtiish between expressions
related bystructural congruencevhich is the smallest congruence relation over process
expressions such that the following laws hold:

e associativity for " and ‘||’
e commutativity for |’
e ‘c’asaunitfor. and‘||".

DEFINITION 2.5. A process rewrite systefs a finite setA of rules which are of
the formE % F, wherea € Act andE,F € G, E # ¢ are process expressions. The
(finite) sets of process constants and actions which areingéd rules ofA are denoted
by Const(A) and Act(A), respectively.

Each system\ determines a unique transition system where states aregg@xpres-
sions overConst(A), the set of labels iglct(A), and transitions are determined Ayand
the following inference rules (remember thjtis commutative):

(E5F)eA _ESE ESE
ESF EF%E.F E|F3E|F

All notions and properties of transition systems can be adsal for processes of process
rewrite systems in the following sense: We say that a proEesEA has a property iff
the part of the transition system generated\owhich is reachable from has the property
p. (Observe that, e.gE can be deterministic even if the transition system gendiaye\
is not deterministic.)
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FIG.2. A hierarchy of process rewrite systems with the decidafiitictability border for simulation with
finite-state processes

Various subclasses of process rewrite systems can be ebtay imposing certain
restrictions on the form of the rules. To specify those retsbins, we first define the classes
S andP of sequentiabndparallel expressions, composed of all process expressions which
do not contain the|[’ and the ‘.’ operator, respectively. For short, we also use denote
the setConst U {¢}. A hierarchy of process rewrite systems is presented in Eighe
restrictions are specified by a pdid, B), whereA and B are the classes of expressions
which can appear on the left-hand and the right-hand sidale$yrespectivefy The set
of states of a systemy which belongs to the subclass determined #yB) is then formed
by all expressions aB which contain only the constants 6bnst(A). (In Fig. 2 we also
indicated the decidability/tractability border for simatibn preorder and equivalence with
finite-state systems which is established in the followiggti®ns.) This hierarchy contains
a variety of widely studied classes of infinite state systdai®\, BPP, and PA processes
are well-known [2], PDA correspond to pushdown processegi@ved by Caucal in [6]),
PN correspond to Petri nets (see, e.g., [29]), etc.

It can be shown that the hierarchy of Fig. Zsisict w.r.t. bisimulation semantics [25];
for example, there is a PN process for which there is no biaim®AD process, there is a
PDA process for which there is no bisimilar BPA or BPP process

Sometimes we also work with the subclassofmedprocess rewrite systems; a process
E of Aisnormedf E = ¢ forsomew € Act* (intuitively, this condition means tha can
successfully terminate). A systefnis normed if each of its processes is normed. Observe
that for every PA (and hence also BPA, BPP, or FS) systeme have that\ is normed
iff each X € Const(A) is normed. The extra condition of normedness can subsligntia
simplify certain bisimilarity-problems; for example, ndgrity w.r.t. bisimilarity is easily

31t has been shown in [25] that it does not make much sense &idmrthose restricted classes wherés
more general tha® or incomparable td3. Therefore, we only study the subclasses for whicht B.
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decidable for normed PA processes in polynomial time [1%{ilevthe general problem is
open and seems to be complicated. However, normedness & pwoticular advantage
when one tries to solve problems relategtmulationequivalence, as we shall see in the
next sections.

2.3. Minsky Machines
Almost all undecidability results in this paper are obtdily reduction from the halting
problem for Minsky counter machines.

DEFINTTION 2.6. A counter maching! with nonnegative counters, ¢z, -+, ¢, iS@
sequence of instructions

1: INS;
2: INS,
k—1: INS,_
k: halt

where each INS( = 1,2,...,k — 1) is in one of the following two forms (assuming
1<n,n,n" <k 1<j<m)

ecj:=cj+1; goton
e if ¢; =0 then goto n' else (¢; :==¢; —1; goto n')

The halting problem, i.e., the question whether or.f6wvill reach itshalt instruction,
is undecidable even for Minsky machines with two counteitgalived to zero [27].

3. THE RELATIONSHIP BETWEEN SIMULATION AND BISIMULATION
EQUIVALENCE

In this section we concentrate on the relationship betwaealation and bisimulation
equivalence. It is a general trend that decidability resigt bisimulation equivalence are
positive, while the ‘same’ problems for simulation equéemde are undecidable. Major
examples of that phenomenon come from the area of equivademecking (bisimilarity
is decidable in various classes of infinite-state procesgeie simulation equivalence is
not), and from the area of regularity-testing (finitenessaupisimilarity is often decidable,
while finiteness up to simulation equivalence is not). BP& BRA are examples for this
[7, 5, 13], and some new examples will be also given in Seetion

Now we propose a method which allows to ‘reduce’ certain itian problems to their
bisimulation counterparts. Although this ‘reduction’ istreffective in general (it cannot
be expected), it works effectively for some (interestinigsses of infinite-state processes.

DErFINITION 3.1. For every image-finite transition systéfh= (S, A, —) we define
the transition syster8(T') = (S, A, —) where— is given by

s tiff s StandVu €S :(s BuAtCyu) = ul,t

Observe thai3(T') is obtained fronil" by deleting certain transitions (only those are
preserved which are maximal w.r.t. simulation preorder3.7Ais image-finite, for each
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transitions — ¢ there is a ‘maximal’ transitios + ¢’ such that C, ¢'. As we often need
to distinguish between processeof 7" and ‘s of B(T')’, we denote the latter one bys.

LEMMA 3.1. LetT = (S, A4, —) be an image-finite transition system. For each S
we have that =; sg.

Proof. Obviouslysg Cs s. For the other direction, let us define the relatioi S x S
as follows:

R={(t,up) |t Csu}

We prove that is simulated by in R. Clearly(s, sp) € R; it remains to show that when-
ever(t,ug) € Randt = t', thenthere is a transitian + wuj; with (¢, u};) € R. Ast Cg

u, thereis atleast onesuccessor af which simulateg'. Letu' be the maximal one of those
a-successors W.r.t. simulation preorder (see above)utged u'y and(t',u'y) € Rasre-

quired. =

THEOREM 3.1. LetT; = (S1,A4,—), T» = (52, A, —) be image-finite transition
systemss € Sy, t € So. We have that =; t iff sp ~ 5.

Proof. The ‘«="'is obvious, as bisimilarity is finer than simulation equ&ace and
s =s sp, t =5 tg by Lemma 3.1. For the other direction, we show that the fathgw
relationR C S; x Ss is a bisimulation:

R = {(up,vB) | up =5 vs}

It clearly suffices becauses,ts) € R. By the definition of bisimulation, we must show
that for eachus +% u); there is avg v vj; with (ujs,vi) € R and vice versa (we
only show the first part; the other one is symmetric). gt uyz. Asup =; vp,
we also haveug C, vz and hencevz must be able to ‘match’ the moves +— up
by performing somess v vj; with uj; Cg vj. Now it suffices to show that); C
up. Asup =, vz, we also havery C; ug and hence the moveg N v must be
matched by somes % uf with vl T, uf. To sum up, we havely T, vy Ty ulf
and henceu C, uj — but it also means that} T, up by Definition 3.1 and

Lemma 3.1. We obtainy C; vy T, ujy T uj, hencevy T, ujp as required. B

ExampLE 3.1. Let us consider the processgy, h of Fig. 1. We see thaf =; g,
but f + ¢g. According to Theorem 3.1, it should hold th& ~ gz — and it is indeed the
case sincgp has only onei-successor (the ‘middle’ one; the other tesdransitions lead
to ‘strictly weaker’ states and therefore they are deleted)

The previous theorem also says that if we are to decide siionlaquivalence between
processes andt of T} andT,, we can instead check bisimilarity between procesgemd
tp of B(T1) andB(T5), respectively. Similarly, if we are interested whetherregular w.r.t.
simulation equivalence, we can try to constri3¢f") and check the regularity 6fz w.r.t.
bisimilarity. This concept has recently been used in [15¢weht is shown that the system
B(T) is effectively constructible for transition systems gexted by labeled Petri nets with
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at most one unbounded place. More precisely, for each sucN nghich determines a
transition systenT’ one can effectively construct a one-counter automatauich that the
transition system which is generated Hyis exactly B(T') (up to isomorphism). As a
number of ‘bisimulation’ problems for one-counter autoanate known to be decidable
[12], some new (positive) decidability results for simidaton the restricted class of Petri
nets have been obtained in this way.

Itis also possible to attack undecidable simulation pnaisievith the help of Theorem 3.1.
For example, simulation equivalence is known to be undébédfmr BPP processes [11],
while bisimilarity is decidable [7]. Therefore, the syst&tT"), whereT is generated by a
BPP system, cannot be effectively definable in the BPP syintgeneral. However, one
can design arich subclass of BPP systems whéerpdssible (by putting certain effectively
checkable restrictions on BPP systems); see [22] for detail

In this paper, we use Theorem 3.1 to obtain a decidabilityltéar PA processes (see
Section 4).

4. THE DECIDABILITY BORDER

In this section we establish the decidability border of 2ig.We show that simulation
preorder (in both directions) and simulation equivalendth inite-state processes are
decidable for PDA processesBXPTIME. Itis possible to reduce each of the mentioned
problems to the model-checking problem for an (almost) fieechulay of the alternation-
free modalu-calculus [18] and therefore we can apply the result of [3ivi#ch says that
model-checking the alternation-free mogatalculus for PDA processes isBXPTIME.

Then we turn our attention to PA processes. We prove thagrtrast to the BPA and
BPP subclasses, simulation preordanmslecidabldetween PA processes and finite-state
ones in both directions. Moreover, simulation preordemidacidable even if we consider
those PA and finite-state processes whichdsterministicandnormed Thus, our unde-
cidability results immediately extend to trace preordehifh coincides with simulation
preorder on deterministic processes). It is worth notirag gimulationequivalencebe-
tween deterministic PA and deterministic finite-state peses is decidable, as it coincides
with bisimilarity which is known to be decidable [14]. Howayas soon as we allow just
one nondeterministic state in the PA process, simulatieivatgnce with finite-state pro-
cesses becomes undecidable (there is even a fixed normeahihéséc finite-state process
F such that simulation equivalence with is undecidable for PA processes). The same
applies to trace equivalence.

Finally, we also prove that regularity (finiteness) of PAgesses w.r.t. simulation and
trace equivalence is undecidable, even for the normed asdf PA. Again, the role of
nondeterminism is very special as regularity of normedrdeitgstic PA processes w.r.t.
simulation and trace equivalence coincides with reguylasit.t. bisimilarity, which is
easily decidable in polynomial time [19]. However, just ar@ndeterministic state in the
PA process suffices to make the undecidability proof possibl

THEOREM 4.1. Simulation preorder is decidable between PDA processesdfiaitd-
state ones ilEXPTIME (in both directions).

Proof. LetP be a PDA process with the underlying systArandF’ a finite-state process
with the underlying systerfi. We construct another PDA systeiti, two processed, B
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of A’, and a formulay of the alternation-free modal-calculus such thaP C, F iff
A E ¢, andF C; Piff B |= .

We can safely assume that the §tst(A) can be partitioned into two disjoint subsets
Control(A) and Stack(A), and that the rules oA are of the formpX % qa, where
p,q € Control(A), X € Stack(A), anda € Stack(A)*. (It has been shown in [6]
that PDA systems generate the same class of transitionnsy<fgp to isomorphism)
as pushdown automata, and that each PDA system can be\affgttansformed into an
‘equivalent’ pushdown automaton in such a way that the aén size is only polynomial.)
The systemA’ is constructed as follows:

e Control(A") := Control(A) x Const(T') x {0,1}

e Stack(A') := Stack(A) U {Zo} whereZy ¢ Stack(A)

o forevery rulepX % qa of A and evenG € Const(I') we add the rulép, G,0)X =
(¢,G, Dato A/

o for every ruleG =% H of T, everyp € Control(A), and everyX € Stack(A') we
add the rulgp, G, 1)X 5% (p, H,0)X to A’

Intuitively, the system\’ alternates the moves df andT’; the ‘0’ and ‘1’ stored in the
finite control indicate whose turn it is. The new bottom syiBg is added so thaf’
cannot ‘get stuck’ just due to the emptiness of the stack.

Let us consider a property of processes which can be informally described as follows:
a processf satisfiesy iff for all @ andf = f' there is a movef’ % f" such that the
statef" also satisfies. This (recursively defined) property can be expressed imibeal
p-calculus [18] by putting

p=vX. (/\ [a](a)X)
a€A
whereAd = Act(A)U Act(T') (note thatA is finite). Intuitively, the recursion is ‘translated’
into an explicit fixed-point definition. The problem whetteePDA process satisfies is
decidable inEXPTIMFE [31, 3].
Let P be of the formpa. Keeping the intuitive interpretation @f in mind, it is easy

to see thapa C; F'iff (p, F,0)aZy |= ¢, and similarlyF' C; paiff (p, F,1)aZy = p. R

CoroLLARY 4.1. Simulation equivalence between PDA and finite-state psases
decidable inEXPTIME.

REMARK 4.2. Recently, it has been shown in [21] that the problem whethBDa
process can simulate a finite-state one, and the problemhg&hatPDA and a FS process
are simulation equivalent, are boiXPTIME-hard. Hence, the reduction to the model-
checking problem witky used in the proof of Theorem 4.1 is an essentially optimakdeat
algorithm. The issue seems to be different with bisimifakithich is known to be ‘only’
PSPACE-hard between PDA and FS processes [24]; in fact, we conjec¢hat everweak
bisimilarity [26] between PDA and FS processes iB8PA CE-complete problem.

Now we show that simulation preorder between PA and FS psesds already unde-
cidable in both directions, even if those processes arerdatistic and normed.
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TuroREM 4.2. Let P be a deterministic PA process afttla deterministic finite-state
process. It is undecidable whethBrC; F'.

Proof. Let M be an arbitrary Minsky machine with two counters initiaze m , m..
We construct a deterministic PA proceéBsaind a deterministic finite-state procdssuch
thatP C, F iff the machineM does not halt.

Let A := {zeroy, incy, decy, zeros, inca, deca }. The underlying system d? is defined
by the following rules:

Z1 wﬂ)l Zl, Z1 M Cl.Zl, Cl % 01.01, Cl ﬂ g,
Zg zeﬂf Zg, Z2 % C2.Z2, 02 m 02.02, 02 di% £

We defineP = (C{"'.Zy) || (C5™.Z5), whereC[™, i € {1,2}, denotes a sequential
composition ofm; copies of the constaudt;.

The underlying system df corresponds to the finite control 8f. For every instruction
of the form

n:c:=c;+1; goto n'

we have a rulé,, 2% F..,. For every instruction of the form
n: if ¢; =0 then goto n' else (¢; :=¢; — 1; goto n'’)

we have rules, “% F,, andF, deg F,». Then we add a new constalitand rules
U 3 U for everya € A. Finally, we complete the system &f in the following way:

For every constank’;, except for the one which corresponds to the (label of théiniga
instruction of M, and every: € A, if there is no ruleF; = F; for any F;, then add a rule
F; 5 U. The proces$ corresponds to the initial state of(, i.e., F = F.

The state ofP corresponds to the contents of the counters\éfand the state of”
corresponds to the state of the finite control/ef. A simulation step corresponds to a
computational step oM.

The only problem is thaP may do steps that do not correspond to steps of the counter
machine, e.g P does a stedec; when the current state i expectsnc, . Inallthese cases
the construction of the system &f ensures thaf' can (and must) respond by a step that
endsinthe stat&. After such a stefp’ can simulate anything. Itis easy to see tRdf ; F
iff P can forceF to enter the state correspondingitol t via a sequence of moves which
correspond to the correct simulation.®. Hence,P C; F iff the machineM does not
halt. =

REMARK 4.3. Theorem 4.2 still holds under the additional condition tiretunderlying
systems of both the PA process and the finite-state one ameiorWe can make the PA
system normed by adding the following rules:

Z1 ﬂ)&‘, Cl ﬂ)&‘,
Zs ﬂ)&‘, 02 ﬂ)&

To make sure thaF' can simulate the actions;, z,, we add the rulesV =% U and
N 22 U for every constaniV of the system oF (including U). Then, the system of
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F is made normed by adding the rulé 5 . It is easy to see thaP and F are still
deterministic, and still satisfy the property thatC, F' iff the machineM does not halt.

The halting problem is undecidable even for Minsky machimigls two counters initial-
ized to zero. The construction &f is then independent of1. Furthermore, there exists
a universal Minsky machind1’; the halting problem forM’ (with given input values) is
undecidable, and the constructionfofs independent of those input values. Hence we can
conclude:

THEOREM 4.3. There is a normed deterministic PA procésand a normed determin-
istic finite-state procesg' such that

ethe problemwhetheP C, F for a given (normed and deterministic) finite-state process
F is undecidable,

ethe problem whetheP C, F for a given (normed and deterministic) PA procésss
undecidable.

The other direction of simulation preorder is also unddalielaas we prove in the next
theorem.

TuroREM 4.4. Let P be a deterministic PA process afttla deterministic finite-state
process. It is undecidable whethBrC g P.

Proof. Let M be an arbitrary Minsky machine with two counters initialze m , m..
We construct a deterministic PA proceBsand a deterministic finite-state systdmsuch
thatF' C, P iff the machineM does not halt.

Let A := {zeroy, inc1, decy, zeros, inca, deco, c}. For the construction oP we start
with the same PA system as in Theorem 4.2 and extend it by tlevfog rules, which
handle all the behaviors that are ‘illegal’ in a given staftgPow.r.t. the counter values it
represents.

A I P o O P
7y, L% 4, Oy % A,
Ay % A, foreverya € {zeroy, incy, decy, c},
Ay, %5 A, foreverya € {zeros, incy, decs, c}

The intuition is that an illegal step that concerns the ceun(with i € {1,2}) always
introduces the symball;, and from then on everything can be simulated. We define
P = (C".Zy) || (C5".Z5) (whereC[™, i € {1,2}, denotes a sequential composition of
m,; copies of the constarit;). Note thatP is deterministic; a term that contains both
and A, can do the action in two different ways, but the result is always the same.

The system off” corresponds to the finite control d#f. For every instruction of the
form

n:c:=c;+1; goto n'

nc;

we have a rulgw,, —$ F),,. For every instruction of the form

n: if ¢; =0 then goto n' else (¢; :=¢; — 1; goto n')
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we have rules?, *’% F,, andF, %“ F,.. For the unique instruction
k : halt

we add the ruleF, = F,. Note that a reachable state £f cannot doc, unless it
containsA; or A,. We let FF = F;. A simulation step now corresponds to a compu-
tational step ofM. It follows that F' [Z, P iff F' can reach the ‘halting’ statg) via

a sequence of legal steps that correspond to steps of thekfimachine (and do not

introduce the symball; or A, in P). ThusF C; P iff the machineM does not halt. m

REMARK 4.4. Theorem 4.4 still holds under the additional condition tiretunderlying
systems of both the PA process and the finite-state one areetor The system df is
made normed by introducing the rulds % « for every constandV' of the system of. To
assure thatP? can always simulate the actian we add the rules

Zi 5e, O Se, A Se
To make the system #fnormed, it now suffices to add the following:
Zgﬁ)&?, C2ﬁ)6, Agi&‘

It is easy to see thaP and F' are still deterministic and satisfy the property thatC; P
iff the machineM does not halt.

The following theorem can be proved in the same way as Thedrd@m

THEOREM 4.5. There is a normed deterministic PA procésand a normed determin-
istic finite-state procesk such that

ethe problemwhethel C, P for a given (normed and deterministic) finite-state process
F'is undecidable,

ethe problem whetheF C, P for a given (normed and deterministic) PA procésss
undecidable.

We have seen that simulation preorderis undecidable batdaterministic PA processes
and deterministic finite-state ones in both directions. kv, simulatiorequivalence
(as well as any other equivalence of the linear time/brangkime spectrum of [30]) is
decidable€or such a pair of processes, because it coincides with ity which is known
to be decidable [14]. With the help of Theorem 3.1, we canrektie decidability result
to all (not only deterministic) finite-state processes.

THEOREM 4.6. Simulation equivalence is decidable between determiniz4 pro-
cesses and (arbitrary) finite-state ones.

Proof. As simulation preorder between finite-state processescislalele, the system
B(T') (see Definition 3.1) can be effectively constructed for anigdistate systefi. More-
over, if T is deterministic thed8(7") = T'. As bisimilarity between PA and FS processes is

decidable [14], we can apply Theorem 3.1
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The decidability result of Theorem 4.6 is rather tight—ig tiext theorem we prove that
simulation equivalence becomeadecidableas soon as we consider PA processes with
just one nondeterministic state.

TurorEM 4.7. There is a fixed normed deterministic finite-state prodéssich that
the problem whetheP =, F' for a given normed PA proceg3is undecidable.

Proof. We reduce the second undecidable problem of Theorem 4.3:tprblem
if P =, F. Let P’ be a normed deterministic PA proceds,be the fixed determin-
istic normed finite-state system derived from the finite omnof the universal Min-
sky machine as in Theorem 4.3. We construct a normed PA pmdéeand a fixed
deterministic normed finite-state proceBssuch thatP’ C, F iff P =, F. It suf-
fices to defineF by F % F, andP by P 5 P, P 5 F. It follows immedi-
ately thatP =, F iff P’ C, F’'. Note thatP is not deterministic; however, it con-

tains only one state (th® itself) where an action can be done in two different waym.

REMARK 4.5. All undecidability results for simulation preorder whictave been
proved in this section immediately extend to trace pregrdecause trace preorder co-
incides with simulation preorder in the class of deterntiniprocesses. The argument of
Theorem 4.7 carries over to trace equivalence as well.

Now we prove that regularity w.r.t. simulation and traceieagience is undecidable for
normed PA processes with at least one nondeterministe dtas interesting that regularity
of normed deterministic PA processes w.r.t. any equivaeri¢he linear time/branching
time spectrum of [30] is easily decidable in polynomial tirae it coincides with regularity
w.r.t. bisimilarity which is known to have this property [[L9To see that a deterministic
processP is regular w.r.t. bisimilarity iff it is regular w.r.t. anygelivalence~ which is
not finer than bisimilarity and not coarser than trace edeiee (all equivalences of [30]
fulfill this requirement), it suffices to realize that

e if Pisregularw.r.t. bisimilarity, the® ~ F' for some finite-state proce$s which
means thaP’ ~ F' as~ is not finer than bisimilarity;

e if Pisregularw.rt.~, thenP ~ F for some finite-state procegs It means that
P =, F, because~ is not coarser than trace equivalence. Now we can use thdasthn
subset construction [10] to obtain a deterministic finigtessystenF” such thatF' =; F”.
As bothP andF” are deterministic and trace equivalent, they are also bBaimnd hence
P~F.

THEOREM 4.8. Regularity w.r.t. simulation and trace equivalence is uridable for
normed PA processes.

Proof. Let M be an arbitrary Minsky machine with two counters initiaze m, , m..
We construct a normed PA proce3ssuch that is regular w.r.t. simulation (and trace)
equivalence iffM does not halt.

Let P andF be the processes constructed in the proof of Theorem 4.2ifiethth the
same way as in Remark 4.3. The underlying syste of obtained by taking the disjoint
union of the system aP andF, and extending it with the ruleg = P, Q = F (note that



SIMULATION OVER PROCESS ALGEBRAS 15

the resulting system is normed). M does not halt (i.e., i’ C; F), then@ is regular
w.r.t. simulation and trace equivalence, becaf)se; F' where the system of” is the
one of F extended with?’ % F'. To complete the proof, we need to show thatf halts,
then( is not trace equivalent to any finite-state process.ukbe the sequence of actions
which corresponds to the correct simulation/ef by the proces#. The procesg’ can
perform the sequence, but it has to enter the ‘halting’ statg, from which it can only
emit the actions:;, z» (see the proof of Theorem 4.2 and Remark 4.3). In particitlar,
means tha#' does not have any trace of the foimv wherev € {incy, dec;}. On the
other hand,P can perform any trace of the forminc} dec} wheren € IN. Suppose
there is a finite-state proceés with k states such thap) =; G. ThenG must have a
tracea w inc¥ dec?, and hence it can also perform the sequemeeinc! dec™ for any
m € IN (here we use a well-known ‘pumping’ argument from the tiyaaf finite automata
[10]). However,@ does not have this property—each trace(pfvhich is of the form
awv wherev € {incy, decy }* must satisfy the condition that v is a trace ofP. If we
choosen = length(w) + k + 1, then obviouslyP cannot do the sequenaeinct dec".

Hencea w inct dec™ is a trace of7 but not a trace of), and we have a contradictionms

5. THE TRACTABILITY BORDER

In this section we show that the problem whether a BPA prosiesslates a finite-state
one isPSPACE-hard. The reverse preorder is shown to be\éB-hard. Consequently,
we also obtain coVP-hardness of simulation equivalence between BPA and fatite
processes. All hardness proofs can be easily adapted sth#hatlso work for BPP
processes. As simulation preorder and equivalence arly elsiidable for finite-state
processes in polynomial time, the tractability border fiondation preorder/equivalence
with finite-state systems of Fig. 2 is established.

TueEOREM 5.1. LetP be a BPA procesd; a finite-state process. The problem whether
F C, Pis PSPACE-hard.

Proof. We showPSPA CFE-hardness by a reduction of tf$'PA CE-complete problem
QBF. Letn € IN andxy, - . ., z,—1 be boolean variables. We assume (without restrictions)
thatn is even. A literal is either a variable or the negation of aalge. A clause is a
disjunction of literals. The quantified boolean form@as given by

Q = \V/CU03£L'1 .. .‘v’:nn_23wn_1(Q1 VAN Qk)

where the); are clauses. The problem ist¥is valid.
We reduce this problem to the simulation problem. Let us @ddifinite-state systen
with constantdy, Fs, Fy, ..., F,, Q1,Q>, ..., Q} consisting of the following rules:

o Fb =% Fy(;yqy foreachd <i<mn/2-1

o Fy; 72 Fy(iy1) foreach0 <i<n/2-1

o 1, 2@, foreachl < j <k

-Qjﬁm)j foreachl <j <k
We also define a BPA syster with constants?, X1, X, ..., X1, X1, X2,..., Xn_1
which has the rules
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e P25 PX5;1.Xy; foreachd <i<n/2-1
o P PXy;1.Xo; foreachd <i<n/2-1
o P 2% P Xy 1. X, foreachd <i< n/2—1
o P2 PX,;1.Xo; foreachd <i< n/2—1

o P Cgk €

o X; L X; forall0 <i<mn-—1,1<j <k such that the literat;
occurs in the claus@ ;

o X; ¢ forall0<i<n—-11<j<k

e X, U, X, forall 0 <i <n—1,1< j < k such that the literat;
occurs in the claus ;

o X, B¢ forall0<i<n—-1,1<j<k

Intuitively, the proces$}, guesses the assignment for variables with even indfestores
this assignment and adds its own assignment for the vasialile odd index. After the ac-
tion check it is checked if the assignment satisfies the formula. Ibfeli immediately from
the construction oA\ that the assignment satisfies the formula iff the state wéncodes the
assignment can do each actigrinfinitely many times. I holds, thent, C; P because
P can choose the ‘correct’ assignment for variables with the index and then perform
eachg; infinitely many times. IfQ) does not hold, the#y Z; P becauséy can ‘force’ P
to reach an assignment for which soeis false; then it starts to perforg) repeatedly

andP inevitably reachesfrom which there are no moves. Hengeis validiff 7y C; P. B

THEOREM 5.2. LetP be a BPP procesd; a finite-state process. The problem whether
F C, Pis PSPACE-hard.

Proof. The PSPACE-hardness proof of Theorem 5.1 carries over directly. We

use the same rules fax with parallel composition instead of sequential componiti &

THEOREM 5.3. LetP be a BPA procesdy a finite-state process. The problem whether
P C, Fis co-N"P-hard.

Proof. We reduce the\"P-complete problem SAT to the problem# Z, F. Let
n € INandxzy, ..., z,_1 be boolean variables. A literal is either a variable or thgatien
of a variable. A clause is a disjunction of literals. The foten( is given by

Q=Q1N...\NQp

where the); are clauses. The problem is(ifis satisfiable.
WedeﬁneaBPAsyStemWithCOﬂStant?O,Pl, ce, Py X, Xo, ,Xn_l,Y1,Y2, - ,Yn—l
as follows:

o P i}PH_lXZ for each0 <i<n-1

e P, 5 P ,.X; foreach0<i<n-—1

o P, ched €

o X; Uy e forall0 <i<n-—1,1< j <k such that the literat;
occurs in the claus ;



SIMULATION OVER PROCESS ALGEBRAS 17

oXi—bhe foreach0 <i<n-—1
o X, B¢ forall0 <i <m—1,1<j <k such that the litera;

occurs in the claus@ ;
e X; Le foreach0 <i<n-—1

Now we define a finite-state systdiwith constants’”, Fy, Fs, . .., F}, by

o F- % F

o F e foreachl <i <k

o F, Iy F, foralll1 <i<k,1<j<ksuchthat # j
oFii>Fi foralll1 <i<k

If @ is satisfiable then there is an assignment that satisfieslaalses;. Then F
cannot simulateP,, becauseP, can choose this assignment and then it can perform
a sequence of actions where eaghis present (the sequence can also contain some
‘auxiliary’ occurrences ob); F' cannot match this sequence becauseFh@an do ev-
ery actiong;. If @ is not satisfiable then in every assignment sofheis not true.

ThenF can simulate’, by going to the staté’;. Hence is valid iff Py Z, . &

TueorREM 5.4. Let P be a BPP process anfl' a finite-state process. The problem
whetherP C, F is co-N'P-hard.

Proof. The proof is similar to the one of Theorem 5.3. The rulesAoare like in
Theorem 5.3 with parallel composition instead of sequéntanposition. T is defined
in the same way, but we also add the ruBs—2 U and F -%5 U for everyl <
i < k,andU = U for everyz € {qi,...,qk, a,b, check}. Intuitively, if someb
or ¢; is emitted before?, completes the guess (i.e., befartkeck is emitted), F goes

to U where it can simulate everything. Again we have fQas valid iff Py Z; . 1

CoroLLARY 5.1. The problems of simulation equivalence between BPA ane-fitétte
processes, and between BPP and finite-state processes-AréPebard.

Proof. Let P be a BPA (or BPP) process arid a finite-state process. Ldt’ be
defined by the rules®”’ % P and P’ % F and F' be defined by the rulg”’ %

F. ThenP' =, F'iff P C, F. The results follow from Theorem 5.3 and 5.4&

REMARK 5.6. All of the obtained hardness results are also valid underntenedness
assumption. Observe that the BPA systems constructed jrabé of Theorem 5.1 and
Theorem 5.&renormed; the finite-state systems used in those proofs camte normed
by adding the transitions); % cforall 1 < j < k (in the case of Theorem 5.1), and

F; Y ctorall 1 < i < k (in the case of Theorem 5.3). This extension does not infuenc
the validity of any argument used in our proofs.

6. SUMMARY AND CONCLUSIONS

Table 1 summarizes the known decidability results in the areequivalence/preorder
checking between infinite-state processes and finite-atet® The results which have been
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obtained in this paper are in boldface. In the case of traeergder/equivalence/regularity

we distinguish between deterministic infinite-state psses (left column) and general ones
(right column); finite-state systems can be considered tsrd@istic here, because the

subset construction [10] preserves trace equivalence.

TABLE 1
A summary of known decidability results
BPA BPP PA PDA PN
~ FS yes [8 yes [7] yes [14] yes [28] yes [16
reg.~ yes [5 yes [13 ? ? yes [13
Cs FS YES yes [16 NO YES yes [16
FSCs YES yes [16 NO YES yes [16
=5 FS YES yes [16 NO YES yes [16
reg.=s ? ? NO ? no [16]
Ct FS yes | yes | yes[16] | yes[16 NO NO yes | yes | yes[16] | yes[16]
FSC: yes no yes [16] | yes[16 NO no yes no yes [16] | yes [16]
=¢ FS yes no | yes[l6] | yes[16] | yes[14] | no yes no | yes[1l6] | yes[16]
reg.=¢ yes no | yes[13 ? ? no yes no | yes[13]| no[16]

The results for trace preorder/equivalence might be atsogsting from the point of view
of automata theory (trace preorder and equivalence arelgladated to language inclusion
and equivalence, respectively). All ‘trace’ results forAB&hd PDA are consequences of
the ‘classical’ ones for language equivalence (see [10]k ihteresting to compare those
decidability issues with the ones for PA, especially in tle¢edministic subcase. Trace
preorder with finite-state systems tends to be decidableldéterministic processes; PA
is the only exception. At the same time, traguivalencewith finite-state systems is
decidablefor deterministic PA. The PA processes we used in our undédity proofs
are parallel compositions of two deterministic and norm&aABrocesses (which can be
seen as deterministic CF grammars). The parallel compasitirresponds to thehuffle
operator on languages [10]. Thus, our results also bringesiosight into the power of
shuffle on (deterministic) CF languages.

Interesting open questions are left in the area of regyléeiting. We can conclude
that all of the *?’ problems are at least semidecidable, &s ossible to enumerate all
finite-state systems and decide equivalence with them.
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