IV054 Coding, Cryptography and Cryptographic Protocols

2018 - Exercises IX.

1. A company owns a secret know-how. There are three owners, one CEO, and five managers in the company. Design a secret sharing scheme such that at least

- three owners, or
- two owners and the CEO, or
- two owners and two managers, or
- one owner, the CEO and three managers, or
- one owner and five managers
can reveal the secret know-how. Justify your answer.

2. Consider the Okamoto's identification scheme with public $p=8017, q=167, \alpha_{1}=255$ and $\alpha_{2}=616$. Show in detail the steps of identification if Alice has chosen $a_{1}=32, a_{2}=87, k_{1}=10, k_{2}=70$ and Bob's challenge is $r=777$. (Omit the part of the scheme related to TA's signature.)
3. Find an example of an orthogonal array $\mathrm{OA}(2,4,2)$.
4. Consider Shamir's $(5,3)$-threshold scheme with $p=500009$.
(a) Find shares of the threshold scheme with

$$
\begin{array}{rlr}
\left\{x_{i}\right. & =i\}_{i=1}^{5} & \\
a_{1} & =3^{<\text {YOUR UČO> }} \quad \bmod 101021 \\
a_{2} & =5^{<\text {YOUR UČO> }} \quad \bmod 101021 \\
S & =<\text { YOUR UČO }>
\end{array}
$$

(b) Reconstruct the secret from the following shares: $(1,155477),(2,478688),(3,471642)$.
5. Consider the Schnorr identification scheme with $p=311$ and $q=31 \mid(p-1)$. Let $\alpha=169$, which has order q in \mathbb{Z}_{p}^{*}. Further, let $v=\alpha^{-a} \equiv 47 \bmod p$.
(a) Which of the following is a transcript (γ, r, y) of a correctly performed execution of the Schnorr identification scheme? (There are multiple correct transcripts).

$$
(225,21,9),(225,17,19),(225,19,29),(225,11,23)
$$

(b) Use two of valid transcripts from (a) to recover the secret key a.
6. Can a secret sharing scheme for five participants A, B, C, D, E and an access structure generated by the authorized sets $\{A, B\},\{B, C, D\},\{A, D, E\}$ be implemented using only one instance of a threshold scheme? Prove your answer.
7. Consider the general form of orthogonal arrays:

A $t-(n, k, \lambda)$ orthogonal array is, for $t \leq k$, a $\lambda n^{t} \times k$ array, whose entries are from a set of n symbols, such that in any t columns of the array every one of the possible $n^{t} t$-tuples of symbols occurs in exactly λ rows.
(a) Prove that any $t-(n, k, \lambda)$ orthogonal array is also $t^{\prime}-\left(n, k, n^{t-t^{\prime}} \lambda\right)$ orthogonal array for any $1 \leq t^{\prime} \leq t$.
(b) Find all integers $a \geq 2$ such that there exists at least one $(a-1)-(a, a, 1)$ orthogonal array. Prove your answer.

