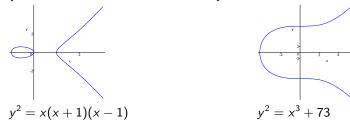
	EMPIRICAL NOTION of SECRECY of CRYPTOSYSTEMS
Part I Elliptic curves cryptography and factorization	A cryptographic system is consider as sufficiently secure until someone finds an attack against it.
	IV054 1. Elliptic curves cryptography and factorization 2/88
ELLIPTIC CURVES - PRELIMINARIES	ELLIPTIC CURVES CRYPTOGRAPHY and FACTORIZATION
Elliptic curves E are graphs of points of plane curves defined by equations $\mathcal{E}: y^2 = x^3 + ax + b,$ For example: $y^2 = x(x+1)(x-1)$ $y^2 = x^3 + 73$ Elliptic curves cryptography is based on a special operation of addition of any two points on an elliptic curve such that it is easy to make addition of any two points, but it is in general unfeasible to fany two points, but it is in general unfeasible to find the first point given the sum of two points and	<list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></list-item></list-item></list-item></list-item></list-item></list-item>

COMMENTS I.	COMMENTS II.
<list-item><list-item><list-item><table-container><table-row></table-row><table-row><table-row></table-row></table-row></table-container></list-item></list-item></list-item>	 Elliptic curves are also seen by some mathematicians as the simplest non-trivial mathematical object. Historically, computing the integral of an arc-length of an ellipse lead to the idea of elliptic functions and curves. Niels Henrik Abel (1802-1829) and K. W. T. Weierstrass (1815-1897) are considered as pioneers in the area of elliptic functions. Abel has been considered, by his contemporaries, as mathematical genius that left enough for mathematical genius to study for next 500 years.
COMMENTS III.	ELLIPTIC CURVES
It is amazing how practical is the elliptic curve cryptography that is based on very strangely looking and very theoretical concepts.	An elliptic curve E is the graph of points of the plane curve defined by the Weierstrass equation $E: y^2 = x^3 + ax + b$, (where a, b are either rational numbers or integers (and computation is then done modulo some integer n)) extended by a "point at infinity", denoted usually as ∞ (or 0) that can be regarded as being, at the same time, at the very top and very bottom of the <i>y</i> -axis. We will consider only those elliptic curves that have no multiple roots - which is equivalent to the condition $4a^3 + 27b^2 \neq 0$. In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has one of the forms shown in the following figure. The graph depends on whether the

In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has one of the forms shown in the following figure. The graph depends on whether the polynomial $x^3 + ax + b$ has three or only one real root.



EXAMPLES OF SINGULAR "ELLIPTIC CURVES"

A more precise definition of elliptic curves requires that it is the curve of points of the equation $\label{eq:alpha}$

 $E: y^2 = x^3 + ax + b$

in the case the curve is non-singular.

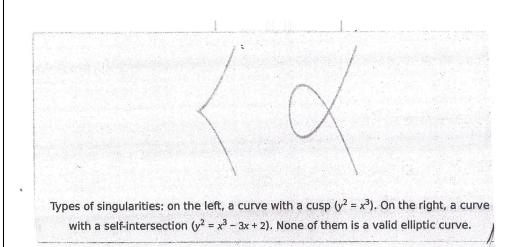
Geometrically, this means that the graph has no cusps, self-interactions, or isolated points.

Algebraically a curve is non-singular if and only if the discriminant

$$\Delta = -16(4a^3 + 27b^2) \neq 0$$

The graph of a non-singular curve has two components if its discriminant is positive, and one component if it is negative.

IV054 1. Elliptic curves cryptography and factorization



HISTORICAL REMARKS on ELLIPTIC CURVES

Elliptic curves are not ellipses and therefore it seems strange that they have such a name. Elliptic curves actually received their names from their relation to so called elliptic integrals

$$\int_{x1}^{x2} \frac{dx}{\sqrt{x^3 + ax + b}} \qquad \qquad \int_{x1}^{x2} \frac{xdx}{\sqrt{x^3 + ax + b}}$$

that arise in the computation of the arc-length of ellipses.

It may also seem puzzling why to consider curves given by equations

$$E: y^2 = x^3 + ax + b$$

and not curves given by more general equations

$$y^2 + cxy + dy = x^3 + ex^2 + ax + b$$

The reason is that if we are working with rational coefficients or mod p, where p > 3 is a prime, then such a general equation can be transformed to our special case of equation - see the Appendix. In other cases, it may be indeed necessary to consider the most general form of equation.

ELLIPTIC CURVES - GENERALITY

A general elliptic curve over Z_{p^m} where p is a prime is the set of points (x, y) satisfying so-called Weierstrass equation

IV054 1. Elliptic curves cryptography and factorization

$$y^2 + uxy + vy = x^3 + ax^2 + bx + c$$

for some constants u, v, a, b, c together with a single element **0**, called the point of infinity.

If $p \neq 2$ Weierstrass equation can be simplified by transformation

$$y
ightarrow rac{y-(ux+v)}{2}$$

to get the equation

 $y^2 = x^3 + dx^2 + ex + f$

for some constants d, e, f and if $p \neq 3$ by transformation

 $x \rightarrow x - \frac{d}{3}$ to get equation $y^2 = x^3 + fx + g$

IV054 1. Elliptic curves cryptography and factorization

11/88

9/88

IV054 1. Elliptic curves cryptography and factorization

12/88

IMPORTANCE of ELLIPTIC CURVES

importance for many other areas.

Mathematics institute.

cryptographic security.

Elliptic curves are currently an important area of mathematical research with

one of the most important mathematical achievements of the last 50 years.

Swinnerton-Dyer Conjecture), one of the Millennium problems of the Clay

Elliptic curves are currently behind practically most preferred methods of

Elliptic curves have also close relation to BSD Conjecture (Birch and

Elliptic curves are also a basis of very important factorization method.

Quite recently, in 1995, elliptic curves played an important role in proving, by Andrew Wiles, Fermat's Last Theorem (formulated in 1635), what could be considered as

ADDITION of POINTS on ELLIPTIC CURVES - GEOMETRY

Geometry

On any elliptic curve we can define addition of points in such a way that points of the corresponding curve with such an operation of addition form an Abelian group in which the point in infinite, denoted by ∞ , is plying the role of the identity group element.

If the line through two different points P_1 and P_2 of an elliptic curve E intersects E in a point Q = (x, y), then we define $P_1 + P_2 = P_3 = (x, -y)$. (This also implies that for any point P on E it holds $P + \infty = P$.) ∞ therefore indeed play a role of the null/identity element of the group.

If the line through two different points P_1 and P_2 is parallel with y-axis, then we define $P_1 + P_2 = \infty$.

In case $P_1 = P_2$, and the tangent to E in P_1 intersects E in a point Q = (x, y), then we define $P_1 + P_1 = (x, -y)$.

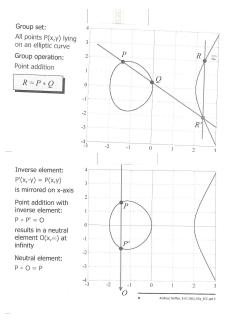
It should now be obvious how to define subtraction of two points of an elliptic curve. It is now easy to verify that the above addition of points forms Abelian group with ∞ as the identity (null) element.

IV054 1. Elliptic curves cryptography and factorization

IV054 1. Elliptic curves cryptography and factorization 13/88

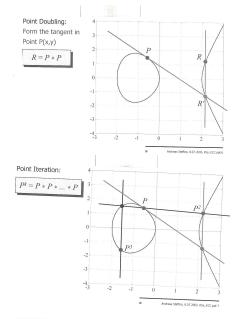
ADDITION of POINTS - EXAMPLES 1 and 2

The following pictures show some cases of points additions



ADDITION of POINTS - EXAMPLES 3 and 4

The following pictures show some cases of double and triple points additions



IV054 1. Elliptic curves cryptography and factorization

15/88

additions

Formulas

Addition of points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ of an elliptic curve $E: y^2 = x^3 + ax + b$ can be easily computed using the following formulas: $P_1 + P_2 = P_3 = (x_3, y_3)$

where

and

$$\lambda = \begin{cases} \frac{(y_2 - y_1)}{(x_2 - x_1)} & \text{if } P_1 \neq P_2, \\ \frac{(3x_1^2 + a)}{(2y_1)} & \text{if } P_1 = P_2. \end{cases}$$

 $x_3 = \lambda^2 - x_1 - x_2$ $y_3 = \lambda(x_1 - x_3) - y_1$

All that holds for the case that $\lambda \neq \infty$; otherwise $P_3 = \infty$. **Example:** For curve $y^2 = x^3 + 73$ and $P_1 = (2, 9)$, $P_2 = (3, 10)$ we have $\lambda = 1$, $P_1 + P_2 = P_3 = (-4, -3)$ and $P_3 + P_3 = (72, 611)$. $- \{\lambda = -8\}$

IV054 1. Elliptic curves cryptography and factorization 17/88	IV054 1. Elliptic curves cryptography and factorization 18/88
DERIVATION of FORMULAS for ADDITION of DIFFERENT	ELLIPTIC CURVES mod n
POINTS	
If $P_1 \neq P_2$, then the line that goes through points P_1 and P_2 has the equation	The points on an elliptic curve
$y = y_1 + \lambda(x - x_1) = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1).$	$E: y^2 = x^3 + ax + b \pmod{n},$ where a and b are integers, notation $E(a, b)$ are such pairs of integers (x, y) , $ x \le n$

To get the x-coordinate of the third, intersection, point, of the curve $y^2 = x^3 + ax + b$ we have to find the third root of the equation:

 $P + P + \theta = \theta$

$$y^{2} = (y_{1} + \lambda(x - x_{1}))^{2} = x^{3} + ax + b$$

that can be rewritten in the form

$$x^{3} - \lambda^{2}x^{2} + (a - 2\lambda(y_{1} - \lambda x_{1}))x + (b - (y_{1} - \lambda x_{1})^{2}) = 0$$

Since its two roots have coordinates x_1 and x_2 for the third, x_3 , it has to hold

 $P + Q + \theta = \theta$

$$x_3 = \lambda^2 - (x_1 + x_2) = \lambda^2 - x_1 - x_2,$$

because $-\lambda^2$ is the coefficient at x^2 and therefore $x_1 + x_2 + x_3 = -(-\lambda^2) = \lambda^2$.

$$E: y^2 = x^3 + ax + b \pmod{n},$$

where a and b are integers, notation $E_n(a, b)$ are such pairs of integers (x,y), $|x| \le n$, $|y| \leq n$, that satisfy the above equation, along with the point ∞ at infinity. **Example:** Elliptic curve $E: y^2 = x^3 + 2x + 3 \pmod{5}$ has points

$(1,1), (1,4), (2,0), (3,1), (3,4), (4,0), \infty$.

Example For elliptic curve $E: y^2 = x^3 + x + 6 \pmod{11}$ and its point P = (2,7) it holds 2P = (5, 2); 3P = (8, 3). Number of points on an elliptic curve (mod p) can be easily estimated - as shown later.

The addition of points on an elliptic curve mod n is done by the same formulas as given previously, except that instead of rational numbers c/d we deal with $cd^{-1} \mod n$

Example: For the curve $E: y^2 = x^3 + 2x + 3 \mod 5$, it holds (1,4) + (3,1) = (2,0); (1,4) + (2,0) = (?,?).

IV054 1. Elliptic curves cryptography and factorization	19/88	IV054 1. Elliptic curves cryptography and factorization	20/88

P + Q + R = 0P+Q+Q=03

The following pictures show some more complex cases of double and triple points

EXAMPLE OF AN ELLIPTIC CURVE OVER A PRIME

ADDITION of POINTS on ELLIPTIC CURVES - REPETITIONS

Points of the elliptic curve y	$y^2 = x^3 + x + 6$ over Z_{11}
--------------------------------	-----------------------------------

x	$x^3 + x + 6 \pmod{11}$	in QR_{11}	у
0	6	no	
1	8	no	
2 3	5	yes	4,7 5,6
3	3	yes	5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9 3,8
8	9	yes yes	3,8
9	7	no	
10	4	yes	2,9

The number of points of an elliptic curve over Z_p is in the interval

 $(p+1-2\sqrt{p}, p+1+2\sqrt{p})$

IV054 1. Elliptic curves cryptography and factorization

Formulas

Addition of points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ of an elliptic curve $E: y^2 = x^3 + ax + b$ can be easily computed using the following formulas:

 $P_1 + P_2 = P_3 = (x_3, y_3)$

 $x_3 = \lambda^2 - x_1 - x_2$ $y_3 = \lambda(x_1 - x_3) - y_1$

where

and

$$\lambda = \begin{cases} \frac{(y_2 - y_1)}{(x_2 - x_1)} & \text{if } P_1 \neq P_2, \\ \frac{(3x_1^2 + a)}{(2y_1)} & \text{if } P_1 = P_2. \end{cases}$$

IV054 1. Elliptic curves cryptography and factorization

All that holds for the case that $\lambda \neq \infty$; otherwise $P_3 = \infty$. Example For curve $y^2 = x^3 + 73$ and $P_1 = (2, 9)$, $P_2 = (3, 10)$ we have $\lambda = 1$, $P_1 + P_2 = P_3 = (-4, -3)$ and $P_3 + P_3 = (72, 611)$. $-\{\lambda = -8\}$

IV054 1. Elliptic curves cryptography and factorization 21/88	IV054 1. Elliptic curves cryptography and factorization 22/88
A VERY IMPORTANT OBSERVATION	POINTS on CURVE $y^2 = x^3 + x + 6 \mod 11$
In case of modular computation of coordinates of the sum of two points of an elliptic curve $E_n(a, b)$ one needs, in order to determine value of λ to compute $u^{-1} \pmod{n}$ for various u . This can be done in case $gcd(u, n) = 1$ and therefore we need to compute $gcd(u, n)$ first. Observe that if this gcd-value is between 1 and n we have a factor of n .	x y^2 $y_{1,2}$ $P(x,y)$ $P'(x,y)$ $purpta 0 6 - There are 12 points lying on the elliptic curve. 1 8 - Together with the point O at infinity, the points on the elliptic curve form a group with n=13 elements. 3 5, 6 (3, 5) (5, 9) 6 8 - 7 4 2, 9 (7, 2) 8 9 3, 8 (8, 3) 9 7, 8 9, 3, 8 (8, 3) 9 7 - - 10 4 2, 9 (10, 2) (10, 9) $

23/88

EXAMPLE	PROPERTIES of ELLIPTIC CURVES MODULO <i>p</i>
On the elliptic curve $\begin{aligned} y^2 &\equiv x^3 + x + 6 \pmod{11} \\ \text{lies the point } P &= (2,7) = (x_1,y_1) \\ \text{Indeed, } 49 &\equiv 16 \mod 11. \\ \text{To compute } 2P &= (x_3,y_3) \text{ we have} \\ &\qquad \qquad $	 Elliptic curves modulo an integer <i>p</i> have finitely many points and are finitely generated - all points can be obtained from few given points using the operation of addition. Hasse's theorem If an elliptic curve <i>E_p</i> has <i>E_p</i> points then <i>E_p</i> - <i>p</i> - 1 < 2√<i>p</i> In other words, the number of points of a curve grows roughly as the number of elements in the field. The exact number of such points is, however, rather difficult to calculate.
SECURITY of ECC	USE OF ELLIPTIC CURVES IN CRYPTOGRAPHY
 The entire security of ECC depends on our ability to compute addition of two points and on inability to compute one summon given the sum and the second summon. However, no proof of security of ECC has been published so far. 	USE OF ELLIPTIC CURVES IN CRYPTOGRAPHY

IV054 1. Elliptic curves cryptography and factorization

ELLIPTIC CURVES DISCRETE LOGARITHM

Let *E* be an elliptic curve and *A*, *B* be its points such that B = kA = (A + A + ... A + A) - k times – for some *k*. The task to find (given *A* and *B*) such a *k* is called the discrete logarithm problem for elliptic curves.

No efficient algorithm to compute discrete logarithm problem for elliptic curves is known and also no good general attacks. Elliptic curves based cryptography is based on these facts.

IV054 1. Elliptic curves cryptography and factorization

FROM DISCRETE LOGARITHM to ELLIPTIC CURVE DISCRETE LOGARITHMIC CRYPTO PROTOCOLS

There is the following general procedure for changing a discrete logarithm based cryptographic protocols P to a cryptographic protocols based on elliptic curves:

- Assign to a given message (plaintext) a point on the given elliptic curve *E*.
- Change, in the crypto graphic protocol P, modular multiplication to addition of points on E.
- Change, in the cryptographic protocol P, each exponentiation to a multiplication of points of the elliptic curve E by integers.
- To the point of the elliptic curve *E* that results from such a protocol assign a message (cryptotext).

IV054 1. Elliptic curves cryptography and factorizati

POWERS of POINTS

The following table shows powers of various points of the curve

				$y^2 = x^3 + x + 6 \mod 11$			
k	P ^k	s	Y ₀				
1	(2,4)	3	9	Given an elliptic curve			
2	(5,9)	9	8	$y^2 = x^3 + ax + b \mod p$			
3	(8,8)	8	10	and a basis point P, we can compute			
4	(10,9)	2	0	$Q = P^k$			
5	(3,5)	1	2	through k-1 iterative point additions.			
6	(7,2)	4	7	Fast algorithms for this task exist. γ			
7	(7,9)	1	2	Unfortunately most of them are patented by Certicom and others.			
8	(3,6)	2	0	patented by certicom and others.			
9	(10,2)	8	10	Question: Is it possible to compute k			
10	(8,3)	9	8	when the point Q is known?			
11	(5,2)	3	9	Answer: This is a hard problem known			
12	(2,7)	∞	-	as the Elliptic Curve Discrete Logarithm.			
where	where instead of λ an <i>s</i> is written.						

MAPPING MESSAGES into POINTS of ELLIPTIC CURVES I.

Problem and basic idea

The problem of assigning messages to points on elliptic curves is difficult because there are no polynomial-time algorithms to write down points of an arbitrary elliptic curve.

Fortunately, there is a fast randomized algorithm, to assign points of any elliptic curve to messages, that can fail with probability that can be made arbitrarily small.

Basic idea: Given an elliptic curve E(mod p), the problem is that not to every x there is an y such that (x, y) is a point of E.

Given a message (number) m we adjoin to m few bits at the end of m and adjust them until we get a number x such that $x^3 + ax + b$ is a square mod p.

IV054 1. Elliptic curves cryptography and factorization

31/88

29/88

IV054 1. Elliptic curves cryptography and factorization

32/88

	arious CR	YPTO	GRAPH	HIC SYS	STEMS		ELLIPTIC CURVES KEY EXCHANGE
The following pictures show how many bits need keys of different crypto graphic systems o achieve the same security.						graphic systems	Elliptic curve version of the Diffie-Hellman key generation protocol goes as follows:
Equivalent Cryptographic Strength							Let Alice and Bob agree on a prime p, on an elliptic curve $E_p(a, b)$ and on a point P on $E_p(a, b)$.
Symmetric5680112128192256RSA n512102420483072768015360ECC p112161224256384512Key size ratio5:16:19:112:120:130:1						15360 512	 Alice chooses an integer n_A, computes n_AP and sends it to Bob. Bob chooses an integer n_B, computes n_BP and sends it to Alice. Alice computes n_A(n_BP) and Bob computes n_B(n_AP). This way they have the same key.
IV054 1. Elliptic curves cryptography and factorization 33/88 LLIPTIC CURVES VERSION of ElGamal CRYPTOSYSTEM							IV054 1. Elliptic curves cryptography and factorization 34/88
EXAMPLE 1 Elliptic curves cryptography and factorization $q < p$, an integer X, computes $y = q^{x} \pmod{p}$, makes public p, q, y and keeps X secret. To send a message m Alice chooses a random r, computes: $a = q^{r}$; $b = my^{r}$ and sends it to Bob who decrypts by calculating $m = ba^{-x} \pmod{p}$. Elliptic curve version of ElGamal: Bob chooses a prime p, an elliptic curve E_{p} , a point P^{0} on E, an integer X, computes $Q = xP$, makes E_{p} , and Q public and keeps X secret. To send a message m ALice expresses m as a point X on E_{p} , chooses a random number r, computes A = rP; $B = X + rQand sends the pair (A, B) to Bob who decrypts by calculating X = B - xA.$							COMMENT

IV054 1. Elliptic curves cryptography and factorization

36/88

IV054 1. Elliptic curves cryptography and factorization

ELLIPTIC CURVES DIGITAL SIGNATURES	COMMENT
Elliptic curves version of ElGamal digital signatures has the following form for signing (a message) m, an integer, by Alice and to have the signature verified by Bob: Alice chooses a prime p, an elliptic curve $E_p(a, b)$, a point P on E_p and calculates the number of points n on E_p – what can be done, and we assume that $0 < m < n$. Alice then chooses a random integer a and computes Q = aP. She makes public p, E, P, Q and keeps secret a. To sign a message m Alice does the following: • Alice chooses a random integer $r, 1 \le r < n$ such that $gcd(r,n) = 1$ and computes R $= rP = (x,y)$. • Alice computes $s = r^{-1}(m - ax) \pmod{n}$. • Alice sends the signed message (m, R, s) to Bob. Bob verifies the signature as follows: • Bob declares the signature as valid if $xQ + sR = mP$ The verification procedure works because $xQ + sR = xaP + r^{-1}(m - ax)(rP) = xaP + (m - ax)P = mP$ Warning Observe that actually $rr^{-1} = 1 + tn$ for some t. For the above verification procedure to work we then have to use the fact that $nP = \infty$ and therefore $P + t \cdot \infty = P$	Federal (USA) elliptic curve digital signature standard (ECDSA) was introduced in 2005. Elliptic curve method was used to factor Fermat numbers F_{10} (308 digits) and F_{11} (610 digits).
DOMAIN PARAMETERS for ELLIPTIC CURVES	SECURITY of ELLIPTIC CURVE CRYPTOGRAPHY
 To use ECC, all parties involved have to agree on all basic elements concerning the elliptic curve <i>E</i> being used: A prime <i>p</i>. Constants <i>a</i> and <i>b</i> in the equation y² = x³ + ax + b. Generator <i>G</i> of the underlying cyclic subgroup such that its order is a prime. The order <i>n</i> of <i>G</i> is the smallest integer <i>n</i> such that nG = 0 Co-factor h = E /n should be small (h ≤ 4) and, preferably h = 1. To determine domain parameters (especially <i>n</i> and <i>h</i>) may be much time consuming task. That is why mostly so called "standard or "named' elliptic curves are used that have been published or "named' elliptic curves are used that have been published by some standardization bodies. 	 Security of ECC depends on the difficulty of solving the discrete logarithm problem over elliptic curves. Two general methods of solving such discrete logarithm problems are known. The square root method and Silver-Pohling-Hellman (SPH) method. SPH method factors the order of a curve into small primes and solves the discrete logarithm problem as a combination of discrete logarithms for small numbers. Computation time of the square root method is proportional to O(√eⁿ) where n is the order of the based element of the curve.

KEY SIZE

BREAKING ECC

- All known algorithms to solve elliptic curves discrete logarithm problem need at least $\theta(\sqrt{n})$ steps, where *n* is the order of the group.
- This implies that the size of the underlying field (number of points on the chosen elliptic curve) should be roughly twice the security parameter.
- For example, for 128-bit security one needs a curve over \underline{F}_q , where $q \approx 2^{256}$.
- This can be contrasted with RSA cryptography that requires 3072-bit public and private keys to keep the same level of security.

- The hardest ECC scheme (publicly) broken to date had a 112-bit key for the prime field case and a 109-bit key for the binary field case.
- The prime field case was broken in July 2009 using 200 PlayStation 3 game consoles and could be finished in 3.5 months.
- The binary field case was broken in April 2004 using 2600 computers for 17 months.

IV054 1. Elliptic curves cryptography and factorization 41/88	IV054 1. Elliptic curves cryptography and factorization 42/88
GOOD ELLIPTIC CURVES	INTEGER FACTORIZATION
 NIST recommended 5 elliptic curves for prime fields, one for prime sizes 192, 224, 256, 384 and 521 bits. NIST also recommended five elliptic curves for binary fields F_{2^m} one for <i>m</i> equal 163, 233, 283, 409 and 57 	INTEGER FACTORIZATION
IV054 1. Elliptic curves cryptography and factorization 43/88	IV054 1. Elliptic curves cryptography and factorization 44/88

INTEGER FACTORIZATION - PROBLEM I

INTEGER FACTORIZATION - PROBLEM II

Two very basic questions concerning integers are of large theoretical and also practical cryptographical importance.

- **C**an a given integer *n* be factorized? (Or, is *n* prime?)
- If *n* can be factorized, find its factors.

Till around 1977 no polynomial algorithm was know to determine primality of integers. In spite of the fact that this problem bothered mathematicians since antique ancient times.

In 1977 several very simple and fast randomized algorithms for primality testing were discovered - one of them is on the next slide. One of them - Rabin-Miller algorithm - has already been discussed.

So called Fundamental theorem of arithmetic, known since Euclid, claims that factorization of an integer n into a power of primes

$$n=\prod_{i=1}^k p_i^{e_i}$$

is unique when primes p_i are ordered. However, theorem provides no clue how to find such a factorization and till now no classical polynomial factorization algorithm is know.

In 2002 a deterministic, so called ASK, polynomial time algorithm for primality testing, with complexity $O(n^{12})$ were discovered by three scientists from IIT Kanpur.

For factorization no polynomial deterministic algorithm is known and development of methods that would allow to factorized large integers is one of mega challenges for the development of computing algorithms and technology.

Largest recent success was factorization of so called RSA-768 number that has 232 digits (and 768 bits). Factorization took 2 years using several hundred of fast computers all over the world (using highly optimized implementation of the general field sieve method). On a single computer it would take 2000 years.

There is a lot of heuristics to factorized integers - some are very simple, other sophisticated. A method based on elliptic curves presented later, is one of them.

Factorization could be done in polynomial time using Shor's algorithm and a powerful quantum computer, as discussed later.

IV054 1. Elliptic curves cryptography and factorization 45/88	IV054 1. Elliptic curves cryptography and factorization 46/88
RABIN-MILLER'S PRIME RECOGNITION III.	Fermat numbers FACTORIZATION
Rabin-Miller's Monte Carlo prime recognition algorithm is based on the following result from the number theory. Lemma Let $n \in N$. Denote, for $1 \le x \le n$, by $C(x)$ the condition: Either $x^{n-1} \ne 1 \pmod{n}$, or there is an $m = \frac{n-1}{2^i}$ for some i, such that $gcd(n, x^m - 1) \ne 1$ If $C(x)$ holds for some $1 \le x \le n$, then n is not a prime. If n is not a prime, then $C(x)$ holds for at least half of x between 1 and n . Algorithm: Choose randomly integers x_1, x_2, \dots, x_m such that $1 \le x_i \le n$. For each x_i determine whether $C(x_i)$ holds. Claim: If $C(x_i)$ holds for some i , then n is not a prime for sure. Otherwise n is declared to be prime. Probability that this is not the case is 2^{-m} .	Factorization of so-called Fermat numbers $2^{2^i} + 1$ is a good example to illustrate progress that has been made in the area of factorization. Pierre de Fermat (1601-65) expected that all following numbers are primes: $F_i = 2^{2^i} + 1$ $i \ge 1$ This is indeed true for $i = 0, \dots, 4$. $F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257, F_4 = 65537$. 1732 L. Euler found that $F_5 = 4294967297 = 641 \cdot 6700417$ 1880 Landry+LeLasser found that $F_6 = 18446744073709551617 = 274177 \cdot 67280421310721$ 1970 Morrison+Brillhart found factorization for $F_7 = (39 digits)$ $F_7 = 340282366920938463463374607431768211457 = 5704689200685129054721 \cdot 59649589127497217$ 1980 Brent+Pollard found factorization for F_8 1990 A. K. Lenstra+ found factorization for F_9 (155 digits). Currently, also factorizations of F_{10} (308 digits) and F_{11} (610 digits) are known.
IV054 1. Elliptic curves cryptography and factorization 47/88	IV054 1. Elliptic curves cryptography and factorization 48/88

FACTORIZATION BASICS	BASIC FACTORIZATION METHODS.
 Not all numbers of a given length are equally hard to factor. The hardest instances are semi-primes - products of two primes of similar length. Concerning complexity classes it holds. Function version of the factorization problem is known to be in FNP and it is not known to be in FP. Decision version of the factorization problem: Does an integer <i>n</i> has a factor smaller than d? is known to be in NP and not known to be in P. Moreover it is known to be both in NP and co-NP as well both in UP and co-UP. The fastest known factorization algorithm has time 	<section-header><text><text></text></text></section-header>
TRIAL DIVISION	EULER's FACTORIZATION
Algorithm Consider the list of all integers and an integer <i>n</i> to factorize. Divide <i>n</i> with all primes, 2, 3, 5, 7, 11, 13,, up to \sqrt{n} or until you find a factor. If you do not find it <i>n</i> is prime, Each time you divide n by a prime delete from the the list of considered integers all multiples of that prime. Time complexity: $e^{\frac{1}{2}\ln n} = L(1, \frac{1}{2})$ Notation $L(\varepsilon, c)$ is used to denote complexity $O(e^{(c+o(1))(\ln n)^{\varepsilon}(\ln \ln n)^{1-\varepsilon}})$	The idea is to factorize an integer <i>n</i> by writing it at first as two different sums of two different integer squares. Famous example of Euler, $n = a^{2} + b^{2} = c^{2} + d^{2} 1000009 = 1000^{2} + 3^{2} = 972^{2} + 235^{2}$. Denote then k = gcd(a - c, d - b) h = gcd(a + c, d + b) $m = gcd(a + c, d - b) l = gcd(a - c, d + b)$ In such a case either both <i>k</i> and <i>h</i> are even or both <i>m</i> and <i>l</i> are even. In the first case $n = ((\frac{k}{2})^{2} + (\frac{h}{2})^{2})(l^{2} + m^{2})$ Unfortunately, disadvantage of Euler's factorization method is that it cannot be applied to factor an integer having a prime factor of the form $4k + 3$.

IV054 1. Elliptic curves cryptography and factorization

52/88

IV054 1. Elliptic curves cryptography and factorization

If n = pq, $p < \sqrt{n}$, then $n = \left(\frac{q+p}{2}\right)^2 - \left(\frac{q-p}{2}\right)^2 = a^2 - b^2$

Therefore, in order to find a factor of n, we need only to investigate the values

$$x = a^2 - n$$

for $a = \left\lceil \sqrt{n} \right\rceil + 1$, $\left\lceil \sqrt{n} \right\rceil + 2, \dots, \frac{(n-1)^2}{2}$

IV054 1. Elliptic curves cryptography and factorization

until a perfect square for x is found.

To find a factor of a given integer n do the following

- Original idea: Generate, in a simple and clever way, a pseudorandom sequence of integers x₀, x₁, x₂ and compute, for i = 1, 2, ... gcd(x_i, n) until a factor of n is found.
- Huge-computer-networks-era idea: Generate, in a simple and clever way, huge number of well related pseudorandom sequences x₀, x₁, ... and make a huge number of computers (all over the world) to compute, each for a portion of such sequences, gcd(x_i, n) until one of them finds a factor of n.

IV054 1. Elliptic curves cryptography and factorization

56/88

IV054 1. Elliptic curves cryptography and factorization 53/88	IV054 1. Elliptic curves cryptography and factorization 54/88
Pollard ρ -FACTORIZATION - basic idea	ρ-ALGORITHM - EXAMPLE
To factorize an integer <i>n</i> : 1. Randomly choose $x_0 \in \{1, 2,, n\}$. Compute $x_i = x_{i-1}^2 + x_{i-1} + 1 \pmod{n}$, for $i = 1, 2,$ 2. Two versions: Version 1: Compute $gcd(x_i - x_j, n)$ for $i = 1, 2,$ and $j = 1, 2,, i - 1$ until a factor of <i>n</i> is found. Version 2: Compute $gcd(x_i - x_{2i}, n)$ for $i = 1, 2,$ until a factor is found. Time complexity: $L(1, \frac{1}{4})$. Note: Some other polynomial than $x_{i-1}^2 + x_{i-1} + 1$ can be used. The second method was used to factor 8-th Fermat number Fa with 78 digits	$f(x) = x^{2} + x + 1$ $n = 18923; x = y = x_{0} = 2347$ $x \leftarrow f(x) \mod n; y \leftarrow f(f(y)) \mod n$ $gcd(x - y, n) = ?$ $x = 4164 y = 9593 gcd(x - y, n) = 1$ $x = 9593 y = 2063 gcd = 1$ $x = 12694 y = 14985 gcd = 1$ $x = 2063 y = 14862 gcd = 1$ $x = 358 y = 3231 gcd = 1$ $x = 14985 y = 3772 gcd = 1$ $x = 14985 y = 3772 gcd = 1$ $x = 5970 y = 16748 gcd = 1$ $x = 14862 y = 3586 gcd = 1$ $x = 5728 y = 16158 gcd = 149$
The second method was used to factor 8-th Fermat number F_8 with 78 digits.	

Pollard $p-1$ ALGORITHM - FIRST VERSION	JUSTIFICATION of FIRST Pollard's $p-1$ ALGORITHM
AlgorithmTo find a prime factor p .1. Fix an integer B .2. Compute $m = \prod_{\{q \mid q \text{ is a prime} \leq B\}} q^{\log n}$ 3. Compute $gcd(a^m - 1, n)$ for a random a .Algorithm was invented J. Pollard in 1987 and has time complexity $O(B(\log n)^p)$. It works well if both $p \mid n$ and $p - 1$ have only small prime factors.	Let a bound B be chosen and let $p n$ and $p-1$ has no factor greater than B. This implies that $(p-1) m$, where $m = \prod_{\{q \mid q \text{ is a prime} \leq B\}} q^{\log B}$ By Fermat's Little Theorem, this implies that $p (a^m - 1)$ for any integer a and therefore by computing $gcd(a^m - 1, n)$ (for some a) some factor p of n can be obtained.
IV054 1. Elliptic curves cryptography and factorization 57/88	IV054 1. Elliptic curves cryptography and factorization 58/88
FACTORING with ELLIPTIC CURVES	A BRIEF VERSION of THE BASIC ALGORITHM
FACTORING with ELLIPTIC CURVES Basis idea: To factorize an integer n choose an elliptic curve E_n , a point P on E and compute, modulo n, either iP for $i = 2, 3, 4,$ or $2^{i}P$ for $j = 1, 2,$	A BRIEF VERSION of THE BASIC ALGORITHM 1. Fix a <i>B</i> - to be a factor base (of all primes smaller than <i>B</i>).
Basis idea: To factorize an integer n choose an elliptic curve E_n , a point P on E and	1. Fix a <i>B</i> - to be a factor base (of all primes smaller than
Basis idea: To factorize an integer n choose an elliptic curve E_n , a point P on E and compute, modulo n, either iP for $i = 2, 3, 4,$ or $2^{i}P$ for $j = 1, 2,$ The point is that in such calculations one needs to compute $gcd(k,n)$ for various k. If one of these values is > 1 a factor of n is found. Factoring of large integers: The above idea can be easily parallelised and converted to using an enormous number of computers to factor a single very large n. Indeed, each computer gets some number of elliptic curves and some points on them and multiplies these points by some integers according to the rule for addition of points. If one of computers encounters, during such a computation, a need to compute	1. Fix a <i>B</i> - to be a factor base (of all primes smaller than <i>B</i>). 2. Compute $m = \prod_{\{q \mid q \text{ is a prime} \leq B\}} q^{\log B}.$ 3. Choose random <i>a</i> , <i>b</i> such that $a^3 - 27b^2 \neq 0$ (

IMPORTANT OBSERVATIONS (1)

Example: For the elliptic curve $E: y^{2} = x^{3} + x - 1 \pmod{35}$ and its point $P = (1, 1)$ we have 2P = (2, 32); 4P = (25, 12); 8P = (6, 9) and at the attempt to compute 9P one needs to compute gcd(15, 35) = 5 and factorization is done. It remains to be explored how efficient this method is and when it is more efficient than other methods.	 If n = pq for primes p, q, then a curves E_p and E_q. It follows from the Lagrange the there is an k < n such that kP In case of an elliptic curve E_p for that mP = ∞ for some point P Hence N_pP = ∞. If N is a product of small primes small b. Therefore, b!P = ∞. The number with only small fact smaller than an b, then it is call It can be shown that the density of s random elliptic curve E_n then it is a 	eorem th $= \infty$. or some p divides s, then b tors is ca led b-smo smooth in reasonab	at for any prime <i>p</i> , the numl ! will be alled smo poth.	y elliptic control the smalles ber N_p of p a multiple both and if a so large t e that <i>n</i> is	urve <i>E_n</i> and st positive in points on the of N for a r all prime fac that if we cho	its point P teger m such e curve E_p . easonable ctors are
PRACTICALITY of FACTORING USING ECC I	PRACTICALITY of FACTO	· · ·			1	02/00
Let us continue to discuss the following key problem for factorization using elliptic curves: Problem: How to choose an integer k such that for a given point P we should try to compute points iP or $2^i P$ for all multiples of P smaller than kP? Idea: If one searches for m-digits factors, one chooses k in such a way that k is a multiple	Digits of to-be-factors B	6	9	12	18	24
of as many as possible of those m-digit numbers which do not have too large prime factors. In such a case one has a good chance that k is a multiple of the number of elements of the group of points of the elliptic curve modulo n. Method 1: One chooses an integer B and takes as k the product of all maximal powers of primes smaller than B. Example: In order to find a 6-digit factor one chooses $B=147$ and $k = 2^7 \cdot 3^4 \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot \ldots \cdot 139$. The following table shows B and the number of elliptic curves one has to test:	Number of curves Computation time by th on the size of factors.	10	682 24	2462 55 Irves m	23462 231 ethod de	162730 833 epends

ELLIPTIC CURVES FACTORIZATION: FAQ	FACTORIZATION on QUANTUM COMPUTERS
 How to choose (randomly) an elliptic curve E and point P on E? An easy way is first choose a point P(x, y) and an a and then compute b = y² - x³ - ax to get t curve E : y² = x³ + ax + b. What happens at the factorization using elliptic curve method, if for a chosen curve E_n the corresponding cubic polynomial x³ + ax + b has multiple roots (that is if 4a³ + 27b² = 0)? No problem, method still works. What kind of elliptic curves are really used in cryptography? Elliptic curves over fields GF(2ⁿ) for n > 150. Dealing with such elliptic curves requires, however, slightly different rules. History of ECC? The idea came from Neal Koblitz and Victor S. Miller in 1985. Best known algorithm is due to Lenstra. How secure is ECC? No mathematical proof of security is know. How about patents concerning ECC? There are patents in force covering certain aspects of ECC technology. 	factorize integers.
IV054 1. Elliptic curves cryptography and factorization 65/88	IV054 1. Elliptic curves cryptography and factorization 66/88
REDUCTIONS	FIRST REDUCTION
 Shor's polynomial time quantum factorization algorithm is based on an understanding that factorization problem car be reduced first on the problem of solving a simple modular quadratic equation; second on the problem of finding periods of functions f(x) = a^x mod n. 	Lemma If there is a polynomial time deterministic (randomized) [quantum] algorithm to find a nontrivial solution of the modular quadratic equations

SECOND REDUCTION	EXAMPLE
The second key concept is that of the period of functions $f_{n,x}(k) = x^k \mod n.$	Let $n = 15$. Select $a < 15$ such that $gcd(a, 15) = 1$. {The set of such a is {2, 4, 7, 8, 11, 13, 14}}
Period is the smallest integer r such that	Choose $a = 11$. Values of 11^{\times} mod 15 are then
$f_{n,x}(k+r)=f_{n,x}(k)$	11, 1, 11, 1, 11, 1
for any k , i.e. the smallest r such that	which gives $r = 2$.
$x' \equiv 1 \pmod{n}.$	Hence $a^{r/2} = 11 \pmod{15}$. Therefore
AN ALGORITHM TO SOLVE EQUATION $x^2 \equiv 1 \pmod{n}$.	$gcd(15, 12) = 3, \qquad gcd(15, 10) = 5$
$\square Choose randomly 1 < a < n.$	For $a = 14$ we get again $r = 2$, but in this case
Compute $gcd(a, n)$. If $gcd(a, n) \neq 1$ we have a factor. Find period r of the function $a^k \mod n$.	$14^{2/2}\equiv -1\pmod{15}$
If r is odd or $a^{r/2} \equiv \pm 1 \pmod{n}$, then go to step 1; otherwise stop.	and the following algorithm fails.
If this algorithm stops, then $a^{r/2}$ is a non-trivial solution of the equation $x^2 \equiv 1 \pmod{n}$.	 Choose randomly 1 < a < n. Compute gcd(a, n). If gcd(a, n) ≠ 1 we have a factor. Find period r of the function a^k mod n. If r is odd or a^{r/2} ≡ ±1 (mod n),then go to step 1; otherwise stop.
IV054 1. Elliptic curves cryptography and factorization 69/88	IV054 1. Elliptic curves cryptography and factorization 70/88
EFFICIENCY of REDUCTION	A GENERAL SCHEME for Shor's ALGORITHM
EFFICIENCY of REDUCTION Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then $Pr\{r \text{ is even and } a^{r/2} \neq \pm 1\} \ge \frac{9}{16}.$	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $\begin{array}{c} choose \ randomly\\ a \in \{2, \dots, n-1\}\\ \hline \\ compute\\ z = gcd(a, n)\\ no \end{array}$
Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $ \begin{array}{c} choose randomly\\ a \in \{2, \dots, n-1\} \end{array} $
Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then $Pr\{r \text{ is even and } a^{r/2} \neq \pm 1\} \geq \frac{9}{16}.$	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $\begin{array}{c} choose randomly\\ a \in \{2, \dots, n-1\} \\ \hline \\ compute\\ z = gcd(a, n)\\ no \\ z = 1? \\ yes \\ \hline \\ guantum \\ subroutine \\ \hline \\ find period r\\ of function \\ a \\ mod n \\ \hline \\ \end{array}$
Lemma If $1 < a < n$ satisfying $gcd(n, a) = 1$ is selected in the above algorithm randomly and n is not a power of prime, then $Pr\{r \text{ is even and } a^{r/2} \not\equiv \pm 1\} \ge \frac{9}{16}.$ $\square Choose randomly 1 < a < n.$ $\square Compute gcd(a, n). If gcd(a, n) \neq 1 \text{ we have a factor.}$ $\square Find period r \text{ of function } a^k \mod n.$ $\square If r \text{ is odd or } a^{r/2} \equiv \pm 1 \pmod{n}, \text{ then go to step 1; otherwise stop.}$ Corollary If there is a polynomial time randomized [quantum] algorithm to compute the period of the function	The following flow diagram shows the general scheme of Shor's quantum factorization algorithm $\begin{array}{c} choose randomly\\ a \in \{2, \dots, n-1\}\\ \hline\\ compute\\ z = gcd(a, n)\\ no\\ z = 1?\\ yes\\ \hline\\ find period r\\ subroutine\\ \hline\\ r is\\ wen?\\ yes\\ \hline\end{array}$

QUADRATIC SIEVE METHOD of FACTORIZATION - BASIC IDEAS

Step 1 To factorize an *n* one finds many integers x such that $x^2 - n$ has only small factors and decomposition of $x^2 - n$ into small factors.

$$\begin{cases} xample & 83^2 - 7429 = -540 = (-1) \cdot 2^2 \cdot 3^3 \cdot 5 \\ n = & 87^2 - 7429 = 140 = 2^2 \cdot 5 \cdot 7 \\ 88^2 - 7429 = 315 = 3^2 \cdot 5 \cdot 7 \end{cases}$$
 relations

Step 2 One multiplies some of the relations such that their product is a square. For example

$$(87^2 - 7429)(88^2 - 7429) = 2^2 \cdot 3^2 \cdot 5^2 \cdot 7^2 = 210^2$$

Now, compute product modulo *n*:

 $(87^2 - 7429)(88^2 - 7429) \equiv (87 \cdot 88)^2 = 7656^2 \equiv 227^2 \mod{7429}$ and therefore $227^2 \equiv 210^2 \mod{7429}$

Hence 7429 divides $227^2 - 210^2$ and therefore 17 = 227 - 210 is a factor of 7429. **A method to choose relations to form equations**: For the i-th relation one takes a variable λ_i and forms the expression

 $\begin{array}{ll} ((-1) \cdot 2^2 \cdot 3^3 \cdot 5)^{\lambda_1} \cdot (2^2 \cdot 5 \cdot 7)^{\dot{\lambda}_2} \cdot (3^2 \cdot 5 \cdot 7)^{\lambda_3} = (-1)^{\lambda_1} \cdot 2^{2\lambda_1 + 2\lambda_2} \cdot 3^{2\lambda_1 + 2\lambda_2} \cdot 5^{\lambda_1 + \lambda_2 + \lambda_3} \cdot 7^{\lambda_2 + \lambda_3} \\ \text{If this is to form a square the} & \lambda_1 & \equiv 0 \mod 2 \\ \text{following equations have to hold} & \lambda_1 + \lambda_2 + \lambda_3 & \equiv 0 \mod 2 \\ & \lambda_2 + \lambda_3 & \equiv 0 \mod 2 \\ & \text{Therefore:} \ \lambda_1 = 0, \quad \lambda_2 = \lambda_3 = 1 \end{array}$

QUADRATIC SIEVE (QS) FACTORIZATION - SUMMARY I

IV054 1. Elliptic curves cryptography and

- Method was invented Carl Pomerance in 1981.
- It is currently second fastest factorization method known and the fastest one for factoring integers under 100 decimal digits.
- It consists of two phases: data collection and data processing.
- In data collection phase for factoring *n* a huge set of such integers *x* is found that numbers $(x + \lceil \sqrt{n} \rceil)^2 n$ have only small factors as well all these factors. This phase is easy to parallelize and can use methods called **sieving** for finding all required integers with only small factors.
- In data processing phase a system of linear congruences is formed on the basis of factorizations obtained in the data collection phase and this system is solved to reach factorization. This phase is much memory consuming for storing huge matrices and so hard to parallelise.
- The basis of sieving is the fact that if $y(x) = x^2 n$, then for any prime p it holds $y(x + kp) \equiv y(x) \pmod{p}$ and therefore solving $y(x) \equiv 0 \mod p$ for x generate a whole sequence of y which are divisible by p.
- The general running time of QS, to factor n, is

 $e^{(1+o(1))\sqrt{\lg n \lg \lg n}}$

IV054 1. Elliptic curves cryptography and factorization

 \blacksquare The current record of QS is a 135-digit co-factor of $2^{803}-2^{402}-1.$

QUADRATIC SIEVE FACTORIZATION - SKETCH of METHODS

Problem How to find which relations to choose? Using the algorithm called Quadratic sieve method.

Step 1 One chooses a set of primes that can be factors – a so-called factor basis.

One chooses an m such that $m^2 - n$ is small and considers numbers $(m + u)^2 - n$ for $-k \le u \le k$ for small k.

One then tries to factor all $(m + u)^2 - n$ with primes from the factor basis, from the smallest to the largest - see table for n=7429 and m=86.

ſ	u	-3	-2	-1	0	1	2	3
	$(m + u)^2 - n$	-540	-373	-204	-33	140	315	492
Ì	Sieve with 2	-135		-51		35		123
	Sieve with 3	-5		-17	-11		35	41
	Sieve with 5	-1				7	7	
	Sieve with 7					1	1	

In order to factor a 129-digit number from the RSA challenge they used

8 424 486 relations 569 466 equations 544 939 elements in the factor base

IV054 1. Elliptic curves cryptography and factorization

74/88

ELLIPTIC CURVES FACTORIZATION - DETAILS

Given an n such that gcd(n, 6) = 1 and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows:

Choose an integer parameter ${\bf r}$ and:

Select, randomly, an elliptic curve

$$E: y^2 = x^3 + ax + b$$

such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E.

Choose integer bounds A,B,M such that

$$M = \prod_{j=1}^{l} p_j^{a_j}$$

for some primes $p_1 < p_2 < \ldots < p_l \leq B$ and a_j , being the largest exponent such that $p_j^{a_j} \leq A$.

Set j = k = 1

73/88

75/88

3 Calculate $p_j P$.

4 Computing gcd.

If
$$p_j P \neq O \pmod{n}$$
, then set $P = p_j P$ and reset $k \leftarrow k + 1$
If $k \leq a_{p_i}$, then go to step (3).

ELLIPTIC CURVES FACTORIZATION - DETAILS II	FACTORING ALGORITHMS RUNNING TIMES
 If k > a_j, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) 	Let p denote the smallest factor of an integer n and p^* the largest prime factor of $p-1$. Pollard's Rho algorithm Pollard's $p-1$ algorithm Elliptic curve method $O(\sqrt{p})$ $O(\sqrt{p})$ $O(p^*)$
Reset $r \leftarrow r - 1$. If $r > 0$ go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as $B = e \sqrt{\frac{InF(InInF)}{2}}$	Image: Box Sector 10 and Sector 20 and Se
and in such a case the running time is $O(e^{\sqrt{2}+o(1\ln F(\ln \ln F))}\ln^2 n)$	The most efficient factorization method, for factorization of integers with more than 100 digits, is the general number field sieve method (superpolynomial but sub-exponential); The second fastest is the quadratic sieve method.
IV054 1. Elliptic curves cryptography and factorization 77/88	IV054 1. Elliptic curves cryptography and factorization 78/88
APPENDIX	HISTORICAL REMARKS on ELLIPTIC CURVES
APPENDIX	Elliptic curves are not ellipses and therefore it seems strange that they have such a name. Elliptic curves actually received their names from their relation to so called elliptic integrals $\int_{x1}^{x^2} \frac{dx}{\sqrt{x^3 + ax + b}} \qquad \qquad \int_{x1}^{x^2} \frac{xdx}{\sqrt{x^3 + ax + b}}$ that arise in the computation of the arc-length of ellipses. It may also seem puzzling why to consider curves given by equations $E: y^2 = x^3 + ax + b$ and not curves given by more general equations $y^2 + cxy + dy = x^3 + ex^2 + ax + b$ The reason is that if we are working with rational coefficients or mod p, where $p > 3$ is a prime, then such a general equation can be transformed to our special case of equation. In other cases, it may be indeed necessary to consider the most general form of equation.

ELLIPTIC CURVES - GENERALITY	HISTORY of ELLIPTIC CURVES CRYPTOGRAPHY
A general elliptic curve over Z_{p^m} where p is a prime is the set of points (x, y) satisfying so-called Weierstrass equation	
$y^2 + uxy + vy = x^3 + ax^2 + bx + c$	The use of elliptic curves in cryptography was suggested independently by Neal Koblitz and Victor S. Miller in 1985.
for some constants u, v, a, b, c together with a single element 0 , called the point of infinity.	Behind this method is the belief that the discrete logarithm of a random elliptic
If $p \neq 2$ Weierstrass equation can be simplified by transformation	 curve element with respect to publicly known base point is unfeasible. At first only elliptic curves over a prime finite field were used for ECC. Later also
$y \rightarrow \frac{y - (ux + v)}{2}$	 elliptic curves over the fields GF(2^m) started to be used. In 2005 the US NSA endorsed to use ECC (Elliptic curves cryptography) with
to get the equation	384-bit key to protect information classified as "top secret".There are patents in force covering certain aspects of ECC technology.
$y^2 = x^3 + dx^2 + ex + f$	
for some constants d, e, f and if $p \neq 3$ by transformation	 Elliptic curves have been first used for factorization by Lenstra. Elliptic survey played on important relation particular methods and the survey of the surve
$x \to x - \frac{d}{3}$	Elliptic curves played an important role in perhaps most celebrated mathematical proof of the last hundred years - in the proof of Fermat's Last Theorem - due to A. Wiles and R. Taylor.
to get equation	
$y^2 = x^3 + fx + g$	
IV054 1. Elliptic curves cryptography and factorization 81/88	IV054 1. Elliptic curves cryptography and factorization 82/88
ELLIPTIC CURVES FACTORIZATION - DETAILS	ELLIPTIC CURVES FACTORIZATION - DETAILS II
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be	ELLIPTIC CURVES FACTORIZATION - DETAILS II
	If $k > a_{p_j}$, then reset $j \leftarrow j + 1$, $k \leftarrow 1$.
 Given an n such that gcd(n, 6) = 1 and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve 	
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows: Choose an integer parameter r and:	If $k > a_{p_j}$, then reset $j \leftarrow j + 1$, $k \leftarrow 1$.
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F . One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve $E: y^2 = x^3 + ax + b$	 If k > a_{pj}, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve $E: y^2 = x^3 + ax + b$ such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E.	 If k > a_{pj}, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) Reset r ← r - 1. If r > 0 go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve $E: y^2 = x^3 + ax + b$ such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E. Choose integer bounds A,B,M such that $M = \prod_{j=1}^{l} p_j^{a_{p_j}}$ for some primes $p_1 < p_2 < \ldots < p_l \le B$ and a_{p_j} , being the largest exponent such	 If k > a_{pj}, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) Reset r ← r - 1. If r > 0 go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F . One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve $E: y^2 = x^3 + ax + b$ such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E. Choose integer bounds A,B,M such that $M = \prod_{j=1}^{l} p_j^{a_{p_j}}$	 If k > a_{pj}, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) Reset r ← r - 1. If r > 0 go to step (1); otherwise terminate with "failure".
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve $E: y^2 = x^3 + ax + b$ such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E. Choose integer bounds A,B,M such that $M = \prod_{j=1}^{l} p_j^{a_{p_j}}$ for some primes $p_1 < p_2 < \ldots < p_l \le B$ and a_{p_j} , being the largest exponent such that $p_j^{a_j} \le A$. Set $j = k = 1$ Calculate $p_j P$.	 If k > a_{pj}, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) Reset r ← r - 1. If r > 0 go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as B = e[√] (InF(InInF))/2 and in such a case running time is
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve $E: y^2 = x^3 + ax + b$ such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E. Choose integer bounds A,B,M such that $M = \prod_{j=1}^{l} p_j^{a_{p_j}}$ for some primes $p_1 < p_2 < \ldots < p_l \le B$ and a_{p_j} , being the largest exponent such that $p_j^{a_j} \le A$. Set $j = k = 1$	 If k > a_{pj}, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) Reset r ← r - 1. If r > 0 go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as B = e √ (nF(lnlnF))/2
Given an n such that $gcd(n, 6) = 1$ and let the smallest factor of n be expected to be smaller than an F. One should then proceed as follows: Choose an integer parameter r and: Select, randomly, an elliptic curve $E: y^2 = x^3 + ax + b$ such that $gcd(n, 4a^2 + 27b^2) = 1$ and a random point P on E. Choose integer bounds A,B,M such that $M = \prod_{j=1}^{l} p_j^{a_{p_j}}$ for some primes $p_1 < p_2 < \ldots < p_l \le B$ and a_{p_j} , being the largest exponent such that $p_j^{a_j} \le A$. Set $j = k = 1$ Calculate $p_j P$. Computing gcd. If $p_j P \ne O \pmod{n}$, then set $P = p_j P$ and reset $k \leftarrow k + 1$	 If k > a_{pj}, then reset j ← j + 1, k ← 1. If j ≤ l, then go to step (3); otherwise go to step (5) If p_jP ≡ O(mod n) and no factor of n was found at the computation of inverse elements, then go to step (5) Reset r ← r - 1. If r > 0 go to step (1); otherwise terminate with "failure". The "smoothness bound" B is recommended to be chosen as B = e[√] (InF(InInF))/2 and in such a case running time is

KEY SIZE	SECURITY of ELLIPTIC CURVE CRYPTOGRAPHY
 All fastest known algorithms to solve elliptic curves discrete logarithm problem need O(√n) steps. This implies that the size of the underlying field (number of points on the chosen elliptic curve) should be roughly twice the security parameter. For example, for 128-bit security one needs a curve over E_q, where q ≈ 2²⁵⁶. This can be contrasted with RSA cryptography that requires 3072 public and private keys. 	 Security of ECC depends on the difficulty of solving the discrete logarithm problem over elliptic curves. Two general methods of solving such discrete logarithm problems are known. The square root method and Silver-Pohling-Hellman (SPH) method. SPH method factors the order of a curve into small primes and solves the discrete logarithm problem as a combination of discrete logarithms for small numbers. Computation time of the square root method is proportional to O(√eⁿ) where n is the order of the based element of the curve.
BREAKING ECC	GOOD ELLIPTIC CURVES
 The hardest ECC scheme (publicly) broken to date had a 112-bit key for the prime field case and a 109-bit key for the binary field case. The prime field case was broken in July 2009 using 200 PlayStation 3 game consoles and could be finished in 3.5 months. The binary field case was broken in April 2004 using 2600 computers for 17 months. 	 NIST recommended 5 elliptic curves for prime fields, one for prime sizes 192, 224, 256, 384 and 521 bits. NIST also recommended five elliptic curves for binary fields F_{2^m} one for <i>m</i> equal 163, 233, 283, 409 and 571.
IV054 1. Elliptic curves cryptography and factorization 87/88	IV054 1. Elliptic curves cryptography and factorization 88/88