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Abstract. We consider the problem of computing the expected accu-
mulated reward and the average gain per transition in a subclass of
Markov chains with countable state spaces where all states are assigned
a non-negative reward. We state several abstract conditions that guaran-
tee computability of the above properties up to an arbitrarily small (but
non-zero) given error. Finally, we show that our results can be applied
to probabilistic lossy channel systems, a well-known model of processes
communicating through faulty channels.

1 Introduction

Methods for qualitative and quantitative analysis of stochastic systems have been
rapidly gaining importance in recent years. Stochastic systems are used for mod-
eling systems that exhibit some kind of uncertainty caused by, e.g., unpredictable
errors, randomness, or underspecification. The semantics of stochastic systems
is usually defined in terms of Markov chains or Markov decision processes [19,
22]. So far, problems related to formal verification of stochastic systems have
been studied mainly for finite-state systems [24, 11, 6, 12, 19, 10]. Only recently,
some of these results were extended to certain classes of infinite-state systems,
in particular to probabilistic pushdown automata [13, 9, 14, 7], recursive Markov
chains [16, 15], and probabilistic lossy channel systems [2, 3, 5, 4, 18, 23].

A more abstract approach has been adopted in [1], where the problems of
qualitative and quantitative reachability are studied for a subclass of Markov
chains with a finite attractor. In [1], it is shown that the problems of qualitative
reachability and qualitative repeated reachability are decidable in the considered
subclass, and that the quantitative variants of these problems can be solved up
to an arbitrarily small given error. These abstract results are then applied to
probabilistic lossy channel systems. Moreover, in the same paper it is shown that
the exact probability of (repeated) reachability is not expressible in first order
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theory of the reals for probabilistic lossy channel systems (unlike for probabilistic
pushdown automata or recursive Markov chains [13, 9, 16, 15]).
Our contribution: In this paper we adopt an abstract approach similar to
the one of [1]. We identify an abstract class of infinite Markov chains where
the expected accumulated reward between two given states and the average
reward per transition can be effectively approximated up to a given precision.
Our results are applicable to a similar class of systems as the results of [1],
in particular to various versions of probabilistic lossy channel systems. These
problems have previously been considered and solved for probabilistic pushdown
automata by showing that these parameters are effectively expressible in first
order theory of the reals [14]. However, this approach cannot be used for any
class of Markov chains that subsumes probabilistic lossy channel systems; by
adapting the results of [1], one can easily show that these values are (provably)
not expressible in first order theory of the reals.

The problem of computing the expected accumulated reward can be roughly
formulated as follows: assume that each state of a given Markov chain is assigned
a rational reward, which is collected when the state is visited. We are interested
in the expected reward accumulated when going from a given state s to another
given state t. In particular, if the reward function returns 1 for every state,
then the expected accumulated reward corresponds to the expected number of
transitions between s and t, and can also be interpreted as the expected ter-
mination time. Another important parameter which is well-known from general
theory of Markov chains is the gain, i.e., the average reward per transition along
a given infinite run. The gain (computed w.r.t. various reward functions) plays
an important role in performance analysis and can be used to evaluate various
long-run system properties (such as the expected throughput, expected service
time, etc.)

Since the expected accumulated reward and the average gain can take irra-
tional values, the best we can hope for is to compute rational lower and upper
approximations that are arbitrarily close. Our approach is similar to the one
of [21] used for approximating the probability of reaching a given state t from
another given state s. Roughly speaking, the algorithm successively computes
the probability p−n of reaching t from s in at most n steps. This yields a se-
quence of lower approximations p−1 , p−2 , . . . of p. It holds (without any additional
assumptions) that limn→∞ p−n equals the probability p of reaching t from s, and
that p−1 ≤ p−2 ≤ . . . ≤ p. However, it is not clear which p−n is “close enough”
to p in the sense that p − pn ≤ ε for a given precision ε > 0. Therefore, one
also computes the probabilities dn of reaching a “dead” state in at most n steps
(a state s′ is dead if t is not reachable from s′). Putting p+

i = 1 − di for every
i ∈ N, we obtain a sequence of upper approximations p+

1 ≥ p+
2 ≥ · · · of p. If the

Markov chain contains a finite attractor, then limn→∞ p−n = p = limn→∞ p+
n ,

and it suffices to compute a sufficiently large n such that p+
n − p−n ≤ ε.

We use a similar approach for computing the expected accumulated reward
and the average gain by showing that there are effectively computable sequences
E+

1 , E+
2 , . . . and E−

1 , E−
2 , . . . of upper and lower approximations which converge



to the value of the considered parameter. For the expected accumulated reward,
the sequence of lower approximations is easy to find, using a similar technique as
in the case of reachability. In Section 3 we show how to construct the sequence
of upper approximations for a subclass of Markov chains that satisfy certain
abstractly formulated conditions. We show that an infinite Markov chain M of
this class can be effectively approximated with a sequence of finite-state Markov
chains so that the expected accumulated rewards computed in these approxi-
mations converge to the expected accumulated reward in M . In order to prove
this convergence, we use results of perturbed Markov chains theory [17]. The
problem of computing the expected gain is solved along similar lines, but the
problem (and hence also the techniques involved) become more complicated. In
particular, there is no simple method for constructing a sequence of lower ap-
proximations as in the case of the expected accumulated reward, and we have
to compute both lower and upper approximating sequences using the sequence
of finite-state Markov chains mentioned above.

Due to space constraints, all proofs are omitted. These can be found in a full
version of this paper [8].

2 Preliminaries

In the paper we use Q, R, and R+ to denote the sets of rational numbers, real
numbers, and non-negative real numbers, respectively. We also use Q∞ and R+

∞
to denote the set Q∪{∞} and R+∪{∞}, respectively. The symbol ∞ is treated
according to the standard conventions.

Definition 1. A (discrete) Markov chain is a triple M = (S,→,Prob) where S
is a finite or countably infinite set of states, → ⊆ S×S is a transition relation,
and Prob is a function which to each transition s → t of M assigns its probability
Prob(s → t) ∈ (0, 1] so that for every s ∈ S we have

∑
s→t Prob(s → t) = 1.

In the rest of this paper we write s
x→ t instead of Prob(s → t) = x. A path in

M is a finite or infinite sequence w = s0, s1, . . . of states such that si → si+1

for every i. We say that a state t is reachable from a state s if there is a path
from s to t. We say that a Markov chain M is irreducible, if for all states s, t
of M there is a path from s to t in M . The length of a given path w is the
number of transitions in w. In particular, the length of an infinite path is ∞,
and the length of a path s, where s ∈ S, is zero. We also use w(i) to denote
the state si of w (by writing w(i) = s we implicitly impose the condition that
the length of w is at least i). The prefix s0, . . . , si of w is denoted by wi. A run
is an infinite path. The sets of all finite paths and all runs of M are denoted
FPath and Run, respectively. Similarly, the sets of all finite paths and runs that
start with a given w ∈ FPath are denoted FPath(w) and Run(w), respectively.
In particular, Run(s), where s ∈ S, is the set of all runs initiated in s.

We are interested in probabilities of certain events that are associated with
runs. To every s ∈ S we associate the probabilistic space (Run(s),F ,P) where
F is the σ-field generated by all basic cylinders Run(w) where w ∈ FPath(s),



and P : F → [0, 1] is the unique probability function such that P(Run(w)) =
Πm−1

i=0 xi where w = s0, · · · , sm and si
xi→ si+1 for every 0 ≤ i < m (if m = 0, we

put P(Run(w)) = 1).
For every s ∈ S and every A ⊆ S, we use P[s,A] to denote the probability

of reaching A from s. Formally, P[s,A] = P({w ∈ Run(s) | ∃i ≥ 0 : w(i) ∈ A}).
We write P[s, t] instead of P[s, {t}].
Definition 2. A set A⊆S is recurrent if for all s ∈ A we have that s → t
implies P[t, A] = 1.

Note that whenever a run leaves a recurrent set A, then it almost surely (i.e.,
with probability one) returns back to A in the future.

A reward function is a function f : S → R+. We extend f to finite paths by
putting f(s0, . . . , sn) =

∑n
i=0 f(si). Thus, f assigns to each path its accumulated

reward. The special reward function which assigns 1 to every s ∈ S is denoted 1
(i.e., 1(s) = 1 for each s ∈ S).

3 Computing the expected accumulated reward and gain

In this section we show how to compute certain quantitative properties in certain
classes of Markov chains up to an arbitrarily small ε > 0. More precisely, we show
that these properties are effectively approximable in the following sense:

Definition 3. Let O be a class of objects, and let P : O → R+
∞. We say that

P is effectively approximable if there is an algorithm which, for a given o ∈ O,
enumerates two sequences E+

1 , E+
2 , . . . and E−

1 , E−
2 , . . . where E+

i , E−
i ∈ Q∞

such that for all i ≥ 1 we have E−
i ≤ P (o) ≤ E+

i and limi→∞E+
i = limi→∞E−

i .
The sequences E+

1 , E+
2 , . . . and E−

1 , E−
2 , . . . are called the upper/lower ap-

proximating sequences of P (o), respectively.

If P is effectively approximable, then the value of P (o) can effectively be ap-
proximated up to an arbitrarily small ε > 0 by enumerating the upper and lower
sequences simultaneously until they become sufficiently close.

3.1 The expected accumulated reward

For the rest of this subsection, let us fix a Markov chain M = (S,→,Prob), two
states sin , sfin ∈ S, and a reward function f : S → R+. Moreover, we assume
that given a state s ∈ S, the set {(s, x, t) | s

x→ t} of all transitions from s is
effectively denumerable.

We define a random variable R : Run(sin) → R+
∞ that counts the reward

accumulated between sin and sfin . Formally, given a run w ∈ Run(sin), we
define

R(w) =
{

f(w(0), . . . , w(n−1)) ∃n : w(n) = sfin , w(i) 6= sfin for 1 ≤ i ≤ n−1;
∞ otherwise.



The expected value of R is denoted E(M,f) (the reason why we write E(M, f)
and not just E(R) is that in our proofs we consider various modifications of the
chain M and various reward functions, keeping sin , sfin fixed).

Our aim is to show that the function which to a given tuple (M, f, sin , sfin)
assigns the value E(M, f) is effectively approximable (cf. Definition 3) if M and
f satisfy certain abstractly formulated conditions. To simplify our notation, we
formulate these conditions directly for the previously fixed M and f , and show
how to compute the sequences E+

1 , E+
2 , . . . and E−

1 , E−
2 , . . . if these conditions

are satisfied.
First, let us realize that the lower approximating sequence E−

1 , E−
2 , . . . can

be computed without any additional assumptions about M and f , because

• one can effectively compute a sequence P1, P2, . . . of finite sets of finite paths
such that Pi ⊆ Pi+1 for each i ≥ 1, and

⋃∞
i=1 Pi is exactly the set of all finite

paths w where w(0)=sin , w(k)=sfin for some k, and w(j)6=sfin for all 0≤j<k;
•E−

i can be defined as
∑

w∈Pi
P(Run(w)) · f(w)

However, the upper approximating sequence E+
1 , E+

2 , . . . cannot be effectively
constructed for general M and f . In order to formulate the promised sufficient
conditions, we need to state one auxiliary definition.

Definition 4. Let h : S → R+ be a reward function, A ⊆ S, and s ∈ A. We de-
fine a random variable Oh,A

s : Run(s) → R+that counts the reward accumulated
“before hitting the set A” as follows:

Oh,A
s (w) =

{
h(w(1), . . . , w(n−1)) ∃n : w(n) ∈ A,w(1), . . . , w(n−1) 6∈ A;
⊥ otherwise.

The symbol EOh,A
s denotes either the conditional expectation E(Oh,A

s | Oh,A
s 6=⊥)

or 0, depending on whether P(Oh,A
s 6=⊥) is positive or zero, respectively.

The sufficient conditions which (as we shall see) enable an effective construction
of E+

1 , E+
2 , . . . are the following:

1. there is an effectively computable sequence A0 ⊆ A1 ⊆ · · · of finite recurrent
sets such that

⋃∞
i=0 Ai = S;

2. there is an effectively computable number Ξ ∈ R+ such that for all i ≥ 0
and all s ∈ Ai we have EOf,Ai

s ≤ Ξ and EO1,Ai
s ≤ Ξ (remember that 1 is

the reward function which assigns 1 to each state);
3. given a finite set A ⊆ S and s, t ∈ A, it is decidable whether there is a finite

path of the form s=s0, . . . , sn=t where si 6∈ A for all 0 < i < n (i.e., whether
s can reach t without visiting any state of A in the middle).

As we shall see, these conditions are satisfied by, e.g., Markov chains generated
by various variants of probabilistic lossy channel systems. The intuitive meaning
of these conditions is explained at appropriate places below. Note that we can
safely assume that sin , sfin ∈ A0.

For the rest of this subsection, let us assume that the conditions 1–3 are
satisfied and sin , sfin ∈ A0. First, let us deal with the case when P[sin , sfin ] < 1.



Then clearly E(M, f) = ∞. Moreover, one can easily prove that P[sin , sfin ] < 1
if and only if there is a state s ∈ A0 such that s is reachable from sin , and sfin

is not reachable from s (we use the fact that A0 is recurrent and finite). Hence,
using condition 3 we can effectively check whether P[sin , sfin ] < 1. If this is the
case, then E(M, f) = ∞.

Now let us assume that P[sin , sfin ] = 1. We show that conditions 1–3 suffice
for computing the upper approximating sequence E+

1 , E+
2 , . . . Loosely speaking,

the algorithm computes a sequence of finite-state Markov chains that “approxi-
mate” the Markov chain M , and the expected reward accumulated between sin

and sfin in these chains “approximates” E(M, f).
We start with some auxiliary definitions. Given a set A ⊆ S and two states

s, t ∈ A, we define the set Out(A, s, t) ⊆ Run(s) of runs that reach t without
visiting A in the middle:

Out(A, s, t) = {w ∈ Run(s) | ∃n : w(n) = t, w(1), . . . , w(n−1) 6∈ A}

We put Out(A, s) = {w ∈ Run(s) | w(1) 6∈ A}, and for all i ≥ 0 define a Markov
chain Mi = (Si,→i,Probi), where Si = Ai ∪ {s̄ | s ∈ Ai,P(Out(Ai, s)) > 0} and
the transitions are determined as follows:

• if s, t ∈ Ai, then s
x→i t iff s

x→ t;
• if s ∈ Ai and s̄ ∈ Si, then s

x→i s̄ iff x = P(Out(Ai, s));
• if s, t ∈ Ai and s̄ ∈ Si, then s̄

x→i t iff x = P(Out(Ai, s, t) | Out(Ai, s)) > 0.

Note that Mi has finitely many states. Now we define a reward function
fi : Si → R+ where fi(s) = f(s) and fi(s̄) = EOf,Ai

s for every s ∈ Ai. The
following (crucial) lemma states that each (Mi, fi) is a faithful abstraction of
(M, f) with respect to the expected reward accumulated between sin and sfin .

Lemma 1. For all i ≥ 0 we have that E(M, f) = E(Mi, fi).

Note that if we were able to compute (Mi, fi) for some i, we would be done,
because the expected accumulated reward can easily be computed for finite-state
Markov chains using standard methods. Unfortunately, we cannot compute the
transition probabilities of Mi precisely (the transitions of the form s̄

x→i t cause
the problem), and the definition of fi is not effective either. However, we can use
condition 2 to design a reward function f+

i that approximates fi — for every
i ≥ 0 and every s ∈ Ai we define f+

i (s) = f(s) and f+
i (s̄) = Ξ. Condition 2

implies that fi ≤ f+
i for all i ≥ 0, hence E(Mi, fi) ≤ E(Mi, f

+
i ). The following

lemma states that the difference between E(Mi, fi) and E(Mi, f
+
i ) approaches 0

as i grows.

Lemma 2. For each ε > 0 there is i ≥ 0 s.t. 0 ≤ E(Mj , f
+
j )−E(Mj , fj) ≤ ε for

every j ≥ i.

The only problem left is that we are not able to compute transition probabil-
ities in the chains Mi. This is overcome by showing that, for a given δ > 0,
one can effectively approximate the transition probabilities of Mi and compute
a finite-state Markov chain M δ

i = (Si,→i,Probδ
i ) with the transition matrix P δ

i



so that ‖Pi − P δ
i ‖∞ ≤ δ (the norm ‖ · ‖∞ of a matrix P = {pij} is defined

as ‖P‖∞ = maxi

∑
j |pij |). Then, we show that for every M δ

i there is an effec-
tively computable number cδ ∈ R+ such that |E(M δ

i , f+
i )− E(Mi, f

+
i )| ≤ cδ · δ.

Moreover, the number cδ approaches a bounded value as δ goes to zero. Here we
employ results of perturbed Markov chains theory and develop some new special
tools that suit our purposes. In this way, we obtain the following lemma:

Lemma 3. For every i ≥ 0 and every ε > 0 there is an effectively computable
δ > 0 such that |E(Mδ

i , f+
i )− E(Mi, f

+
i )| ≤ ε.

Note that since the definition of M δ
i is effective, we can compute E(M δ

i , f+
i ) by

standard methods for finite-state Markov chains.
Now we can define the upper approximating sequence E+

1 , E+
2 , . . . of E(M, f)

as follows: For each i ≥ 1 we put E+
i = E(M δi

i , f+
i )+ 1

2i+1 , where δi > 0 is the δ of
Lemma 3 computed for the considered i and ε = 1

2i+1 . Now it is easy to see that
0 ≤ E+

i −E(Mi, f
+
i ) ≤ 1

2i . By combining this observation together with Lemma 1
and Lemma 2, we obtain that limi→∞E+

i = E(M, f) and E+
i ≥ E(M,f) for all

i ≥ 1. Moreover, the approximations E+
1 , E+

2 , . . . are effectively computable.
Thus, we obtain our first theorem:

Theorem 1. For every ε > 0 there is an effectively computable number x such
that |E(M,f)− x| ≤ ε.

3.2 The average gain

Similarly as in Section 3.1, we fix a Markov chain M = (S,→,Prob), a state
sin ∈ S, and a reward function f : S → R+, such that for each s ∈ S the set
{(s, x, t) | s x→ t} is effectively denumerable.

We define a function G(M, f) : Run(sin) → R+
∞ as follows

G(M,f)(w) =
{

limn→∞
f(wn)

n if the limit exists;
⊥ otherwise.

Hence, G(M, f)(w) corresponds to the gain (i.e., “average reward per transi-
tion”), which is a standard notion in stochastic process theory (see, e.g., [20]).
As we shall see in Section 3.3, the gain can be used to compute other interesting
characteristics which reflect long-run properties of a given system.

Note that G(M, f)(w) can be undefined for some w ∈ Run(sin). As we shall
see, for Markov chains that satisfy conditions 1–3 of Section 3.1, the total prob-
ability of all such runs is zero. Since G(M,f)(w) can take infinitely many values,
a standard problem of stochastic process theory is to compute E(G(M, f)), the
expected value of G(M, f). However, one should realize that the information pro-
vided by E(G(M, f)) is relevant only in situations when a system is repeatedly
restarted and runs “sufficiently long” so that the average reward per transition
approaches its limit. In our setup, we can provide a bit more detailed informa-
tion about the runs of Run(sin), which is not reflected in the “ensemble average”



E(G(M,f)). We show that in the subclass of Markov chains that satisfy condi-
tions 1–3, the variable G(M, f) can take only finitely many values with a positive
probability, and we give an algorithm which approximates these values as well as
the associated probabilities up to an arbitrarily small ε > 0. Thus, we obtain a
“complete picture” about possible limit behaviours of runs initiated in sin . Note
that E(G(M, f)) can be effectively approximated simply by taking the weighted
sum of the finitely many admissible values of G(M, f). It is worth noting that
similar results have recently been achieved for an incomparable class of Markov
chains generated by probabilistic pushdown automata [7] by using completely
different methods.

The class of Markov chains considered in this subsection is the same as in
Section 3.1, i.e., we assume that the previously fixed chain M satisfies condi-
tions 1–3 (cf. Section 3.1). We also assume (without restrictions) that sin ∈ A0.
Since the constructions and techniques employed in this section are hard to ex-
plain at an intuitive level, we only state our main theorem and refer to [8] for
missing details.

Theorem 2. There are finitely many pairwise disjoint sets R1, . . . ,Rn ⊆
Run(sin) and numbers x1, . . . , xn ∈ R+ such that

• Prob(
⋃n

i=1Ri) = 1, and Prob(Ri) > 0 for every 1 ≤ i ≤ n;
• for every 1 ≤ i ≤ n and every w ∈ Ri we have G(M,f)(w) = xi;
• for every ε > 0 and every 1 ≤ i ≤ n, there is an effectively computable number

yi such that |xi − yi| ≤ ε;
• for every 1 ≤ i ≤ n, it is decidable whether Prob(Ri) = 1; moreover, for every

ε > 0 and every 1 ≤ i ≤ n, there is an effectively computable number ri such
that |Prob(Ri)− ri| ≤ ε.

3.3 The average ratio

The gain can be used to define some interesting characteristics of Markov chains,
like, e.g., the frequency of visits to a distinguished family of states along an
infinite run. In performance analysis, one is also interested in features that cannot
be directly specified as gains, but as limits of fractions of two reward functions.

Let us start with a simple motivating example. Let M = (S,→,Prob) be a
Markov chain, sin ∈ S an initial state, f : S → R+ a reward function, and T ⊆ S
a set of triggers. Intuitively, a trigger is a state initiating a finite “service” of a
certain request. Hence, each run with infinitely many triggers can be seen as an
infinite sequence of finite services, where each service corresponds to a finite path
between two consecutive occurrences of a trigger. What we are interested in is
the average accumulated reward per service. Formally, the average accumulated
reward per service can be defined as follows: we fix another reward function g
where g(s) returns 1 if s ∈ T ∪ {sin}, and 0 otherwise. Now we define a random
variable R : Run(sin) → R+

∞ as follows:

R(w) =

{
limn→∞

f(wn)
g(wn) if the limit exists;

⊥ otherwise.



It is easy to see that R(w) indeed corresponds to the average accumulated re-
ward per service in the run w. For the reasons which have been discussed at
the beginning of Section 3.2, we are interested not only in E(R) (the expected
average accumulated reward per service), but in a complete classification of ad-
missible values of R and their associated probabilities. Of course, this is possible
only under some additional assumptions about the chain M ; as we shall see,
conditions 1–3 are sufficient.

Now we move from the above example to a general setup. For the rest of
this section, we fix a Markov chain M = (S,→,Prob), a state sin ∈ S, and two
reward functions f, g : S → R+. In order to simplify our presentation, we assume
that g(sin) > 0. We define the average ratio Rf

g : Run(sin) → R+
∞ as follows.

Rf
g (w) =

{
limn→∞

f(wn)
g(wn) if the limit exists;

⊥ otherwise.

First we observe that the average ratio can be expressed in terms of gains.

Lemma 4. Let w ∈ Run(sin) be a run. If both G(M, f)(w) and G(M, g)(w) are
defined and finite, and if G(M,f)(w) + G(M, g)(w) > 0, then

Rf
g (w) =

G(M,f)(w)
G(M, g)(w)

Here we use the convention that c/0 = ∞ for c > 0.

For the rest of this section, we assume that the chain M satisfies conditions 1–3
of Section 3.1. First, let us consider the special case when the chain M0 is ir-
reducible. It follows from Theorem 2 that G(M, f) and G(M, g) are constant
almost everywhere and finite. Moreover, the values G(M, f) and G(M, g) can
be effectively approximated up to a given ε > 0. The case when G(M, g) = 0
requires some attention.

Lemma 5. G(M, g) = 0 iff for all s ∈ S reachable from sin we have that g(s)=0.

Now we consider the general case when M0 is not necessarily irreducible. We
obtain that the values of G(M, g) are determined by the bottom strongly con-
nected components of the underlying transition system TM0 of M0. The value
associated with a given component C is 0 iff all states s ∈ S that are reachable
from a state of C ∩ A0 satisfy g(s) = 0 iff for all runs w ∈ Run(sin) that enter
a state of C ∩ A0 there is k ≥ 0 such that for all j ≥ k we have g(w(j)) = 0.
Thus, we obtain the following generalization of Theorem 2.

Theorem 3. Let us assume that for each s ∈ A0 it is decidable whether there is
t ∈ S reachable from s such that g(t) > 0, and the same for the reward function f .
Then there are finitely many pairwise disjoint sets Zf ,Zg,Zf,g,R1, . . . ,Rn ⊆
Run(sin) and numbers x1, . . . , xn ∈ R+ such that

• Prob(
⋃n

i=1Ri ∪ Zf ∪ Zg ∪ Zf,g) = 1, and

−Rf
g (w) = xi > 0 for all w ∈ Ri and all 1 ≤ i ≤ n;



−Rf
g (w) = 0 for all w ∈ Zf ;

−Rf
g (w) = ∞ for all w ∈ Zg.

• for all w ∈ Zf,g there is k ≥ 0 such that j ≥ k implies f(w(j)) = g(w(j)) = 0.
• for every ε > 0 there are effectively computable y1, . . . , yn such that |xi−yi| ≤ ε

for 1 ≤ i ≤ n;
• the probabilities Prob(Ri) for 1 ≤ i ≤ n, Prob(Zf ), Prob(Zg), and Prob(Zf,g)

can be effectively approximated up to a given ε > 0; moreover, for each of these
probabilities, it is decidable whether the probability is equal to 1 or not.

4 Probabilistic lossy channel systems

Lossy channel systems (LCS) [2] have been proposed as a model for processes
communicating via faulty communication channels. A lossy channel system con-
sists of a finite-state control unit and a finite set of FIFO channels. A config-
uration of LCS consists of the current control state and the current contents
of the channels. A computational step from a given configuration consists of
adding/removing one message to/from a channel, and possibly changing the
control state. Moreover, during each transition, one or more messages can be
lost from the channels.

A probabilistic lossy channel system (PLCS) is a probabilistic variant of
LCS. In PLCS, transitions and message losses are chosen randomly according to
a given probability distribution. There are several models of PLCS that differ
mainly in the treatment of message losses. The model considered in [18] assumes
that each step of a system is either a message loss or a “perfect” step that
is performed consistently with transition function. There is a fixed probability
λ > 0 that the next step will be a message loss. This model is called a global-
fault model in [23]. Another variant of PLCS was considered in [5], where it is
assumed that each message can be lost independently of the other messages with
some given probability λ > 0. Then each step of a system consists of a perfect
step followed by a loss of (zero or more) messages, where each message is lost
with the probability λ, independently of the other messages. This model is also
called a local-fault model. See [23] for a deeper explanation of the above models
of PLCS.

We show that the abstract results of Section 3 are applicable both to the
global-fault and the local-fault variant of PLCS. In our discussion, we use the
following result for one-dimensional random walks: For each 0 < λ < 1 we define
a Markov chain Mλ = (N0,→,Prob) where the transitions are defined as follows.
For all n ≥ 0 we put n

1−λ→ n+1, for all n ≥ 1 we put n
λ→ n−1, and we also put

0 λ→ 0. It is easy to prove that if λ > 1
2 , then the expected number of transitions

needed to reach 0 from 1 equals 1
2λ−1 .

Let L be a PLCS, and let us assume that f is a reward function that assigns
a rational reward to configurations of L. Moreover, let us assume that f is
effectively bounded, i.e., there is an effectively computable constant ξ such that
for every configuration s we have f(s) ≤ ξ.



Let us first consider the global-fault model. We argue that if λ > 1
2 , then the

conditions 1–3 of Section 3.1 are satisfied, and hence Theorems 1, 2, and 3 apply.
For all i ≥ 0 we define the set Ai consisting of all configurations where the total
number of messages stored in the channels is bounded by i. Since at most one
message can be added into channels during a perfect step and each step is lossy
with probability λ, we obtain that the expected time to reach Ai after leaving Ai

is bounded from above by the expected number of transitions needed to reach
0 from 1 in Mλ. Hence, condition 2 is satisfied because f is effectively bounded.
Condition 3 can be proved using similar arguments as in Theorem 8 in [1].

In the local-fault model, the probability of a message loss converges to 1 as the
number of stored messages increases. In particular, there is n ∈ N such that for
each configuration where the total number of stored messages exceeds n we have
that the probability of losing at least two messages in the next step is greater
than 1

2 (since at most one message can be added to channels in a single step, the
number of messages stored in the next configuration decreases with probability
greater than 1

2 ). It is easy to see that the number n is computable from λ. Hence,
if we define Ai to be the set of all configurations where the number of stored
messages is less than or equal to n + i, we obtain that conditions 2 and 3 are
satisfied, using the same argument as for the global-fault model above. Hence,
the general results of Theorems 1, 2, and 3 apply.
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