IV054 Coding, Cryptography and Cryptographic Protocols

2019 - Exercises IV.

1. (4 points) Decrypt the following cryptotexts:
(a) 726576703279703265328079737884327383328979858283
(b) me e emm memm mmm eme mem
(c) ATOM RUIN
(d) 01110011111001010100010001010001111101110010110010
(e) 9711717123134773437
(f) IBBIKS INBMZ LQVVMZ
(g) PRMT RM ZERTMLM
(h) FWALOTNALHICLENKOMB
2. (4 points)
(a) Using the affine cryptosystem with parameters $a=11$ and $b=16$ encrypt the message CODING and decrypt the message MVUZRO.
(b) Using the Hill cryptosystem with

$$
M=\left[\begin{array}{ccc}
1 & 3 & 11 \\
22 & 8 & 1 \\
4 & 15 & 24
\end{array}\right]
$$

encrypt the message CODING and decrypt the message JTUYVC.
3. (4 points) Find the unicity distance of the following ciphers. Suppose the keys are chosen uniformly at random.
(a) the pigpen cipher;
(b) Vigenère cipher with keylength 7;
(c) transposition cipher with period 7;
(d) the one-time pad.
4. (5 points) Consider a secret key cryptosystem with message space $P=\{0,1,2,3\}$, key space $K=$ $\{0,1,2,3\}$ and encrypted message space $C=\{0,1,2,3\}$. The encryption functions are given by the following table:

$m \backslash e_{k}$	e_{0}	e_{1}	e_{2}	e_{3}
0	3	1	2	1
1	2	0	3	3
2	1	3	0	2
3	0	2	1	0

(a) Suppose K is distributed uniformly and P with a probability distribution $p_{P}(0)=p_{P}(1)=$ $\frac{1}{6}, p_{P}(2)=p_{P}(3)=\frac{1}{3}$. Calculate $p_{C}(0), p_{C}(1), p_{C}(2)$ and $p_{C}(3)$.
(b) Consider uniformly distributed keys K. Is the cryptosystem perfectly secure? If not, change one of the encryption functions e_{i} so that the cryptosystem becomes perfectly secure.
5. (4 points) To save resources used by sending the keys, the following simplified one-time pad cryptosystem was implemented. The cryptosystem uses a randomly generated key k_{1} during its first use, but to encrypt i-th plaintext $w_{i}, i>1$, instead of using new key k_{i}, the previous plaintext is used, i.e. $k_{i}=w_{i-1}, i>1$. You managed to intercept all the cryptotexts c_{i} created by this cryptosystem and also the third plaintext w_{3}. Find the first plaintext w_{1} and the original key k_{1}.

More on next page \ggg
6. (5 points) For 26-letter alphabet, determine how many affine ciphers are there that leave
(a) no characters fixed;
(b) exactly one character fixed;
(c) at least two characters fixed.
7. (4 points) Break the following cryptotext produced by the Vigenère cipher. Find the key length, the key and decipher the cryptotext. Explain your reasoning.
GBLZWW IVHUBS SHSXUO MKDMKO VQCYSF EJDZDR ISSGPY YSJLLH OCSHJH ZOPLUW XYUSUS JKSJLU EPSQYZ OKSHVD ABYGHG KNWSEZ NDRWMC SVWBGH BLLSDB WHWKOF QYRTDO NWSJCQ LHZTIK BZKFOP JYWNHZ GULHWC UGSFDC VHXBIP PJSMWC DGCWVS BUWVWB CQBGMY QHNSYZ CXMCSV WBMLBW SAKHWO HIWXDS ICMBNK KSSNHG UVULAW NNRVSF YLBNOH WSVKHH KUSJKS JGBLQZ SHIOUD QDGWAO LJSVYQ HLYNKS NSAHBW BYFWHR YUVWGL RHWDIW VWTIXF FKFRTL RYVCUS YWMGPU UHKGCW VLRYLB LOHWWG XIIDSD YQHAXA KWKSXH OSZJDF WXNOMM XUZOJO NKOLRY ZOKCYY SJKFFS FDOUWW CNRCDK NHPSLV DUWDIR KJYNHH GDBHGG MCHHQZ ILBLSH JCMDNK OLDBHQ QZBHFA CUYSJI IORGXY DBVDIE SXYOQR AXGRGL LIRYKD BZOADY VKSCOQ OHYFRU WDCFOF NWKODV YQUWNV DPTKAH HGLLHO CRCVQA ZBHFOR YWVWBI UBGDCW KSCVUS SUUEZW GUVWJB YOSNKH WHGGBH HZOLRF FYNLHO KMQSOL OWPSLV DUWCWX FAYMLH QGUVGM PZLQAO HWZQKL RIKOXI CJRCPH GOGEOJ UIQOKO UUQZPI UOOOUN BWCMLB LRYYWY OHHFWM CSVWBW UOUUCQ USNCIT AMOOHU SJKSJS MDYAXN RQDSGE WFQUVV WOLFZA PZIOUO NKSUBS SHSXUO MKDCVG WOELBY KHBBGY ERFUBU QBQDBD HUYOOR HBIYWV ONKSKV CJVLOM WTGYNK CDNCQO EYHROD ZBDPWD CFQAZB HFLRYF FQZNDB SVSVHO SFOZSD WKCFDI WVWPLH EMOHFM GPNKSD ONWSJC VHQSEM HHZOWR AEYHHG LVYWHW BMVIUR UVSLKH GOOSFO GLKHGC MDHRAS DNHFZY QWVWIB DJWLYH BVSMJI ACYGWF DBHDGV SDZHRU ESLSWY WYOHHF WMCSVW BNKSXB YTIWXW LSKKLH AMMBPC JOVDZS XWHRTO WDIKON KSCOSZ CJNCVI KOXWCK GCWQZL YWKWOH FWHRYU ODZBDP WDMKSF MYDHXS LVHKSA KHLRYU CUUZDQ WCYHAK ZYUTWM NOMKWI RHZCCP CFCCQU ZDBHQG NYECGU
8. (Bonus, 2 points)
(a) I finished my second book. It was on the sixth day of Christmas. The manuscript was hidden on the bottom of the seventh drawer of my table. Fortunately, my friend called and said he can come over in three days. At first, I could not believe it. But my four-leg friend Hop greeted John in the door.
${ }^{(b)} \boldsymbol{\text { I }}$ な \&

