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We consider the problem of simulation preorder/equivalence between infinite-

state processes and finite-state ones. First, we describe a general method how

to utilize the decidability of bisimulation problems to solve (certain instances of)

the corresponding simulation problems. For certain process classes, the method

allows to design effective reductions of simulation problems to their bisimulation

counterparts and some new decidability results for simulation have already been

obtained in this way.

Then we establish thedecidability borderfor the problem of simulation pre-

order/equivalence between infinite-state processes and finite-state ones w.r.t. the

hierarchy of process rewrite systems. In particular, we show that simulation pre-

order (in both directions) and simulation equivalence are decidable inEXPTIME
between pushdown processes and finite-state ones. On the other hand, simulation

preorder is undecidable between PA and finite-state processes in both directions.

These results also hold for those PA and finite-state processes which are deter-

ministic and normed, and thus immediately extend to trace preorder. Regularity

(finiteness) w.r.t. simulation and trace equivalence is also shown to be undecidable

for PA.

Finally, we prove that simulation preorder (in both directions) and simulation

equivalence areintractablebetween all classes of infinite-state systems (in the hi-

erarchy of process rewrite systems) and finite-state ones. This result is obtained by

showing that the problem whether a BPA (or BPP) process simulates a finite-state one

isPSPACE -hard, and the other direction is co-NP-hard; consequently, simulation

equivalence between BPA (or BPP) and finite-state processesis also co-NP-hard.
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1. INTRODUCTION

We study the decidability and computational complexity of checking simulation preorder
and equivalence between certain infinite-state systems andfinite-state ones. The motivation
is that the intended behavior of a process can often be easilyspecified by a finite-state
system, while the actual implementation may contain components which are infinite-state
(e.g., counters, buffers, recursive procedures). The taskof formal verification is to prove
that the specification and the implementation are equivalent.

The same problem has been studied recently for strong and weak bisimilarity [14, 23, 16,
13], and it has been shown that these equivalences are not only decidable, but alsotractable
between certain infinite-state processes and finite-state ones. Those issues (namely the
complexity ones) are dramatically different from the ‘symmetric’ case when we compare
two infinite-state processes. Here we consider (and answer)analogous questions for
simulation, establishing both the decidability and tractability border w.r.t. the hierarchy of
process rewrite systems [25] (see Fig. 2).

The state of the art: Simulation preorder/equivalence is known to be undecidable for
BPA [9] and BPP [11] processes. An interesting positive result is [1] which shows that
simulation preorder (and hence also equivalence) is decidable for one-counter nets, which
are ‘weak’ one-counter automata where the counter cannot betested for zero explicitly
(one-counter nets are computationally equivalent to the subclass of Petri nets with at most
one unbounded place). A simpler proof has been given later in[17] where it is also
shown that simulation preorder/equivalence for ‘general’one-counter automata is already
undecidable. Simulation with finite-state systems has beenfirst studied in [16]; in contrast
to the ‘symmetric’ case, simulation preorder between Petrinets and finite-state processes
is decidablein both directions. Moreover, a related problem ofregularity (finiteness) of
Petri nets w.r.t. simulation equivalence is proved to be undecidable. Recently, it has been
shown in [21] that simulation preorder between one-counternets and finite-state processes
is decidable inpolynomialtime in both directions (while, for example, weak bisimilarity
between one-counter nets and finite-state processes is still intractable—aDP -hardness
results for this problem has been demonstrated in [20]). Moreover, in [21] it is also shown
that simulation equivalence between one-counter automataand finite-state processes is
already co-NP-hard.

Our contribution: In Section 3 we study the relationship between bisimilarityand
simulation equivalence. Our effort is motivated by a general trend that problems for
bisimilarity (equivalence, regularity) are often decidable, but the corresponding problems
for simulation equivalence are not. We propose a method how to use existing algorithms
for ‘bisimulation’ problems to solve certain instances of the corresponding (and possibly
undecidable) ‘simulation’ ones. Such techniques are interesting from a practical point of
view, as only small instances of undecidable problems can besolved in an ad-hoc fashion,
and some kind of computer support is necessary for problems of ‘real’ size. Recently, the1On leave at the Institute for Informatics, Technical University Munich, Germany. Supported by a Research
Fellowship granted by the Alexander von Humboldt Foundation and by the Grant Agency of the Czech Republic,
grant No. 201/00/0400.2This work was partly supported by DAAD Post-Doc grant D/98/28804.
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method has also been used in [15] to reduce certain simulation problems for one-counter
nets to the corresponding bisimulation problems for one-counter automata (which had been
known to be decidable); some new decidability results have been obtained in this way.

In Section 4 we establish the decidability border of Fig. 2. First we prove that
simulation preorder between pushdown processes (PDA) and finite-state ones isdecid-
able in EXPTIME in both directions. Consequently, simulation equivalenceis also inEXPTIME . Then we show that simulation preorder between PA and finite-state processes
is undecidablein both directions. It is rather interesting that the undecidability results
hold even for those PA and finite-state processes which aredeterministicand normed.
Simulationequivalencebetween such processes is decidable (it coincides with bisimilarity
[14]); however, as soon as we allow just one nondeterministic state in the PA processes,
simulation equivalence becomes undecidable. We also show that all the obtained unde-
cidability results can be formulated in a ‘stronger’ form—it is possible tofix a PA or a
finite-state process in each of the mentioned undecidable problems. Then we demonstrate
that regularity of (normed) PA processes w.r.t. simulationequivalence is also undecidable.
Again, it contrasts with regularity w.r.t. bisimilarity for normed PA processes, which is
decidable in polynomial time [19]. All of the obtained undecidability results also hold for
trace preorder and trace equivalence, and therefore they might be also interesting from a
point of view of ‘classical’ automata theory (see the last section for further comments).

In Section 5 we concentrate on the complexity issues for simulation preorder and equiva-
lence with finite-state processes. We prove that the problemwhether a BPA (or BPP) process
simulates a finite-state one isPSPACE -hard, and the other direction is co-NP-hard. Con-
sequently, simulation equivalence between BPA (or BPP) andfinite-state processes is also
co-NP-hard. Hence, the main message of this section is that simulation with finite-state
systems isintractable for all classes of infinite-state systems of the hierarchy shown in
Fig. 2. It contrasts sharply with the complexity issues for strong and weak bisimilarity; for
example, weak bisimilarity between BPA and finite-state processes, and between normed
BPP and finite-state processes is inP [23].

In the last section we give a summary of existing results in the area of comparing infinite-
state systems with finite-state ones and discuss language-theoretic aspects of the obtained
results.

2. DEFINITIONS

In concurrency theory, aprocessis typically defined to be a state in atransition system
(which is a general and widely accepted model of discrete systems).Definition 2.1. A transition systemis a tripleT = (S;A;!) whereS is a set of
states,A is a set ofactions, and! � S �A� S is atransition relation.

As usual, we writes a! t instead of(s; a; t) 2 ! and we extend this notation in the
natural way to elements ofA�. We say that a statet is reachablefrom a states iff s w! t
for somew 2 A�. Furthermore,T is said to beimage-finiteiff for all s 2 S anda 2 A the
setft j s a! tg is finite;T is deterministicif each such set is of size at most1.
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FIG. 1. Processesf , g, andh
2.1. Trace, Simulation, and Bisimulation Equivalence

In this paper we compare infinite-state processes with finite-state ones w.r.t. certain ‘lev-
els’ of their semantical sameness. Those ‘levels’ are formally defined as certain preorders
and equivalences over the class of all processes (i.e., states in transition systems).

We start withtrace preorderandtrace equivalence, which are very similar to the ‘clas-
sical’ notions of language inclusion and language equivalence of automata theory.Definition 2.2. Let T = (S;A;!) be a transition system. We say thatw 2 A
t� is
a traceof a processs 2 S iff s w! s0 for somes0 2 S. LetTr(s) be the set of all traces ofs. We writes vt t iff Tr(s) � Tr(t). Moreover, we say thats andt aretrace equivalent,
writtens =t t, iff Tr(s) = Tr(t).

In concurrency theory, trace equivalence is usually considered as being too coarse.
A plethora of finer ‘behavioral’ equivalences have been proposed (see, e.g., [30] for an
overview). Simulationandbisimulationequivalence are of special importance and their
accompanying theory has been developed very intensively.Definition 2.3. Let T = (S;A;!) be a transition system. A binary relationR � S � S is asimulationif whenever(s; t) 2 R then for eacha 2 A
t

if s a! s0; thent a! t0 for somet0 such that(s0; t0) 2 R
A symmetric simulation is called abisimulation. A processs is simulatedby a processt,
written s vs t, if there is a simulationR such that(s; t) 2 R. We say thats andt are
simulation equivalent, writtens =s t, iff s vs t andt vs s. Similarly, we say thats andt
arebisimilar (or bisimulation equivalent), writtens � t, iff there is a bisimulation relating
them.

It follows immediately from Definition 2.2 and 2.3 that traceequivalence is coarser than
simulation equivalence which is coarser than bisimilarity. Moreover, these containments
are proper. To see this, consider the processesf; g; h of Fig. 1. Obviouslyf =t g =t h.
Furthermore,f =s g butf 6=s h 6=s g, andf 6� g 6� h 6� f .Remark 2.1. All of the introduced equivalences can also be used to relatestates of
differenttransition systems. Formally, we can consider two transition systems to be a single
one by taking their disjoint union.
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Another natural (and studied) problem is the decidability of regularity (i.e., ‘semantical
finiteness’) of processes w.r.t. a given behavioral equivalence.Definition 2.4. A processs is regular w.r.t. bisimulation (or simulation, trace)
equivalence iff there is a finite-state processf such thats � f (or s =s f , s =t f ,
respectively).

2.2. Process Rewrite Systems
In this paper, we use the syntax ofprocess rewrite systems[25] to describe processes.

This model is especially suitable for our purposes as it allows to define most of the known
(i.e., studied) classes of infinite-state systems in a uniform and succinct way. Similar
formalisms for describing processes are used in [4]. However, process rewrite systems
have the advantage that they can also describe classes of systems, like PA, that contain both
the operators for sequential and parallel composition. A formal definition is as follows:
Let A
t = fa; b; 
; : : :g andConst = fX;Y; Z; : : :g be countably infinite sets ofactions
andprocess constants, respectively. The set ofgeneral process expressions, denotedG, is
defined by the following abstract syntax equation:E ::= " j X j EkE j E:E

HereX ranges overConst and " denotes the empty expression. Intuitively, the ‘:’
operator corresponds to a sequential composition, while the ‘k’ operator models a simple
form of parallelism. In the rest of this paper we do not distinguish between expressions
related bystructural congruencewhich is the smallest congruence relation over process
expressions such that the following laws hold:� associativity for ‘:’ and ‘k’� commutativity for ‘k’� ‘"’ as a unit for ‘:’ and ‘k’.Definition 2.5. A process rewrite systemis a finite set� of rules which are of
the formE a! F , wherea 2 A
t andE;F 2 G, E 6= " are process expressions. The
(finite) sets of process constants and actions which are usedin the rules of� are denoted
byConst(�) andA
t(�), respectively.

Each system� determines a unique transition system where states are process expres-
sions overConst(�), the set of labels isA
t(�), and transitions are determined by� and
the following inference rules (remember that ‘k’ is commutative):(E a! F ) 2 �E a! F E a! E0E:F a! E0:F E a! E0EkF a! E0kF

All notions and properties of transition systems can be alsoused for processes of process
rewrite systems in the following sense: We say that a processE of � has a propertyp iff
the part of the transition system generated by� which is reachable fromE has the propertyp. (Observe that, e.g.,E can be deterministic even if the transition system generated by�
is not deterministic.)
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FIG. 2. A hierarchy of process rewrite systems with the decidability/tractability border for simulation with
finite-state processes

Various subclasses of process rewrite systems can be obtained by imposing certain
restrictions on the form of the rules. To specify those restrictions, we first define the classesS andP of sequentialandparallelexpressions, composed of all process expressions which
do not contain the ‘k’ and the ‘:’ operator, respectively. For short, we also use1 to denote
the setConst [ f"g. A hierarchy of process rewrite systems is presented in Fig.2; the
restrictions are specified by a pair(A;B), whereA andB are the classes of expressions
which can appear on the left-hand and the right-hand side of rules, respectively3. The set
of states of a system� which belongs to the subclass determined by(A;B) is then formed
by all expressions ofB which contain only the constants ofConst(�). (In Fig. 2 we also
indicated the decidability/tractability border for simulation preorder and equivalence with
finite-state systems which is established in the following sections.) This hierarchy contains
a variety of widely studied classes of infinite state systems; BPA, BPP, and PA processes
are well-known [2], PDA correspond to pushdown processes (as proved by Caucal in [6]),
PN correspond to Petri nets (see, e.g., [29]), etc.

It can be shown that the hierarchy of Fig. 2 isstrict w.r.t. bisimulation semantics [25];
for example, there is a PN process for which there is no bisimilar PAD process, there is a
PDA process for which there is no bisimilar BPA or BPP process, etc.

Sometimes we also work with the subclass ofnormedprocess rewrite systems; a processE of� isnormedif E w! " for somew 2 A
t� (intuitively, this condition means thatE can
successfully terminate). A system� is normed if each of its processes is normed. Observe
that for every PA (and hence also BPA, BPP, or FS) system� we have that� is normed
iff eachX 2 Const(�) is normed. The extra condition of normedness can substantially
simplify certain bisimilarity-problems; for example, regularity w.r.t. bisimilarity is easily3It has been shown in [25] that it does not make much sense to consider those restricted classes whereA is
more general thanB or incomparable toB. Therefore, we only study the subclasses for whichA � B.
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decidable for normed PA processes in polynomial time [19], while the general problem is
open and seems to be complicated. However, normedness is nota particular advantage
when one tries to solve problems related tosimulationequivalence, as we shall see in the
next sections.

2.3. Minsky Machines
Almost all undecidability results in this paper are obtained by reduction from the halting

problem for Minsky counter machines.Definition 2.6. A counter machineM with nonnegative counters
1; 
2; � � � ; 
m is a
sequence of instructions1 : INS12 : INS2

...k � 1 : INSk�1k : halt
where each INSi (i = 1; 2; :::; k � 1) is in one of the following two forms (assuming1 � n; n0; n00 � k, 1 � j � m)� 
j := 
j + 1; goto n� if 
j = 0 then goto n0 else (
j := 
j � 1; goto n00)
The halting problem, i.e., the question whether or notMwill reach itshalt instruction,

is undecidable even for Minsky machines with two counters initialized to zero [27].

3. THE RELATIONSHIP BETWEEN SIMULATION AND BISIMULATION
EQUIVALENCE

In this section we concentrate on the relationship between simulation and bisimulation
equivalence. It is a general trend that decidability results for bisimulation equivalence are
positive, while the ‘same’ problems for simulation equivalence are undecidable. Major
examples of that phenomenon come from the area of equivalence-checking (bisimilarity
is decidable in various classes of infinite-state processes, while simulation equivalence is
not), and from the area of regularity-testing (finiteness upto bisimilarity is often decidable,
while finiteness up to simulation equivalence is not). BPP and BPA are examples for this
[7, 5, 13], and some new examples will be also given in Section4.

Now we propose a method which allows to ‘reduce’ certain simulation problems to their
bisimulation counterparts. Although this ‘reduction’ is not effective in general (it cannot
be expected), it works effectively for some (interesting) classes of infinite-state processes.Definition 3.1. For every image-finite transition systemT = (S;A;!) we define
the transition systemB(T ) = (S;A; 7!) where7! is given bys a7! t iff s a! t and8u 2 S : (s a! u ^ t vs u) =) u vs t

Observe thatB(T ) is obtained fromT by deleting certain transitions (only those are
preserved which are maximal w.r.t. simulation preorder). As T is image-finite, for each
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transitions a! t there is a ‘maximal’ transitions a7! t0 such thatt vs t0. As we often need
to distinguish between processes ‘s of T ’ and ‘s of B(T )’, we denote the latter one bysB.Lemma 3.1. LetT = (S;A;!) be an image-finite transition system. For eachs 2 S
we have thats =s sB.

Proof. ObviouslysB vs s. For the other direction, let us define the relationR � S�S
as follows: R = f(t; uB) j t vs ug
We prove thats is simulated bysB inR. Clearly(s; sB) 2 R; it remains to show that when-
ever(t; uB) 2 R andt a! t0, then there is a transitionuB a7! u0B with (t0; u0B) 2 R. Ast vsu, there is at least onea-successor ofuwhich simulatest0. Letu0 be the maximal one of thosea-successors w.r.t. simulation preorder (see above); thenuB a7! u0B and(t0; u0B) 2 R as re-

quired.Theorem 3.1. Let T1 = (S1;A;!), T2 = (S2;A;!) be image-finite transition
systems,s 2 S1, t 2 S2. We have thats =s t iff sB � tB.

Proof. The ‘(=’ is obvious, as bisimilarity is finer than simulation equivalence ands =s sB, t =s tB by Lemma 3.1. For the other direction, we show that the following
relationR � S1 � S2 is a bisimulation:R = f(uB; vB) j uB =s vBg
It clearly suffices because(sB; tB) 2 R. By the definition of bisimulation, we must show
that for eachuB a7! u0B there is avB a7! v0B with (u0B; v0B) 2 R and vice versa (we
only show the first part; the other one is symmetric). LetuB a7! u0B. As uB =s vB,
we also haveuB vs vB and hencevB must be able to ‘match’ the moveuB a7! u0B
by performing somevB a7! v0B with u0B vs v0B. Now it suffices to show thatv0B vsu0B. As uB =s vB, we also havevB vs uB and hence the movevB a7! v0B must be
matched by someuB a7! u00B with v0B vs u00B. To sum up, we haveu0B vs v0B vs u00B
and henceu0B vs u00B — but it also means thatu00B vs u0B by Definition 3.1 and

Lemma 3.1. We obtainu0B vs v0B vs u00B vs u0B, hencev0B vs u0B as required.Example 3.1. Let us consider the processesf; g; h of Fig. 1. We see thatf =s g,
butf 6� g. According to Theorem 3.1, it should hold thatfB � gB — and it is indeed the
case sincegB has only onea-successor (the ‘middle’ one; the other twoa-transitions lead
to ‘strictly weaker’ states and therefore they are deleted).

The previous theorem also says that if we are to decide simulation equivalence between
processess andt of T1 andT2, we can instead check bisimilarity between processessB andtB ofB(T1)andB(T2), respectively. Similarly, if we are interested whethers is regular w.r.t.
simulation equivalence, we can try to constructB(T ) and check the regularity ofsB w.r.t.
bisimilarity. This concept has recently been used in [15] where it is shown that the systemB(T ) is effectively constructible for transition systems generated by labeled Petri nets with
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at most one unbounded place. More precisely, for each such net N which determines a
transition systemT one can effectively construct a one-counter automatonA such that the
transition system which is generated byA is exactlyB(T ) (up to isomorphism). As a
number of ‘bisimulation’ problems for one-counter automata are known to be decidable
[12], some new (positive) decidability results for simulation on the restricted class of Petri
nets have been obtained in this way.

It is also possible to attack undecidable simulation problems with the help of Theorem 3.1.
For example, simulation equivalence is known to be undecidable for BPP processes [11],
while bisimilarity is decidable [7]. Therefore, the systemB(T ), whereT is generated by a
BPP system, cannot be effectively definable in the BPP syntaxin general. However, one
can design a rich subclass of BPP systems where itispossible (by putting certain effectively
checkable restrictions on BPP systems); see [22] for details.

In this paper, we use Theorem 3.1 to obtain a decidability result for PA processes (see
Section 4).

4. THE DECIDABILITY BORDER

In this section we establish the decidability border of Fig.2. We show that simulation
preorder (in both directions) and simulation equivalence with finite-state processes are
decidable for PDA processes inEXPTIME . It is possible to reduce each of the mentioned
problems to the model-checking problem for an (almost) fixedformula' of the alternation-
free modal�-calculus [18] and therefore we can apply the result of [31, 3] which says that
model-checking the alternation-free modal�-calculus for PDA processes is inEXPTIME .

Then we turn our attention to PA processes. We prove that, in contrast to the BPA and
BPP subclasses, simulation preorder isundecidablebetween PA processes and finite-state
ones in both directions. Moreover, simulation preorder is undecidable even if we consider
those PA and finite-state processes which aredeterministicandnormed. Thus, our unde-
cidability results immediately extend to trace preorder (which coincides with simulation
preorder on deterministic processes). It is worth noting that simulationequivalencebe-
tween deterministic PA and deterministic finite-state processes is decidable, as it coincides
with bisimilarity which is known to be decidable [14]. However, as soon as we allow just
one nondeterministic state in the PA process, simulation equivalence with finite-state pro-
cesses becomes undecidable (there is even a fixed normed deterministic finite-state processF such that simulation equivalence withF is undecidable for PA processes). The same
applies to trace equivalence.

Finally, we also prove that regularity (finiteness) of PA processes w.r.t. simulation and
trace equivalence is undecidable, even for the normed subclass of PA. Again, the role of
nondeterminism is very special as regularity of normed deterministic PA processes w.r.t.
simulation and trace equivalence coincides with regularity w.r.t. bisimilarity, which is
easily decidable in polynomial time [19]. However, just onenondeterministic state in the
PA process suffices to make the undecidability proof possible.Theorem 4.1. Simulation preorder is decidable between PDA processes andfinite-
state ones inEXPTIME (in both directions).

Proof. LetP be a PDA process with the underlying system�andF a finite-state process
with the underlying system�. We construct another PDA system�0, two processesA;B
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of �0, and a formula' of the alternation-free modal�-calculus such thatP vs F iffA j= ', andF vs P iff B j= '.
We can safely assume that the setConst(�) can be partitioned into two disjoint subsetsControl(�) andSta
k(�), and that the rules of� are of the formpX a! q�, wherep; q 2 Control(�), X 2 Sta
k(�), and� 2 Sta
k(�)�. (It has been shown in [6]

that PDA systems generate the same class of transition systems (up to isomorphism)
as pushdown automata, and that each PDA system can be effectively transformed into an
‘equivalent’ pushdown automaton in such a way that the increase in size is only polynomial.)
The system�0 is constructed as follows:� Control(�0) := Control(�)� Const(�)� f0; 1g� Sta
k(�0) := Sta
k(�) [ fZ0g whereZ0 62 Sta
k(�)� for every rulepX a! q� of � and everyG 2 Const(�) we add the rule(p;G; 0)X a!(q;G; 1)� to �0� for every ruleG a! H of �, everyp 2 Control(�), and everyX 2 Sta
k(�0) we
add the rule(p;G; 1)X a! (p;H; 0)X to�0
Intuitively, the system�0 alternates the moves of� and�; the ‘0’ and ‘1’ stored in the
finite control indicate whose turn it is. The new bottom symbol Z0 is added so thatF
cannot ‘get stuck’ just due to the emptiness of the stack.

Let us consider a property' of processes which can be informally described as follows:
a processf satisfies' iff for all a andf a! f 0 there is a movef 0 a! f 00 such that the
statef 00 also satisfies'. This (recursively defined) property can be expressed in themodal�-calculus [18] by putting ' � �X: â2A[a℄haiX!
whereA = A
t(�)[A
t(�) (note thatA is finite). Intuitively, the recursion is ‘translated’
into an explicit fixed-point definition. The problem whethera PDA process satisfies' is
decidable inEXPTIME [31, 3].

Let P be of the formp�. Keeping the intuitive interpretation of' in mind, it is easy

to see thatp� vs F iff (p; F; 0)�Z0 j= ', and similarlyF vs p� iff (p; F; 1)�Z0 j= '.Corollary 4.1. Simulation equivalence between PDA and finite-state processes is
decidable inEXPTIME .Remark 4.2. Recently, it has been shown in [21] that the problem whether aPDA
process can simulate a finite-state one, and the problem whether a PDA and a FS process
are simulation equivalent, are bothEXPTIME -hard. Hence, the reduction to the model-
checking problem with' used in the proof of Theorem 4.1 is an essentially optimal decision
algorithm. The issue seems to be different with bisimilarity, which is known to be ‘only’PSPACE -hard between PDA and FS processes [24]; in fact, we conjecture that evenweak
bisimilarity [26] between PDA and FS processes is aPSPACE -complete problem.

Now we show that simulation preorder between PA and FS processes is already unde-
cidable in both directions, even if those processes are deterministic and normed.



SIMULATION OVER PROCESS ALGEBRAS 11Theorem 4.2. LetP be a deterministic PA process andF a deterministic finite-state
process. It is undecidable whetherP vs F .

Proof. LetM be an arbitrary Minsky machine with two counters initialized tom1;m2.
We construct a deterministic PA processP and a deterministic finite-state processF such
thatP vs F iff the machineM does not halt.

LetA := fzero1; in
1; de
1; zero2; in
2; de
2g. The underlying system ofP is defined
by the following rules:Z1 zero1�! Z1; Z1 in
1�! C1:Z1; C1 in
1�! C1:C1; C1 de
1�! ";Z2 zero2�! Z2; Z2 in
2�! C2:Z2; C2 in
2�! C2:C2; C2 de
2�! "
We defineP � (Cm11 :Z1) k (Cm22 :Z2), whereCmii , i 2 f1; 2g, denotes a sequential
composition ofmi copies of the constantCi.

The underlying system ofF corresponds to the finite control ofM. For every instruction
of the form n : 
i := 
i + 1; goto n0
we have a ruleFn in
i�! Fn0 . For every instruction of the formn : if 
i = 0 then goto n0 else (
i := 
i � 1; goto n00)
we have rulesFn zeroi�! Fn0 andFn de
i�! Fn00 . Then we add a new constantU and rulesU a! U for everya 2 A. Finally, we complete the system ofF in the following way:
For every constantFi, except for the one which corresponds to the (label of the) halting
instruction ofM, and everya 2 A, if there is no ruleFi a! Fj for anyFj , then add a ruleFi a! U . The processF corresponds to the initial state ofM, i.e.,F � F1.

The state ofP corresponds to the contents of the counters ofM and the state ofF
corresponds to the state of the finite control ofM. A simulation step corresponds to a
computational step ofM.

The only problem is thatP may do steps that do not correspond to steps of the counter
machine, e.g.,P does a stepde
1 when the current state inF expectsin
1. In all these cases
the construction of the system ofF ensures thatF can (and must) respond by a step that
ends in the stateU . After such a stepF can simulate anything. It is easy to see thatP 6vs F
iff P can forceF to enter the state corresponding tohalt via a sequence of moves which
correspond to the correct simulation ofM. Hence,P vs F iff the machineM does not
halt.Remark 4.3. Theorem 4.2 still holds under the additional condition thatthe underlying
systems of both the PA process and the finite-state one are normed. We can make the PA
system normed by adding the following rules:Z1 x1�! "; C1 x1�! ";Z2 x2�! "; C2 x2�! "
To make sure thatF can simulate the actionsx1; x2, we add the rulesN x1�! U andN x2�! U for every constantN of the system ofF (includingU ). Then, the system of



12 KUČERA AND MAYRF is made normed by adding the ruleU x! ". It is easy to see thatP andF are still
deterministic, and still satisfy the property thatP vs F iff the machineM does not halt.

The halting problem is undecidable even for Minsky machineswith two counters initial-
ized to zero. The construction ofP is then independent ofM. Furthermore, there exists
a universal Minsky machineM0; the halting problem forM0 (with given input values) is
undecidable, and the construction ofF is independent of those input values. Hence we can
conclude:Theorem 4.3. There is a normed deterministic PA processP and a normed determin-
istic finite-state processF such that�the problem whetherP vs F for a given (normed and deterministic) finite-state processF is undecidable,�the problem whetherP vs F for a given (normed and deterministic) PA processP is
undecidable.

The other direction of simulation preorder is also undecidable, as we prove in the next
theorem.Theorem 4.4. LetP be a deterministic PA process andF a deterministic finite-state
process. It is undecidable whetherF vs P .

Proof. LetM be an arbitrary Minsky machine with two counters initialized tom1;m2.
We construct a deterministic PA processP and a deterministic finite-state systemF such
thatF vs P iff the machineM does not halt.

Let A := fzero1; in
1; de
1; zero2; in
2; de
2; 
g. For the construction ofP we start
with the same PA system as in Theorem 4.2 and extend it by the following rules, which
handle all the behaviors that are ‘illegal’ in a given state of P w.r.t. the counter values it
represents. Z1 de
1�! A1; C1 zero1�! A1;Z2 de
2�! A2; C2 zero2�! A2;A1 a�! A1 for everya 2 fzero1; in
1; de
1; 
g;A2 a�! A2 for everya 2 fzero2; in
2; de
2; 
g
The intuition is that an illegal step that concerns the counter i (with i 2 f1; 2g) always
introduces the symbolAi, and from then on everything can be simulated. We defineP � (Cm11 :Z1) k (Cm22 :Z2) (whereCmii , i 2 f1; 2g, denotes a sequential composition ofmi copies of the constantCi). Note thatP is deterministic; a term that contains bothA1
andA2 can do the action
 in two different ways, but the result is always the same.

The system ofF corresponds to the finite control ofM. For every instruction of the
form n : 
i := 
i + 1; goto n0
we have a ruleFn in
i�! Fn0 . For every instruction of the formn : if 
i = 0 then goto n0 else (
i := 
i � 1; goto n00)
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we have rulesFn zeroi�! Fn0 andFn de
i�! Fn00 . For the unique instructionk : halt
we add the ruleFk 
! Fk. Note that a reachable state ofP cannot do
, unless it
containsA1 or A2. We letF � F1. A simulation step now corresponds to a compu-
tational step ofM. It follows thatF 6vs P iff F can reach the ‘halting’ stateFk via
a sequence of legal steps that correspond to steps of the Minsky machine (and do not

introduce the symbolA1 orA2 in P ). ThusF vs P iff the machineM does not halt.Remark 4.4. Theorem 4.4 still holds under the additional condition thatthe underlying
systems of both the PA process and the finite-state one are normed. The system ofF is
made normed by introducing the rulesN x! " for every constantN of the system ofF . To
assure thatP can always simulate the actionx, we add the rulesZ1 x! "; C1 x! "; A1 x! "
To make the system ofP normed, it now suffices to add the following:Z2 y! "; C2 y! "; A2 y! "
It is easy to see thatP andF are still deterministic and satisfy the property thatF vs P
iff the machineM does not halt.

The following theorem can be proved in the same way as Theorem4.3.Theorem 4.5. There is a normed deterministic PA processP and a normed determin-
istic finite-state processF such that�the problem whetherF vs P for a given (normed and deterministic) finite-state processF is undecidable,�the problem whetherF vs P for a given (normed and deterministic) PA processP is
undecidable.

We have seen that simulation preorder is undecidablebetween deterministic PA processes
and deterministic finite-state ones in both directions. However, simulationequivalence
(as well as any other equivalence of the linear time/branching time spectrum of [30]) is
decidablefor such a pair of processes, because it coincides with bisimilarity which is known
to be decidable [14]. With the help of Theorem 3.1, we can extend the decidability result
to all (not only deterministic) finite-state processes.Theorem 4.6. Simulation equivalence is decidable between deterministic PA pro-
cesses and (arbitrary) finite-state ones.

Proof. As simulation preorder between finite-state processes is decidable, the systemB(T ) (see Definition 3.1) can be effectivelyconstructed for any finite-state systemT . More-
over, ifT is deterministic thenB(T ) = T . As bisimilarity between PA and FS processes is

decidable [14], we can apply Theorem 3.1.
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The decidability result of Theorem 4.6 is rather tight—in the next theorem we prove that
simulation equivalence becomesundecidableas soon as we consider PA processes with
just one nondeterministic state.Theorem 4.7. There is a fixed normed deterministic finite-state processF such that
the problem whetherP =s F for a given normed PA processP is undecidable.

Proof. We reduce the second undecidable problem of Theorem 4.3 to the problem
if P =s F . Let P 0 be a normed deterministic PA process,F be the fixed determin-
istic normed finite-state system derived from the finite control of the universal Min-
sky machine as in Theorem 4.3. We construct a normed PA process P and a fixed
deterministic normed finite-state processF such thatP 0 vs F iff P =s F . It suf-
fices to defineF by F a! F , and P by P a! P 0, P a! F . It follows immedi-
ately thatP =s F iff P 0 vs F 0. Note thatP is not deterministic; however, it con-

tains only one state (theP itself) where an action can be done in two different ways.Remark 4.5. All undecidability results for simulation preorder which have been
proved in this section immediately extend to trace preorder, because trace preorder co-
incides with simulation preorder in the class of deterministic processes. The argument of
Theorem 4.7 carries over to trace equivalence as well.

Now we prove that regularity w.r.t. simulation and trace equivalence is undecidable for
normed PA processes with at least one nondeterministic state. It is interesting that regularity
of normed deterministic PA processes w.r.t. any equivalence of the linear time/branching
time spectrum of [30] is easily decidable in polynomial time, as it coincides with regularity
w.r.t. bisimilarity which is known to have this property [19]. To see that a deterministic
processP is regular w.r.t. bisimilarity iff it is regular w.r.t. any equivalence' which is
not finer than bisimilarity and not coarser than trace equivalence (all equivalences of [30]
fulfill this requirement), it suffices to realize that� if P is regular w.r.t. bisimilarity, thenP � F for some finite-state processF , which
means thatP ' F as' is not finer than bisimilarity;� if P is regular w.r.t.', thenP ' F for some finite-state processF . It means thatP =t F , because' is not coarser than trace equivalence. Now we can use the standard
subset construction [10] to obtain a deterministic finite-state systemF 0 such thatF =t F 0.
As bothP andF 0 are deterministic and trace equivalent, they are also bisimilar and henceP ' F 0.Theorem 4.8. Regularity w.r.t. simulation and trace equivalence is undecidable for
normed PA processes.

Proof. LetM be an arbitrary Minsky machine with two counters initialized tom1;m2.
We construct a normed PA processQ such thatQ is regular w.r.t. simulation (and trace)
equivalence iffM does not halt.

Let P andF be the processes constructed in the proof of Theorem 4.2, modified in the
same way as in Remark 4.3. The underlying system ofQ is obtained by taking the disjoint
union of the system ofP andF , and extending it with the rulesQ a! P ,Q a! F (note that
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the resulting system is normed). IfM does not halt (i.e., ifP vs F ), thenQ is regular
w.r.t. simulation and trace equivalence, becauseQ =s F 0 where the system ofF 0 is the
one ofF extended withF 0 a! F . To complete the proof, we need to show that ifM halts,
thenQ is not trace equivalent to any finite-state process. Letw be the sequence of actions
which corresponds to the correct simulation ofM by the processP . The processF can
perform the sequencew, but it has to enter the ‘halting’ stateFk from which it can only
emit the actionsx1; x2 (see the proof of Theorem 4.2 and Remark 4.3). In particular,it
means thatF does not have any trace of the formw v wherev 2 fin
1; de
1g+. On the
other hand,P can perform any trace of the formw in
n1 de
n1 wheren 2 IN. Suppose
there is a finite-state processG with k states such thatQ =t G. ThenG must have a
traceaw in
k1 de
k1 , and hence it can also perform the sequenceaw in
k1 de
m1 for anym 2 IN (here we use a well-known ‘pumping’ argument from the theory of finite automata
[10]). However,Q does not have this property—each trace ofQ which is of the formaw v wherev 2 fin
1; de
1g+ must satisfy the condition thatw v is a trace ofP . If we
choosem = length(w) + k + 1, then obviouslyP cannot do the sequencew in
k1 de
m1 .

Henceaw in
k1 de
m1 is a trace ofG but not a trace ofQ, and we have a contradiction.

5. THE TRACTABILITY BORDER

In this section we show that the problem whether a BPA processsimulates a finite-state
one isPSPACE -hard. The reverse preorder is shown to be co-NP-hard. Consequently,
we also obtain co-NP-hardness of simulation equivalence between BPA and finite-state
processes. All hardness proofs can be easily adapted so thatthey also work for BPP
processes. As simulation preorder and equivalence are easily decidable for finite-state
processes in polynomial time, the tractability border for simulation preorder/equivalence
with finite-state systems of Fig. 2 is established.Theorem 5.1. LetP be a BPA process,F a finite-state process. The problem whetherF vs P isPSPACE -hard.

Proof. We showPSPACE -hardness by a reduction of thePSPACE -complete problem
QBF. Letn 2 IN andx0; : : : ; xn�1 be boolean variables. We assume (without restrictions)
thatn is even. A literal is either a variable or the negation of a variable. A clause is a
disjunction of literals. The quantified boolean formulaQ is given byQ := 8x09x1 : : :8xn�29xn�1(Q1 ^ : : : ^Qk)
where theQi are clauses. The problem is ifQ is valid.

We reduce this problem to the simulation problem. Let us define a finite-state system�
with constantsF0; F2; F4; : : : ; Fn; Q1; Q2; : : : ; Qk consisting of the following rules:� F2i x2i�! F2(i+1) for each0 � i � n=2� 1� F2i �x2i�! F2(i+1) for each0 � i � n=2� 1� Fn 
he
k�! Qj for each1 � j � k� Qj qj�! Qj for each1 � j � k
We also define a BPA system� with constantsP;X1; X2; : : : ; Xn�1; X1; X2; : : : ; Xn�1
which has the rules



16 KUČERA AND MAYR� P x2i�! P:X2i+1:X2i for each0 � i � n=2� 1� P x2i�! P:X2i+1:X2i for each0 � i � n=2� 1� P �x2i�! P:X2i+1:X2i for each0 � i � n=2� 1� P �x2i�! P:X2i+1:X2i for each0 � i � n=2� 1� P 
he
k�! "� Xi qj�! Xi for all 0 � i � n � 1, 1 � j � k such that the literalxi
occurs in the clauseQj� Xi qj�! " for all 0 � i � n� 1, 1 � j � k� Xi qj�! Xi for all 0 � i � n � 1, 1 � j � k such that the literal�xi
occurs in the clauseQj� Xi qj�! " for all 0 � i � n� 1, 1 � j � k

Intuitively, the processF0 guesses the assignment for variables with even index.P stores
this assignment and adds its own assignment for the variables with odd index. After the ac-
tion
he
k it is checked if the assignment satisfies the formula. It follows immediately from
the construction of� that the assignment satisfies the formula iff the state whichencodes the
assignment can do each actionqj infinitely many times. IfQ holds, thenF0 vs P becauseP can choose the ‘correct’ assignment for variables with the odd index and then perform
eachqj infinitely many times. IfQ does not hold, thenF0 6vs P becauseF0 can ‘force’P
to reach an assignment for which someQj is false; then it starts to performqj repeatedly

andP inevitably reaches" from which there are no moves. Hence,Q is valid iff F0 vs P .Theorem 5.2. LetP be a BPP process,F a finite-state process. The problem whetherF vs P isPSPACE -hard.

Proof. The PSPACE -hardness proof of Theorem 5.1 carries over directly. We

use the same rules for� with parallel composition instead of sequential composition.Theorem 5.3. LetP be a BPA process,F a finite-state process. The problem whetherP vs F is co-NP-hard.

Proof. We reduce theNP-complete problem SAT to the problem ifP 6vs F . Letn 2 IN andx0; : : : ; xn�1 be boolean variables. A literal is either a variable or the negation
of a variable. A clause is a disjunction of literals. The formulaQ is given byQ := Q1 ^ : : : ^Qk
where theQi are clauses. The problem is ifQ is satisfiable.

We define a BPA system�with constantsP0 ; P1; : : : ; Pn; X1; X2; : : : ; Xn�1; X1; X2; : : : ; Xn�1
as follows:� Pi a�! Pi+1:Xi for each0 � i � n� 1� Pi a�! Pi+1:Xi for each0 � i � n� 1� Pn 
he
k�! "� Xi qj�! " for all 0 � i � n � 1, 1 � j � k such that the literalxi

occurs in the clauseQj



SIMULATION OVER PROCESS ALGEBRAS 17� Xi b�! " for each0 � i � n� 1� Xi qj�! " for all 0 � i � n � 1, 1 � j � k such that the literal�xi
occurs in the clauseQj� Xi b�! " for each0 � i � n� 1

Now we define a finite-state system� with constantsF; F1; F2; : : : ; Fk by� F a�! F� F 
he
k�! Fi for each1 � i � k� Fi qj�! Fi for all 1 � i � k, 1 � j � k such thati 6= j� Fi b�! Fi for all 1 � i � k
If Q is satisfiable then there is an assignment that satisfies all clausesQj . ThenF
cannot simulateP0, becauseP0 can choose this assignment and then it can perform
a sequence of actions where eachqj is present (the sequence can also contain some
‘auxiliary’ occurrences ofb); F cannot match this sequence because noFi can do ev-
ery actionqj . If Q is not satisfiable then in every assignment someQj is not true.

ThenF can simulateP0 by going to the stateFj . Hence,Q is valid iff P0 6vs F .Theorem 5.4. Let P be a BPP process andF a finite-state process. The problem
whetherP vs F is co-NP-hard.

Proof. The proof is similar to the one of Theorem 5.3. The rules for� are like in
Theorem 5.3 with parallel composition instead of sequential composition. � is defined

in the same way, but we also add the rulesF b�! U andF qi�! U for every 1 �i � k, andU x�! U for every x 2 fq1; : : : ; qk; a; b; 
he
kg. Intuitively, if some b
or qi is emitted beforeP0 completes the guess (i.e., before
he
k is emitted),F goes

toU where it can simulate everything. Again we have thatQ is valid iff P0 6vs F .Corollary 5.1. The problems of simulation equivalence between BPA and finite-state
processes, and between BPP and finite-state processes are co-NP-hard.

Proof. Let P be a BPA (or BPP) process andF a finite-state process. LetP 0 be
defined by the rulesP 0 a! P and P 0 a! F and F 0 be defined by the ruleF 0 a!F . ThenP 0 =s F 0 iff P vs F . The results follow from Theorem 5.3 and 5.4.Remark 5.6. All of the obtained hardness results are also valid under thenormedness
assumption. Observe that the BPA systems constructed in theproof of Theorem 5.1 and
Theorem 5.3arenormed; the finite-state systems used in those proofs can be made normed
by adding the transitionsQj qj! " for all 1 � j � k (in the case of Theorem 5.1), andFi b! " for all 1 � i � k (in the case of Theorem 5.3). This extension does not influence
the validity of any argument used in our proofs.

6. SUMMARY AND CONCLUSIONS

Table 1 summarizes the known decidability results in the area of equivalence/preorder
checking between infinite-state processes and finite-stateones. The results which have been
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obtained in this paper are in boldface. In the case of trace preorder/equivalence/regularity
we distinguish between deterministic infinite-state processes (left column) and general ones
(right column); finite-state systems can be considered as deterministic here, because the
subset construction [10] preserves trace equivalence.

TABLE 1

A summary of known decidability results
BPA BPP PA PDA PN� FS yes [8] yes [7] yes [14] yes [28] yes [16]

reg.� yes [5] yes [13] ? ? yes [13]vs FS YES yes [16] NO YES yes [16]
FSvs YES yes [16] NO YES yes [16]=s FS YES yes [16] NO YES yes [16]
reg.=s ? ? NO ? no [16]vt FS yes yes yes [16] yes [16] NO NO yes yes yes [16] yes [16]
FSvt yes no yes [16] yes [16] NO no yes no yes [16] yes [16]=t FS yes no yes [16] yes [16] yes [14] no yes no yes [16] yes [16]
reg.=t yes no yes [13] ? ? no yes no yes [13] no [16]

The results for trace preorder/equivalencemight be also interesting from the point of view
of automata theory (trace preorder and equivalence are closely related to language inclusion
and equivalence, respectively). All ‘trace’ results for BPA and PDA are consequences of
the ‘classical’ ones for language equivalence (see [10]). It is interesting to compare those
decidability issues with the ones for PA, especially in the deterministic subcase. Trace
preorder with finite-state systems tends to be decidable fordeterministic processes; PA
is the only exception. At the same time, traceequivalencewith finite-state systems is
decidablefor deterministic PA. The PA processes we used in our undecidability proofs
are parallel compositions of two deterministic and normed BPA processes (which can be
seen as deterministic CF grammars). The parallel composition corresponds to theshuffle
operator on languages [10]. Thus, our results also bring some insight into the power of
shuffle on (deterministic) CF languages.

Interesting open questions are left in the area of regularity-testing. We can conclude
that all of the ‘?’ problems are at least semidecidable, as itis possible to enumerate all
finite-state systems and decide equivalence with them.
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