IV054 Coding, Cryptography and Cryptographic Protocols

2019 - Exercises VII.

1. (2 points) Sign your UČO using the following signature scheme and verify the signature:
(a) the RSA signature scheme with $(d, e, n)=(303703 ; 7,1065023)$
(b) the ElGamal signature scheme with $(x, q, p, y)=(60221 ; 2,555557,552508)$ and a random component $r=12345$.
2. (7 points) Consider the ElGamal signature scheme.
(a) Show that the scheme is vulnerable to existential forgery. Show that an adversary can produce a combination of message w and a correct signature (a, b), but cannot choose the value of w.
(b) Show that given a valid signature (a, b) of a message w, an adversary can compute signatures for messages of the form $w^{\prime}=(w+\beta b) \alpha \bmod (p-1)$, for an arbitrarily chosen $\beta \in \mathbb{Z}_{p}^{*}$ and $\alpha=q^{\beta} \bmod p$.
(c) Show that if the signer chooses the same r to sign two messages w_{1} and w_{2}, the private key x can be computed.
3. (4 points) Consider the Ong-Schnorr-Shamir subliminal channel with $n=3431$ and $k=20$.

Compute in detail a signature of the message $w^{\prime}=122$ which contains the secret subliminal message $w=108$. Demonstrate that the calculated signature is valid and that the secret message can be recovered.
4. (4 points) Consider Chaum's blind signature scheme with the public key ($n=10033, e=101$) and the private key $d=1265$. Describe in detail blinding, signing, and unblinding actions as well as verification of the obtained signature of message $m=1234$ using random $k=8824$.
5. (3 points) Use the Lamport one-time signature scheme to sign 4-bit messages with $f(y)=17^{y}$ $\bmod 61$ and the following secret keys $y_{i j}, 1 \leq i \leq 4, j=0,1$:

i	1	2	3	4
$y_{i 0}$	7	37	31	47
$y_{i 1}$	4	36	55	11

(a) Compute the public keys $z_{i j}$.
(b) Sign the message 0111 and then verify the signature.
(c) Verify the signature $(4,37,31,11)$ of the message 1001 using your computed public keys.
6. (4 points) Bob is using a single RSA scheme to both decrypt encrypted messages and create signatures (with the same set of public and private keys). You have intercepted an encrypted message c directed at Bob. Use his signature scheme to make him help with decryption of c without him being able to realize he is helping you.
7. (6 points) Consider the following signature scheme. Choose primes p, q such that $q \mid p-1$. Choose a generator $g \in \mathbb{Z}_{p}^{*}$ of order q. Choose a random $x \in \mathbb{Z}_{q}^{*}$ and compute $y=g^{x} \bmod p$. The value x serves as a secret key, while p, q, g and y are public.
To sign a message m, choose a random $k \in \mathbb{Z}_{q}^{*}$ and compute $r=g^{k} \bmod p$ and $s=k-H(m \| r) x$ $\bmod q$ where $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}$ is a cryptographic hash function. The pair (r, s) is the signature of m.
(a) Provide a verification procedure for the proposed scheme and prove that it is correct.
(b) Show that a private key x can be recovered if the same k is reused.

