2018 - Exercises VI.

1. Use the Chinese remainder theorem to solve the following congruences:

$$
\begin{array}{ll}
x \equiv 3 & \bmod 7 \\
x \equiv 5 & \bmod 11 \\
x \equiv 7 & \bmod 13
\end{array}
$$

Show computation steps in detail.
2. Alice and Bob use the ElGamal cryptosystem. Alice generated the public key $(p, q, y)=(1021,2,512)$ and Bob sent her cryptotext $c_{1}=(853,342)$. Alice later publicly revealed that the message was $m_{1}=123$. After that Bob sent her another cryptotext $c_{2}=(853,222)$. Decrypt c_{2}. What did Bob wrong?
3. Consider a cryptographic hash function with 25 bits long output. What is the minimal number of random guesses you need to perform to find a collision with probability at least 0.7 ?
4. (a) Encrypt your UČO using the Rabin cryptosystem with $n=698069$.
(b) Calculate all four possible decryptions of the ciphertext you calculated, with the knowledge that $n=887 \times 787$.
5. (a) Prove that if $f(n)$ is a negligible function and $g(n)$ is not a negligible function, then $g(n)-f(n)$ is not negligible.
(b) Decide whether the function $e^{1 / n}-1$ is negligible. Prove your answer.
6. Let $p=83, q=50$ and $y=16$. Use Shanks' baby-step giant-step algorithm to find the discrete logarithm $\log _{q} y \bmod p$.
7. (a) What is the probability that at least two students attending IV054 course have the same birthday?
(b) What is the probability that at least three students attending IV054 course share the same birthday?
(42 students attend IV054 in 2018.)

