IV054 Coding, Cryptography and Cryptographic Protocols

2018-Exercises V.

1. Extended Euclidean algorithm is arguably the most important algorithm in number theory.
(a) Use the Euclidean algorithm to find the $\operatorname{gcd}(4757,4087)$.
(b) Use the extended Euclidean algorithm to find an inverse of 97 in $\left(\mathbb{Z}_{977}, \cdot\right)$.
2. Alice uses the RSA cryptosystem with modulus $n=9017$ and public key $e=1727$. Bob sent her encrypted message $c=6766$ and you have managed to obtain the corresponding plaintext $w=2374$ by other means. Bob sent her another encrypted message $c^{\prime}=8464$.
Decrypt the cryptotext c^{\prime} without factoring the modulus n.
3. (a) Encrypt your UČO (personal identification number) using the RSA cryptosystem with public key $e=3$ and $n=1207$. Then, with the knowledge $17 \times 71=1207$, show the decryption steps.
(b) Encrypt the binary expansion of the last two digits of your UČO (this is a binary vector of length 7) using the Knapsack cryptosystem with public key $X^{\prime}=(155,208,57,216,126,150,153)$. Then, with the knowledge of $X=(1,3,7,13,29,59,127), u=155$ and $m=257$, show the decryption steps.
4. Consider the RSA cryptosystem with the public key $n=1363, e=3$. You have obtained the following plaintext-cryptotext pairs:

$$
(1062,3), \quad(979,5), \quad(16,7)
$$

Decrypt the cryptotexts $c_{1}=135$ nd $c_{2}=245$ without factoring n.
5. Alice and Bob use the Diffie-Hellman key exchange. They have chosen $p=1217$ and $q=3$. Eve is eavesdropping their communication. She intercepts message $X=1193$ sent by Alice to Bob and message $Y=910$ sent by Bob to Alice. She has also precomputed the following table of discrete logarithms:

x	$\log _{3} x$
2	$\bmod 1217$
3	216
5	1
7	113
11	1059
13	87

Compute Alice's and Bob's shared key using Eve's information.
6. Let $\left(e, n_{1}\right)$ and $\left(e, n_{2}\right)$ be Alice's and Bob's RSA public keys and let their encryption exponent be $e=3$. Charlotte sends both of them the same short secret message m. Suppose n_{1} and n_{2} are coprimes and $m^{e} \ll n_{1} n_{2}$.
(a) Show how Eve, who intercepted both cryptotexts, reconstructs m. (Do not use brute force.)
(b) Calculate m given public moduli $n_{1}=1363, n_{2}=2419$ and cryptotexts $c_{1}=18$ and $c_{2}=325$.
7. You have a machine that generates RSA keys for smart cards. The machine generated the following moduli:

$$
101060693, \quad 91991791, \quad 129560071, \quad 115602119, \quad 86893073 .
$$

Try to factorize them without using brute force.
8. Consider the Knapsack cryptosystem described in the lecture slides with $n \geq 5$. Show that for any $1 \leq i \leq 5$ the following inequality holds

$$
\left|k_{i} x_{1}^{\prime}-k_{1} x_{i}^{\prime}\right| \leq 2^{n+6}
$$

for some integers k_{i}.
(Hint: you can use as the fact, without providing a proof, that for a superincreasing sequence it holds: $0 \leq x_{i} \leq 2^{-n+i} m$ for any $1 \leq i \leq n$.)

