IV054 Coding, Cryptography and Cryptographic Protocols 2019 - Exercises VII.

- 1. (2 points) Sign your UCO using the following signature scheme and verify the signature:
 - (a) the RSA signature scheme with (d, e, n) = (303703; 7, 1065023)
 - (b) the ElGamal signature scheme with (x, q, p, y) = (60221; 2, 555557, 552508) and a random component r = 12345.
- 2. (7 points) Consider the ElGamal signature scheme.
 - (a) Show that the scheme is vulnerable to existential forgery. Show that an adversary can produce a combination of message w and a correct signature (a, b), but cannot choose the value of w.
 - (b) Show that given a valid signature (a, b) of a message w, an adversary can compute signatures for messages of the form $w' = (w + \beta b)\alpha \mod (p-1)$, for an arbitrarily chosen $\beta \in \mathbb{Z}_p^*$ and $\alpha = q^\beta \mod p$.
 - (c) Show that if the signer chooses the same r to sign two messages w_1 and w_2 , the private key x can be computed.
- 3. (4 points) Consider the Ong-Schnorr-Shamir subliminal channel with n = 3431 and k = 20. Compute in detail a signature of the message w' = 122 which contains the secret subliminal message w = 108. Demonstrate that the calculated signature is valid and that the secret message can be recovered.
- 4. (4 points) Consider Chaum's blind signature scheme with the public key (n = 10033, e = 101) and the private key d = 1265. Describe in detail blinding, signing, and unblinding actions as well as verification of the obtained signature of message m = 1234 using random k = 8824.
- 5. (3 points) Use the Lamport one-time signature scheme to sign 4-bit messages with $f(y) = 17^y \mod 61$ and the following secret keys y_{ij} , $1 \le i \le 4$, j = 0, 1:

i	1	2	3	4
y_{i0}	7	37	31	47
y_{i1}	4	36	55	11

- (a) Compute the public keys z_{ij} .
- (b) Sign the message 0111 and then verify the signature.
- (c) Verify the signature (4,37,31,11) of the message 1001 using your computed public keys.
- 6. (4 points) Bob is using a single RSA scheme to both decrypt encrypted messages and create signatures (with the same set of public and private keys). You have intercepted an encrypted message c directed at Bob. Use his signature scheme to make him help with decryption of c without him being able to realize he is helping you.
- 7. (6 points) Consider the following signature scheme. Choose primes p, q such that q | p 1. Choose a generator $g \in \mathbb{Z}_p^*$ of order q. Choose a random $x \in \mathbb{Z}_q^*$ and compute $y = g^x \mod p$. The value x serves as a secret key, while p, q, g and y are public.

To sign a message m, choose a random $k \in \mathbb{Z}_q^*$ and compute $r = g^k \mod p$ and s = k - H(m||r)xmod q where $H : \{0,1\}^* \to \mathbb{Z}_q$ is a cryptographic hash function. The pair (r,s) is the signature of m.

- (a) Provide a verification procedure for the proposed scheme and prove that it is correct.
- (b) Show that a private key x can be recovered if the same k is reused.