IV054 Coding, Cryptography and Cryptographic Protocols **2018 - Exercises IX.**

- 1. A company owns a secret know-how. There are three owners, one CEO, and five managers in the company. Design a secret sharing scheme such that at least
 - three owners, or
 - two owners and the CEO, or
 - two owners and two managers, or
 - one owner, the CEO and three managers, or
 - one owner and five managers

can reveal the secret know-how. Justify your answer.

- 2. Consider the Okamoto's identification scheme with public p = 8017, q = 167, $\alpha_1 = 255$ and $\alpha_2 = 616$. Show in detail the steps of identification if Alice has chosen $a_1 = 32$, $a_2 = 87$, $k_1 = 10$, $k_2 = 70$ and Bob's challenge is r = 777. (Omit the part of the scheme related to TA's signature.)
- 3. Find an example of an orthogonal array OA(2, 4, 2).
- 4. Consider Shamir's (5, 3)-threshold scheme with p = 500009.
 - (a) Find shares of the threshold scheme with

$$\{x_i = i\}_{i=1}^{5}$$

$$a_1 = 3^{\langle \text{YOUR UČO} \rangle} \mod 101021$$

$$a_2 = 5^{\langle \text{YOUR UČO} \rangle} \mod 101021$$

$$S = \langle \text{YOUR UČO} \rangle$$

- (b) Reconstruct the secret from the following shares: (1, 155477), (2, 478688), (3, 471642).
- 5. Consider the Schnorr identification scheme with p = 311 and q = 31 | (p-1). Let $\alpha = 169$, which has order q in \mathbb{Z}_p^* . Further, let $v = \alpha^{-a} \equiv 47 \mod p$.
 - (a) Which of the following is a transcript (γ, r, y) of a correctly performed execution of the Schnorr identification scheme? (There are multiple correct transcripts).

(225, 21, 9), (225, 17, 19), (225, 19, 29), (225, 11, 23)

- (b) Use two of valid transcripts from (a) to recover the secret key a.
- 6. Can a secret sharing scheme for five participants A, B, C, D, E and an access structure generated by the authorized sets $\{A, B\}$, $\{B, C, D\}$, $\{A, D, E\}$ be implemented using only one instance of a threshold scheme? Prove your answer.
- 7. Consider the general form of orthogonal arrays:
 - A $t (n, k, \lambda)$ orthogonal array is, for $t \leq k$, a $\lambda n^t \times k$ array, whose entries are from a set of n symbols, such that in any t columns of the array every one of the possible n^t t-tuples of symbols occurs in exactly λ rows.
 - (a) Prove that any $t (n, k, \lambda)$ orthogonal array is also $t' (n, k, n^{t-t'}\lambda)$ orthogonal array for any $1 \le t' \le t$.
 - (b) Find all integers $a \ge 2$ such that there exists at least one (a 1) (a, a, 1) orthogonal array. Prove your answer.