IV054 Coding, Cryptography and Cryptographic Protocols **2019 - Exercises III.**

- 1. (4 points) Decide whether the following binary codes are cyclic codes. Explain your reasoning.
 - (a) $C_1 = \{00000, 11100, 01110, 00111, 10011, 11001\}$
 - (b) $C_2 = C \cup (1 \dots 1 + C)$, where C is a binary cyclic code and $1 \dots 1$ is the all **1** codeword.
- 2. (2 points) Let σ denote a circular right shift operation. Find all binary words w
 - (a) of length n such that $\sigma(w) = w$;
 - (b) of length 6 such that $\sigma^2(w) = w$;
 - (c) of length 6 such that $\sigma^3(w) = w$.
- 3. (5 points) For a binary code $C = \langle 1 + x^2 + x^3 \rangle$ in R_7 .
 - (a) Find the generator matrix G.
 - (b) Find the parity check matrix H.
 - (c) Using polynomials, encode the message 1010.
- 4. (3 points)
 - (a) How many binary cyclic codes of length 9 are there?
 - (b) How many ternary cyclic codes of length 9 are there?
 - (c) How many ternary cyclic codes of length 9 have dimension 7?
- 5. (5 points) A code C is called *self-orthogonal*, if $C \subseteq C^{\perp}$. Let g(x) be a generator polynomial of a cyclic code C of length n, and $x^n 1 = g(x)h(x)$. Show that C is self-orthogonal if and only if the reciprocal polynomial $\bar{h}(x)$ divides g(x).
- 6. (5 points) Let C_1 and C_2 be cyclic codes of the same block length with generator polynomials $g_1(x)$ and $g_2(x)$, respectively. Find the generator polynomial of the smallest cyclic code C such that $C_1 \cup C_2 \subseteq C$.
- 7. (6 points) Let first-order Reed-Muller codes RM(1, m), $m \ge 1$, be defined recursively as follows.
 - $RM(1,1) = \{00,01,10,11\}$
 - $RM(1,m) = \{(x,x) \mid x \in RM(1,m-1)\} \cup \{(x,x+1) \mid x \in RM(1,m-1)\}$ for m > 1.
 - (a) List all codewords of RM(1,3) and RM(1,4).
 - (b) Provide a recursive construction of generating matrices for RM(1, m).
 - (c) Prove that RM(1,m) is $[2^m, m+1, 2^{m-1}]$ -code whose codewords, except the all zeroes **0** and all ones **1**, have weight 2^{m-1} .