2019 - Exercises II.

1. (3 points) For each of the following codes, decide whether it is a linear code.
(a) $C_{1}=\left\{w \in\{0,1\}^{4} \mid\right.$ number of 1 's is odd $\}$
(b) $C_{2}=\left\{w \in\{0,1\}^{5} \mid\right.$ number of 1 's is even $\}$
(c) $C_{3}=\{021,201,102,111,210,000,222,120\}$ over \mathbb{F}_{3}
2. (4 points) Are the codes given by the following generator matrices equivalent to Hamming codes? Prove your answer.
(a)

$$
G_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

(b)

$$
G_{2}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

3. (3 points) Prove that all Hamming codes are perfect.
4. (8 points) Consider the following parity check matrix of the linear code C.

$$
H=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(a) Find the standard generator matrix for C.
(b) What is the minimal distance of C ?
(c) Compute the syndrome decoding table for H and decode the received word 10111.
5. (4 points) A code C is called self-dual if $C=C^{\perp}$.

Decide whether the following generator matrices generate binary self-dual codes.
(a)

$$
G_{1}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(b)

$$
G_{2}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

6. (4 points) Let C_{1} and C_{2} be q-ary linear codes of the same length. Define

$$
C_{1}+C_{2}=\left\{c_{1}+c_{2} \mid c_{1} \in C_{1}, c_{2} \in C_{2}\right\}
$$

Prove that

$$
\left(C_{1}+C_{2}\right)^{\perp}=C_{1}^{\perp} \cap C_{2}^{\perp}
$$

7. (4 points) Let $B_{q}(n, d)$ be the largest number of codewords such that there is a q-ary $[n, k, d]$-code. Prove the following theorem.

$$
B_{q}(n, d) \leq q B_{q}(n-1, d)
$$

