IV054 Coding, Cryptography and Cryptographic Protocols

2019 - Exercises III.

1. (4 points) Decide whether the following binary codes are cyclic codes. Explain your reasoning.
(a) $C_{1}=\{00000,11100,01110,00111,10011,11001\}$
(b) $C_{2}=C \cup(1 \ldots 1+C)$, where C is a binary cyclic code and $1 \ldots 1$ is the all $\mathbf{1}$ codeword.
2. (2 points) Let σ denote a circular right shift operation. Find all binary words w
(a) of length n such that $\sigma(w)=w$;
(b) of length 6 such that $\sigma^{2}(w)=w$;
(c) of length 6 such that $\sigma^{3}(w)=w$.
3. (5 points) For a binary code $C=\left\langle 1+x^{2}+x^{3}\right\rangle$ in R_{7}.
(a) Find the generator matrix G.
(b) Find the parity check matrix H.
(c) Using polynomials, encode the message 1010.
4. (3 points)
(a) How many binary cyclic codes of length 9 are there?
(b) How many ternary cyclic codes of length 9 are there?
(c) How many ternary cyclic codes of length 9 have dimension 7 ?
5. (5 points) A code C is called self-orthogonal, if $C \subseteq C^{\perp}$. Let $g(x)$ be a generator polynomial of a cyclic code C of length n, and $x^{n}-1=g(x) h(x)$. Show that C is self-orthogonal if and only if the reciprocal polynomial $\bar{h}(x)$ divides $g(x)$.
6. (5 points) Let C_{1} and C_{2} be cyclic codes of the same block length with generator polynomials $g_{1}(x)$ and $g_{2}(x)$, respectively. Find the generator polynomial of the smallest cyclic code C such that $C_{1} \cup C_{2} \subseteq C$.
7. (6 points) Let first-order Reed-Muller codes $R M(1, m), m \geq 1$, be defined recursively as follows.

- $R M(1,1)=\{00,01,10,11\}$
- $R M(1, m)=\{(x, x) \mid x \in R M(1, m-1)\} \cup\{(x, x+1) \mid x \in R M(1, m-1)\}$ for $m>1$.
(a) List all codewords of $R M(1,3)$ and $R M(1,4)$.
(b) Provide a recursive construction of generating matrices for $R M(1, m)$.
(c) Prove that $R M(1, m)$ is $\left[2^{m}, m+1,2^{m-1}\right]$-code whose codewords, except the all zeroes $\mathbf{0}$ and all ones 1 , have weight 2^{m-1}.

