	MURPHY LAW for CRYPTOGRAPHY
Part I	If there is a single security hole in a cryptosystem, the exposure of a cryptosystem will make sure that someone will eventually find it.
Digital signatures	Even if this person is honest the discovery may ultimately leak to malicious parties.
	It is not suffcient that a cryptographic system is very secure, or even perfectly sucure - practically it is desirable that its implementations are secure enough what is vey hard to achieve.
	IV054 1. Digital signatures 2/57
CHAPTER 7: DIGITAL SIGNATURES	BASIC DEFINITION
 CHAPTER 7: DIGITAL SIGNATURES Digital signatures are one of the most important inventions/applications of modern cryptography. The problem is how can a user sign (electronically) an (electronic) message in such a way that everybody (or the intended addressee only) can verify the signature and signature should be good enough also for legal purposes. Moreover, a properly implemented digital signature should give the receiver a reason to believe that the received message was really send by the claimed sender (authentication of the message) and was not altered during the transit (integrity of the message). In many countries it is already desirable, or even necessay, to use in imporatnat communications digital signatures and they have also legal significance. 	Digital signature is a digital code (generated and authenticated by a public key encryption) which is attached to an electronically transmitted document to verify its contents and the sender's identity.

Г

BASIC IDEAS	ADDITIONAL PROPERTIES of DIGITAL SIGNATURES
BASIC IDEAS Example: Assume that each user A can use a special public-key cryptosystem (e_A, d_A) . One way to sign a message w by a user A, and to send w and its signature, so that any user can verify the signature, is to apply on w (as the signing procedure) the mapping d_A : sending message+signat.: $(w, d_A(w))$ \rightarrow signature verification: $e_A(d_A(w)) = w$? One way to sign a message w by a user A so that only the user B can verify the signature, is to apply on w (as the signing procedure) at first the mapping d_A and then, on the outcome, the mapping e_B : sending message+signat.: $(w, e_B(d_A(w))) \rightarrow$ signature verification: $e_A(d_B(e_B(d_A(w)))) = w$? A way to send a message w, and a signature of its hash, created by a user A, using a hash function h, so that anybody can verify the signature:	 In many ways and instances digital signatures provide a new layer of validation and security. Digital signatures are both very different and also much equivalent to handwritten ones in many respects. Digital signatures, when properly implemented, are also more difficult to forge than handwritten signatures. Digital signatures employ public-key cryptography.
signing the hash: $(w, d_A(h(w))) \rightarrow$ signature verification: $h(w) = e_A(d_a(h(w)))$? 1. Digital signatures 5/57	IV054 1. Digital signatures 6/57
DIGITAL SIGNATURES - OBSERVATION	DIGITAL SIGNATURES - BASIC REQUIREMENTS
Can we make digital signatures by digitizing our usual signature and attaching them to the messages (or documents) that need to be signed? No! Why? Because such signatures could be easily removed and attached to some other documents or messages.	 Basic requirements - I. Digital signatures should be such that each user should be able to verify signatures of other users, but that should give him/her no information how to sign a message on behalf of any other user. Basic requirements - II A valid digital signature should give the recipient reasons to believe that the message was created by a known sender and that it was not altered in transit. Note An important difference from a handwritten signature is that digital signature of a message is always intimately connected with the message, and for different messages is different, whereas the handwritten signature is adjoined to the message and always looks the same. Technically, a digital signature signing is performed by a signing algorithm and a digital
Key observation: Digital signatures have to depend not only on the signer, but also on the document/message that is being signed.	signature is verified by a verification algorithm. A copy of a digital (classical) signature is identical (usually distinguishable) to (from) the origin. A care has therefore to be taken that digital signatures are not misused. This chapter contains some of the main techniques for design and verification of digital signatures (as well as some possible attacks on them).

DIGITAL SIGNATURES - A PROBLEM

If only signature (but not the secrecy) of a message/document is of importance, then it suffices that Alice sends to Bob

 $(w, d_A(w))$

Caution: Signing a message w by A for B by

 $e_B(d_A(w))$

is O.K., but the symmetric solution, with encoding first:

 $c = d_A(e_B(w))$

is not good.

Indeed, an active enemy, a tamperer \mathcal{T} , can intercept the message, then can compute

 $d_T(e_A(c)) = d_T(e_B(w))$

and can send the outcome to Bob, pretending that it is from him/tamperer (without being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same can be used for digital signature.

WHY TO SIGN HASHES of MESSAGES and not MESSAGES THEMSELVES

Signing hashes of messages -example:

A way to send a message w, and a signature of its hash, created by a user A, using a hash function h, so that any one can verify the signature:

signing the hash: $(w, d_A(h(w)))$ signature verification: $h(w) = e_A(d_a(h(w)))$

There are several reasons why it is better to sign hashes of messages than messages themselves.

- For efficiency: Hashes are much shorter and so are their signatures this is a way to save resources (time,...)
- For compatibility: Messages are typically bit strings. Digital signature schemes, such as RSA, operate often on other domains. A hash function can be used to convert an arbitrary input into the proper form.
- For integrity: If hashing is not used, a message has to be often split into blocks and each block signed separately. However, the receiver may not able to find out whether all blocks have been signed and sent in the proper order.

IV054 1. Digital signatures 9/57 IV054 1. Digital signatures 10/57 A GENERAL SCHEME of DIGITAL SIGNATURE SYSTEMS -DIGITAL SIGNATURE SCHEMES I SIMPLIFIED VERSION Digital signature schemes are basic tools for authentication messages. A digital signature A digital signature system (DSS) consists of: scheme allows anyone to verify signature of any sender S without providing any information how to generate signatures of S. P - the space of possible plaintexts (messages/documents). **S** - the space of possible signatures. A **Digital Signature Scheme** (M, S, K_s , K_v) is given by: **K** - the space of possible keys. M - a set of messages to be signed For each $k \in K$ there is a signing algorithm sigk and a corresponding verification ■ S - a set of possible signatures algorithm *ver_k* such that \blacksquare K_s - a set of private keys for signing - one for each signer $sig_k: P \rightarrow S.$ • K_v - a set of **public keys for verification** - one for each signer $ver_k : P \otimes S \rightarrow \{true, false\}$ Moreover, it is required that: and • For each k from K_s , there exists a single and easy to compute signing mapping $\mathbf{ver}_k(w, s) = \begin{cases} true & \text{if } s = \operatorname{sig}_k(w);, \\ false & \text{otherwise.} \end{cases}$ $sig_k: \{0,1\}^* \times M \to S$ For each k from K_v there exists a single and easy to compute verification mapping Algorithms sig_k and ver_k should be realizable in polynomial time. *ver_k*: $M \times S \rightarrow \{true, false\}$ Verification algorithms can be publicly known; signing algorithms (actually only such that the following two conditions are satisfied: their keys) should be kept secret

IV054 1. Digital signatures	11/57	IV054 1. Digital signatures	12/57

DIGITAL SIGNATURES SCHEMES II - conditions	A COMMENT ON DIGITAL SIGNATURE SCHEMES
Correctness: For each message m from M and public key k from K_v , it should hold $ver_k(m, s) = true$ if there is an r from $\{0, 1\}^*$ such that $s = sig_l(r, m)$ for a private key I from K_s corresponding to the public key k. Security: For any w from M and k from K_v , it should be computationally unfeasible, without the knowledge of the private key corresponding to k, to find a signature s from S such that $ver_k(w, s) = true.$	Sometimes it is required that a digital signature scheme contains also a keys generation phase , It is a phase that creates uniformly and randomly a secret (signing) key (from a set of potential secret keys) and outputs this secret key and the corresponding public (verification) key.
IV054 1. Digital signatures 13/57	IV054 1. Digital signatures 14/57
ADDITIONAL PROPERTIES OF DIGITAL SIGNATURES	BREAKING DIGITAL SIGNATURE SYSTEMS
Digital signatures can also provide so-called non-repudiation. That means that the signer cannot successfully claim that he did not signed a message, while also claiming that his private key remains secret.	 An encryption system is considered as broken if one can determine (at least a part of) plaintexts from at least some cryptotexts (and at least sometimes). A digital signature system is considered as broken if one can (at least sometimes) forge (at least some) signatures. In both cases, a more ambitious goal is to find the private key.

15/57

IV054 1. Digital signatures

16/57

IV054 1. Digital signatures

ATTACKS MODELS on DIGITAL SIGNATURES	LEVELS of BREAKING of DIGITAL SIGNATURES
 Basic attack models KEY-ONLY ATTACK: The attacker is only given the public verification key. KNOWN SIGNATURES ATTACK: The attacker is given valid signatures for several messages known, but not chosen, by the attacker. CHOSEN SIGNATURES ATTACK: The attacker is given valid signatures for several messages chosen by the attacker. ADAPTIVE CHOSEN SIGNATURES ATTACKS: The attacker is given valid signatures for several messages chosen by the attacker. 	 Total break of a signature scheme: The adversary manages to recover the secret key from the public key. Universal forgery: The adversary can derive from the public key an algorithm which allows to forge the signature of any message. Selective forgery: The adversary can derive from the public key a method to forge signatures of selected messages (where selection was made a priory the knowledge of the public key). Existential forgery: The adversary is able to create from the public key a valid signature of a message m (but has no control for which m). Observe that to forge a signature scheme means to produce a new signature - it is not forgery to obtain from the signer a valid signature.
IV054 1. Digital signatures 17/57	IV054 1. Digital signatures 18/57
A DIGITAL SIGNATURE of one BIT	FROM RSA CRYPTOSYSTEM to RSA SIGNATURES
A DIGITAL SIGNATURE of one BIT Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit.	FROM RSA CRYPTOSYSTEM to RSA SIGNATURESThe idea of RSA cryptosystem is simple.Public key: modulus $n = pq$ and encryption exponent e .Secret key: decryption exponent d and primes p, q
Let us start with a very simple, but much illustrative (though non-practical), example	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit.	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e .
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme:	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message w : $c = w^e$
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function f(x) is publicly chosen.	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message $w: c = w^e$ Decryption of the cryptotext $c: w = c^d$.
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message w : $c = w^e$ Decryption of the cryptotext c : $w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items $f, (0, s_0), (1, s_1)$	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message $w: c = w^e$ Decryption of the cryptotext $c: w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute c^e ?
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items $f, (0, s_0), (1, s_1)$ are made public, where	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message $w: c = w^e$ Decryption of the cryptotext $c: w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute c^e ? Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently.
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items $f, (0, s_0), (1, s_1)$ are made public, where $s_0 = f(k_0), s_1 = f(k_1)$	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message $w: c = w^e$ Decryption of the cryptotext $c: w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute c^e ? Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently. Indeed,
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items $f, (0, s_0), (1, s_1)$ are made public, where $s_0 = f(k_0), s_1 = f(k_1)$ Signature of a bit <i>b</i> :	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message $w: c = w^e$ Decryption of the cryptotext $c: w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute c^e ? Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently. Indeed, $s = w^d$
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items f_1 , $(0, s_0)$, $(1, s_1)$ are made public, where $s_0 = f(k_0)$, $s_1 = f(k_1)$ Signature of a bit b : (b, k_b).	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message $w: c = w^e$ Decryption of the cryptotext $c: w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute c^e ? Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently. Indeed,
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items $f, (0, s_0), (1, s_1)$ are made public, where $s_0 = f(k_0), s_1 = f(k_1)$ Signature of a bit <i>b</i> : (b, k_b). Verification of such a signature	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message $w: c = w^e$ Decryption of the cryptotext $c: w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute c^e ? Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently. Indeed, $s = w^d$ should be interpreted as the signature of the message w and
Let us start with a very simple, but much illustrative (though non-practical), example how to sign a single bit. Design of the signature scheme: A one-way function $f(x)$ is publicly chosen. Two integers k_0 and k_1 are chosen and kept secret by the signer. Three items $f, (0, s_0), (1, s_1)$ are made public, where $s_0 = f(k_0), s_1 = f(k_1)$ Signature of a bit b: (b, k_b) . Verification of such a signature $s_b = f(k_b)$??	The idea of RSA cryptosystem is simple. Public key: modulus $n = pq$ and encryption exponent e . Secret key: decryption exponent d and primes p, q Encryption of a message w : $c = w^e$ Decryption of the cryptotext c : $w = c^d$. Does it has a sense to change the order of these two operations: To do first $c = w^d$ and then compute c^e ? Is this a crazy idea? No, we just ned to interpret outcomes of these operations differently. Indeed, $s = w^d$ should be interpreted as the signature of the message w

RSA SIGNATURES and some ATTACKS on them	ENCRYPTIONS versus SIGNATURES - SUMMARY
Let us have an RSA cryptosystem with encryption and decryption exponents e and d and modulus n.	
Signing of a message w:	
$\sigma = w^d \mod n$	Let each user U use a cryptosystem with encryption and decryption algorithms: e_U , d_U Let w be a message
Verification of the signature $s = \sigma$:	PUBLIC-KEY ENCRYPTIONS
$w = \sigma^e \mod n?$	Encryption: $e_U(w)$
Possible simple attacks	Decryption: $d_U(e_U(w))$
It might happen that Bob accepts a signature not produced by Alice. Indeed, let Eve, using Alice's public key, compute s = w ^e for some w and says that w is Alice's	PUBLIC-KEY SIGNATURES
signature of <i>s</i> .	Signing: $d_U(w)$ Verification of the signature: $e_U(d_U(w))$
Everybody trying to verify such a signature as Alice's signature gets $w^e = w^e$.	
Some new signatures can be produced without knowing the secret key. Indeed, is σ_1 and σ_2 are signatures for w_1 and w_2 , then $\sigma_1\sigma_2$ and σ_1^{-1} are signatures	
for w_1w_2 and w_1^{-1} .	
IV054 1. Digital signatures 21/57	IV054 1. Digital signatures 22/57
RABIN SIGNATURES	IMPORTANT FACTS
RABIN SIGNATURES A collision-resistant hash function $h : \{0,1\}^* \rightarrow \{0,1\}^k$ is used for some fixed k .	
A collision-resistant hash function $h : \{0,1\}^* \to \{0,1\}^k$ is used for some fixed k. Keys generation: The signer S chooses primes p, q of size approximately $k/2$ and	Fact 1
A collision-resistant hash function $h : \{0,1\}^* \to \{0,1\}^k$ is used for some fixed k . Keys generation: The signer S chooses primes p, q of size approximately $k/2$ and computes $n = pq$. n will be the public key	
A collision-resistant hash function $h : \{0,1\}^* \to \{0,1\}^k$ is used for some fixed k. Keys generation: The signer S chooses primes p, q of size approximately $k/2$ and computes $n = pq$.	Fact 1
 A collision-resistant hash function h: {0,1}* → {0,1}^k is used for some fixed k. Keys generation: The signer S chooses primes p, q of size approximately k/2 and computes n = pq. n will be the public key the pair (p, q) will be the secret key. Signing: To sign a message w, the signer chooses random string U and 	Fact 1 If, for integers a, b and a prime p , $a \equiv b \pmod{(p-1)}$ then for any integer x
A collision-resistant hash function $h : \{0,1\}^* \to \{0,1\}^k$ is used for some fixed k . Keys generation: The signer S chooses primes p, q of size approximately $k/2$ and computes $n = pq$. n will be the public key the pair (p, q) will be the secret key. Signing: To sign a message w , the signer chooses random string U and calculates $h(wU)$;	Fact 1 If, for integers <i>a</i> , <i>b</i> and a prime <i>p</i> , $a \equiv b \pmod{(p-1)}$ then for any integer <i>x</i> $x^a \equiv x^b \pmod{p}$
A collision-resistant hash function $h : \{0,1\}^* \to \{0,1\}^k$ is used for some fixed k . Keys generation: The signer S chooses primes p, q of size approximately $k/2$ and computes $n = pq$. n will be the public key the pair (p, q) will be the secret key. Signing: To sign a message w , the signer chooses random string U and calculates $h(wU)$; \equiv If $h(wU) \notin QR(n)$, the signer picks a new U and repeats the process; \equiv Signer solves the equation $x^2 = h(wU) \mod n$;	Fact 1 If, for integers <i>a</i> , <i>b</i> and a prime <i>p</i> , $a \equiv b \pmod{(p-1)}$ then for any integer <i>x</i> $x^a \equiv x^b \pmod{p}$ Fact 2
A collision-resistant hash function $h : \{0,1\}^* \to \{0,1\}^k$ is used for some fixed k . Keys generation: The signer S chooses primes p, q of size approximately $k/2$ and computes $n = pq$. n will be the public key the pair (p, q) will be the secret key. Signing: To sign a message w , the signer chooses random string U and calculates $h(wU)$; If $h(wU) \notin QR(n)$, the signer picks a new U and repeats the process;	Fact 1 If, for integers <i>a</i> , <i>b</i> and a prime <i>p</i> , $a \equiv b \pmod{(p-1)}$ then for any integer <i>x</i> $x^a \equiv x^b \pmod{p}$
A collision-resistant hash function $h: \{0,1\}^* \to \{0,1\}^k$ is used for some fixed k . Keys generation: The signer S chooses primes p, q of size approximately $k/2$ and computes $n = pq$. n will be the public key the pair (p, q) will be the secret key. Signing: To sign a message w , the signer chooses random string U and calculates $h(wU)$; \equiv If $h(wU) \notin QR(n)$, the signer picks a new U and repeats the process; \equiv Signer solves the equation $x^2 = h(wU) \mod n$;	Fact 1 If, for integers <i>a</i> , <i>b</i> and a prime <i>p</i> , $a \equiv b \pmod{(p-1)}$ then for any integer <i>x</i> $x^a \equiv x^b \pmod{p}$ Fact 2
 A collision-resistant hash function h: {0,1}* → {0,1}^k is used for some fixed k. Keys generation: The signer S chooses primes p, q of size approximately k/2 and computes n = pq. n will be the public key the pair (p, q) will be the secret key. Signing: ■ To sign a message w, the signer chooses random string U and calculates h(wU); ■ If h(wU) ∉ QR(n), the signer picks a new U and repeats the process; ■ Signer solves the equation x² = h(wU) mod n; ■ The pair (U, x) is the signature of w. Verification: Given a message w and a signature (U, x) the versifier V computes x² 	Fact 1 If, for integers a, b and a prime p, $a \equiv b \pmod{(p-1)}$ then for any integer x $x^a \equiv x^b \pmod{p}$ Fact 2 If a, b, n, x are integers and $gcd(x, n) = 1$, then

P	R	0	0	F

Let

 $a \equiv b \mod (p-1)$

then

$$x^a = x^{k(p-1)+b}$$

for some k, any x and therefore

$$x^a = x^b (x^{p-1})^k \equiv x^b \mod p$$

IV054 1. Digital signatures

by Fermat's little theorem.

Design of the ElGamal digital signature system: choose: prime *p*, integers $1 \le q \le x \le p$, where *q* is a primitive element of Z_p^* ;

Compute: $y = q^{x} \mod p$ key K = (p, q, x, y)public key (p, q, y) - secret key: x Signature of a message w: Let $r \in Z_{p-1}^{*}$ be randomly chosen and kept secret. sig(w, r) = (a, b),where $a = q^{r} \mod p$ and $b = (w - xa)r^{-1} \pmod{(p-1)}$. Verification: accept a signature (a,b) of w as valid if $y^{a}a^{b} = q^{w} \pmod{p}$ (Indeed, for some integer $k: y^{a}a^{b} \equiv q^{ax}q^{rb} \equiv q^{ax+w-ax+k(p-1)} \equiv q^{w} \pmod{p}$)

IV054 1. Digital signatures

28/57

IV054 1. Digital signatures 25/57	IV054 1. Digital signatures 26/57
SECURITY of ElGamal SIGNATURES	From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)
 Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature (with x - secret; p, q and y = q^x mod p - public): sig(w, r) = (a, b); where r is random and a = q^r mod p; b = (w - xa)r⁻¹ (mod p - 1). ■ First suppose Eve tries to forge signature for a new message w, without knowing x. ■ If Eve first chooses a value a and tries to find the corresponding b, it has to compute the discrete logarithm lgaq^wy^{-a}, (because a^b ≡ q^{r(w-xa)r⁻¹ ≡ q^{w-xa} ≡ q^wy^{-a}) what is infeasible.} ■ If Eve first chooses b and then tries to find a, she has to solve the equation y^aa^b ≡ q^{xa}q^{rb} ≡ q^w (mod p). It is not known whether this equation can be solved for any given b efficiently. If Eve chooses a and b and tries to determine w such that (a,b) is signature of w, then she has to compute discrete logarithm lgqy^aa^b. Hence, Eve can not sign a "random" message this way. 	 DSA is a digital signature standard, described on the next two slides, that is a modification of ElGamal digital signature scheme. It was proposed in August 1991 and adopted in December 1994. Any proposal for digital signature standard has to go through a very careful scrutiny. Why? Encryption of a message is usually done only once and therefore it usually suffices to use a cryptosystem that is secure at the time of the encryption. On the other hand, a signed message could be a contract or a will and it can happen that it will be needed to verify its signature many years after the message is signed. Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use large p, with at least 512 bits. However, with ElGamal this would lead to signatures with at least 1024 bits what is too much for such applications as smart cards.

DIGITAL SIGNATURE STANDARD I

DIGITAL SIGNATURE STANDARD II

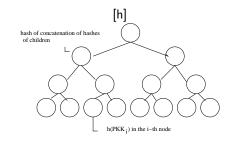
 In December 1994, on the proposal of the National Institute of Standards and Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard. Design of DSA The following global public key components are chosen: p - a random 1-bit prime, 512 ≤ l ≤ 1024, l = 64k. q - a random 160-bit prime dividing p -1. r = h^{(p-1)/q} mod p, where h is a random primitive element of Z_p, such that r > 1, r ≠ 1 (observe that r is a q-th root of 1 mod p). The following value is also made public y = r^x mod p. Key is K = (p, q, r, x, y) 	Signing of a 160-bit plaintext w a choose random $0 < k < q$ b compute $a = (r^k \mod p) \mod q$ c compute $b = k^{-1}(w + xa) \mod q$ where $kk^{-1} \equiv 1 \pmod{q}$ c compute $b = k^{-1}(w + xa) \mod q$ where $kk^{-1} \equiv 1 \pmod{q}$ signature: sig(w, k) = (a, b) Verification of signature (a, b) c compute $z = b^{-1} \mod q$ c compute $z = b^{-1} \mod q$ c compute $u_1 = wz \mod q$, $u_2 = az \mod q$ verification: $ver_K(w, a, b) = true \Leftrightarrow (r^{u_1}y^{u_2} \mod p) \mod q = a$
IV054 1. Digital signatures 29/57	IV054 1. Digital signatures 30/57
From ElGamal to DSA - II	Fiat-Shamir SIGNATURE SCHEME
In DSA a 160 bit message is signed using 320-bit signature, but computation is done modulo with 512-1024 bits. Observe that y and a are also q-roots of 1. Hence any exponents of r,y and a can be reduced modulo q without affecting the verification condition. This allowed to change ElGamal verification condition: $y^a a^b = q^w$.	Choose primes p, q, compute n = pq and choose: as a public key integers v_1, \ldots, v_k and compute, as a secret key, $s_1, \ldots, s_k, s_i = \sqrt{v_i^{-1}} \mod n$. Protocol for Alice to sign a message w: Alice first chooses (as a security parameter) an integer t, then t random integers $1 \le r_1, \ldots, r_t < n$, and computes $x_i = r_i^2 \mod n$, for $1 \le i \le t$. Alice uses a publicly known hash function h to compute $H = h(wx_1x_2\dots x_t)$ and then uses the first kt bits of H, denoted as b_{ij} , $1 \le i \le t, 1 \le j \le k$ as follows. Alice computes y_1, \ldots, y_t $y_i = r_i \prod_{j=1}^k s_j^{b_{ij}} \mod n$ Alice sends to Bob w, all b_{ij} , all y_i and also h {Bob already knows Alice's public key v_1, \ldots, v_k } Bob finally computes z_1, \ldots, z_k , where $z_i = y_i^2 \prod_{j=1}^k v_j^{b_{ij}} \mod n = r_i^2 \prod_{j=1}^k (v_j^{-1})^{b_{ij}} \prod_{j=1}^k v_j^{b_{ij}} = r_i^2 = x_i$ and verifies that the first $k \times t$ bits of $h(wx_1x_2\dots x_t)$ are the b_{ij} values that Alice has sent to him. Security of this signature scheme is 2^{-kt} . Advantage over the RSA-based signature scheme: only about 5% of modular multiplications are needed.

SAD STORY	Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME
 Alice and Bob got to jail - and, unfortunately, to different jails. Walter, the warden, allows them to communicate by network, but he will not allow their messages to be encrypted. Problem: Can Alice and Bob set up a subliminal channel, a covert communication channel between them, in full view of Walter, even though the messages themselves that they exchange contain no secret information? 	Story Alice and Bob are in different jails. Walter, the warden, allows them to communicate by network, but he will not allow messages to be encrypted. Can they set up a subliminal channel, a covert communication channel between them, in full view of Walter, even though the messages themselves contain no secret information? Yes. Alice and Bob create first the following communication scheme: They choose a large n and an integer k such that $gcd(n, k) = 1$. They calculate $h = k^{-2} \mod n = (k^{-1})^2 \mod n$. They make h, n to be public key They keep secret k as trapdoor information. Let w be secret message Alice wants to send (it has to be such that $gcd(w, n) = 1$) Denote a harmless message she uses by w' (it has to be such that $gcd(w', n) = 1$) Signing by Alice: $S_1 = \frac{1}{2} \cdot (\frac{w'}{w} + w) \mod n$ $S_2 = \frac{k}{2} \cdot (\frac{w'}{w} - w) \mod n$ Signature: (S_1, S_2) . Alice then sends to Bob (w', S_1, S_2) Signature verification method for Walter: $w' = S_1^2 - hS_2^2 \pmod{n}$ Decryption by Bob: $w = \frac{w'}{(S_1 + k^{-1}S_2)} \mod n$
LAMPORT ONE-TIME SIGNATURES	MERKLE SIGNATURES - I.
Lamport signature scheme shows how to construct a signature scheme for one use only - from any cryptographically secure one-way function. Let k be a positive integer and let $M = \{0, 1\}^k$ be the set of messages. Let f: $Y \to Z$ be a one-way function where Y is a set of "signatures". For $1 \le i \le k$, $j = 0,1$ let $y_{ij} \in Y$ be chosen randomly and $z_{ij} = f(y_{ij})$. The key K consists of 2k y's and z's. y's form the secret key, z's form the public key. Signing of a message $x = x_1 \dots x_k \in \{0, 1\}^k$ $sign(x_1 \dots x_k) = (y_{1,x_1}, \dots, y_{k,x_k}) = (a_1, \dots, a_k)$ - notation and $verif(x_1 \dots x_k, a_1, \dots, a_k) = true \Leftrightarrow f(a_i) = z_{i,xi}, 1 \le i \le k$ Eve cannot forge a signature because she is unable to invert one-way functions. Important note: Lamport signature scheme can be used safely to sign only one message. Why?	Merkle signature scheme with a parameter $m = 2^n$ allows to sign any of the given 2^n messages (and no other). The scheme is based on so-called hash trees and uses a fixed collision resistant hash function h as well as Lamport one-time signatures and its security depends on their security. The main reason why Merkle Signature Scheme is of interest, is that it is believed to be resistant to potential attacks using quantum computers.

IV054 1. Digital signatures

35/57

IV054 1. Digital signatures

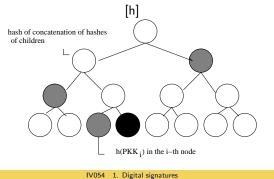

Who knows.

The possibility of having quite soon powerful quantum computers starts to be so realistic that in US decision has been made, on a very-high level of cares for national security, that the next generation of cryptographic primitives' standards (for encryptions, digital signatures, hash functions,...) should be secure even in case quantum computers would be available.

MERKLE SIGNATURES - II.

Public key generation - a single key for all signings. At first one needs to generate public keys PK_i and secret keys SK_i for all 2^n messages m_i , using Lamport signature scheme, and to compute also $h(PK_i)$ for all $i \leq 2^n$.

As the next step a complete binary tree with 2^n leaves is designed and the value $h(PK_i)$ is stored in the *i*-the leave, counting from left to right. Moreover, to each internal node the hash of the concatenation of hashes of its two children is stored. The hash assigned this way to the root is the public key of the Merkle signature scheme and the tree is called Merkle tree. See next figure for a Merkle tree.



MERKLE SIGNATURE - III.

Signature generation. To sign a message m_i , this message is at first signed using the one-use signature scheme with keys (PK_i, SK_i). This signature plus a sequence of n hashes chosen from all those nodes that are needed to compute the hash of the root, is the Merkle signature. See the next Figure where the one-use sinature inhe black node and a sequence of gray nodes form the final signature.

IV054 1. Digital signatures

The verifier knows the public key - hash assigned to the root and signature created as above. This allows him to compute all hashes assigned to the root from the leave to the root and to verify that the value assigned this way agrees with he public key - hash assigned to the root.

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest were the first to define rigorously security requirements for digital signature schemes.

IV054 1. Digital signatures

They also presented a new signature scheme, known nowadays as **GMR signature scheme**.

It was the first signature scheme that was proven as being robust against an adaptive chosen message attacks: an adversary who receives signatures of messages of his choice (where each message may be chosen in a way that depends on the signatures of previously chosen messages) cannot later forge the signature even of a single additional message.

IV054 1. Digital signatures

37/57

39/57

TIMESTAMPING	BLIND SIGNATURES
 There are various ways that a digital signature can be compromised. For example: if Eve determines the secret key of Bob, then she can forge signatures of any Bob's message she likes. If this happens, authenticity of all messages signed by Bob before Eve got the secret key is to be questioned. The key problem is that there is no way to determine when a message was signed. A timestamping protocol should provide a proof that a message was signed at a certain time. In the following pub denotes some publicly known information that could not be predicted before the day of the signature (for example, stock-market data). Timestamping by Bob of a signature on a message w, using a hash function h. Bob computes z = h(w); Bob computes z' = h(z pub); - { } denotes concatenation Bob computes y = sig(z'); Bob publishes (z, pub, y) in the next day newspaper. It is now clear that signature could not be done after the triple (z, pub, y) was published, but also not before the date pub was known. 	 The problem is whether Alice can make Bob to sign a message, say <i>m</i>, without Bob knowing <i>m</i>, therefore blindly. this would be needed, for example, in e-commerce. She can. Blind signing can be realized by a two party protocol, between the Alice and Bob, that has the following properties. In order to sign (by Bob) a message <i>m</i>, Alice creates, using a blinding procedure, from the message <i>m</i> a new message <i>m</i>* from which <i>m</i> can not be obtained without knowing a secret, and sends <i>m</i>* to Bob for signing. Bob signs the message <i>m</i>* to get a signature <i>sm</i>* (of <i>m</i>*) and sends <i>sm</i>* to Alice. The signing is to be done in such a way that Alice can afterwards compute, using an unblinding procedure, from Bob's signature <i>sm</i>* of <i>m</i>* – Bob's signature <i>sm</i> of <i>m</i>.
IV054 1. Digital signatures 41/57	IV054 1. Digital signatures 42/57
Chaum's BLIND SIGNATURE SCHEME	DIGITAL SIGNATURES with ENCRYPTION and RESENDING
 This blind signature protocol combines RSA with blinding/unblinding features. Let Bob's RSA public key be (n, e) and his private key be d. Let m be a message, 0 < m < n, PROTOCOL: Alice chooses a random 0 < k < n with gcd(n, k) = 1. Alice computes m* = mke (mod n) and sends it to Bob (this way Alice blinds the message m). Bob computed s* = (m*)^d (mod n) and sends s* to Alice (this way Bob signs the blinded message m*). Alice computes s = k⁻¹s*(mod n) to obtain Bob's signature m^d of m (This way Alice performs unblinding of m*). Verification is similar to that of the RSA signature scheme. 	 Let us consider the following communication between Alice and Bob: Alice signs the message: s_A(w). Alice encrypts the signed message: e_B(s_A(w)) and sends it to Bob. Bob decrypts the signed message: d_B(e_B(s_A(w))) = s_A(w). Bob verifies the signature and recovers the message v_A(s_A(w)) = w. Consider now the case of resending the message as a receipt Bob signs and encrypts the message and sends to Alice e_A(s_B(w)). Alice decrypts the message and verifies the signature. Assume now: v_x = e_x, s_x = d_x for all users x.

43/57

IV054 1. Digital signatures

44/57

IV054 1. Digital signatures

A SURPRISING ATTACK to the PREVIOUS SCHEME	ANOTHER MAN-IN-THE-MIDDLE ATTACK
 A SURPRISING ATTACK to the PREVIOUS SCHEME ■ Mallot intercepts e_B(s_A(w)). ■ Later Mallot sends e_B(s_A(w)) to Bob pretending it is from him (from Mallot). ■ Bob decrypts and "verifies" the message by computing e_M(s_B(e_B(s_A(w)))) = e_M(s_A(w)) - a garbage. ■ Bob goes on with the protocol and returns to Mallot the receipt: = e_M(s_B(e_M(s_A(w)))) ■ Mallot can then get w (observe that v_X = e_X and 	ANOTHER MAN-IN-THE-MIDDLE ATTACK Consider the following protocol: Alice sends the pair $(e_B(e_B(w) A), B)$ to Bob. Bob uses d_B to get A and w, and acknowledges the receipt by sending the pair $(e_A(e_A(w) B), A)$ to Alice. (Here the function e and d are assumed to operate on strings and identificators $A, B,$ are strings.) What can an active eavesdropper C do? C can learn $(e_A(e_A(w) B), A)$ and therefore $e_A(w')$ for $w' = e_A(w) B$. C can now send to Alice the pair $(e_A(e_A w') C), A)$. Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by sending the pair $(e_C(e_C(w') A), C)$ to C. C is now able to learn w' and therefore also $e_A(w)$.
$s_x = d_x$ for each user x). Indeed, Mallot can compute $e_A(s_M(e_B(s_M(e_M(s_B(e_M(s_A(w)))))))) = w.$	 C now sends to Alice the pair (e_A(e_A(w) C), A). Alice makes acknowledgment by sending the pair (e_C(e_C(w) A), C). C is now able to learn w.
IV054 1. Digital signatures 45/57	IV054 1. Digital signatures 46/57
PROBABILISTIC SIGNATURES SCHEMES - PSS	Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS - repetition
Let us have integers k, l, n such that $k + l < n$, a trapdoor permutation $f: D \to D, D \subset \{0, 1\}^n$, a pseudorandom bit generator $G: \{0, 1\}^l \to \{0, 1\}^k \times \{0, 1\}^{n - (l+k)}, G(w) = (G_1(w), G_2(w))$	repetitionMain problem of the secret-key cryptography: a need to make a secure distribution (establishment) of secret keys ahead of transmissions.Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key establishment (distribution) over public channels.
Let us have integers k, l, n such that $k + l < n$, a trapdoor permutation $f: D \rightarrow D, D \subset \{0, 1\}^n$, a pseudorandom bit generator	repetitionMain problem of the secret-key cryptography: a need to make a secure distribution (establishment) of secret keys ahead of transmissions.Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key

AUTHENTICATED Diffie-Hellman KEY EXCHANGE	THRESHOLD DIGITAL SIGNATURES
Let each user U have a signature algorithm s_U and a verification algorithm v_U . The following protocol allows Alice and Bob to establish a key K to use with an encryption function e_K and to avoid the man-in-the-middle attack. Alice and Bob choose large prime p and a generator $q \in Z_p^*$. Alice chooses a random x and Bob chooses a random y. Alice computes $q^x \mod p$, and Bob computes $q^y \mod p$. Alice sends q^x to Bob. Bob computes $K = q^{xy} \mod p$. Bob sends q^y and $e_K(s_B(q^y, q^x))$ to Alice. Alice computes $K = q^{xy} \mod p$. Alice decrypts $e_K(s_B(q^y, q^x))$ to obtain $s_B(q^y, q^x)$. Alice gets, using an authority, Bob's verification algorithm v_B . Alice sends $e_K(s_A(q^x, q^y))$ to Bob. Bob decrypts, gets v_A , and verifies Alice's signature. An enhanced version of the above protocol is known as Station-to-Station protocol.	 The idea of a (t+1, n) threshold signature scheme is to distribute the power of the signing operation to (t+1) parties out of n. A (t+1) threshold signature scheme should satisfy two conditions. Unforgeability means that even if an adversary corrupts t parties, he still cannot generate a valid signature. Robustness means that corrupted parties cannot prevent uncorrupted parties to generate signatures. Shoup (2000) presented an efficient, non-interactive, robust and unforgeable threshold RSA signature schemes. There is no proof yet whether Shoup's scheme is provably secure.
IV054 1. Digital signatures 49/57 HISTORY of DIGITAL SIGNATURES	IV054 1. Digital signatures 50/57 APPENDIX
 In 1976 Diffie and Hellman were first to describe the idea of a digital signature scheme. However, they only conjectured that such schemes may exist. In 1977 RSA was invented that could be used to produce a primitive (not secure enough) digital signatures. The first widely marketed software package to offer digital signature was Lotus Notes 1.0, based on RSA and released in 1989 ElGamal digital signatures were invented in 1984. In 1988 Goldwasser, Micali and Rivest were first to rigorously define (perfect) security of digital signature schemes. 	APPENDIX

GENERAL OBSERVATIONS - I.	GENERAL OBSERVATIONS - II.
<list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item>	DSA was adopted in US as Federal Information Processing Standard for digital signatures in 1991. Adaptation was revised in 1996, 2000, 2009 and 2013 DSA is covered by US-patent attributed to David W. Krantz (former NSA employee). Claus P. Schnor claims that his US patent covered DSA.
APPENDIX	GENERAL OBSERVATIONS
APPENDIX	 Digital signatures are often used to implement electronic signatures - this is a broader term that refers to any electronic data that carries the intend of a signature. Not all electronic signatures use digital signatures. The first broadly marketed software package to offer digital signature was Lotus Notes 1.0, released in 1989, which used RSA algorithm

SECURITY of ElGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature (with x - secret; p, q and $y = q^x \mod p$ - public):

sig(w, r) = (a, b);

where r is random and $a = q^r \mod p$; $b = (w - xa)r^{-1} \pmod{p-1}$.

- First suppose Eve tries to forge signature for a new message w, without knowing x.
 - If Eve first chooses a value **a** and tries to find the corresponding **b**, it has to compute the discrete logarithm

 $lg_a q^w y^{-a}$

(because a^b ≡ q<sup>r(w-xa)r⁻¹ ≡ q^{w-xa} ≡ q^wy^{-a}) what is unfeasible.
If Eve first chooses b and then tries to find a, she has to solve the equation
</sup>

$$q^a a^b \equiv q^{xa} q^{rb} \equiv q^w \pmod{p}.$$

It is not known whether this equation can be solved for any given **b** efficiently.

If Eve chooses a and b and tries to determine such w that (a,b) is signature of w, then she has to compute discrete logarithm

Hence, Eve can not sign a "random" message this way.

IV054 1. Digital signatures