2018 - Exercises III.

1. Decide whether the following binary codes are cyclic and whether they are equivalent to a cyclic code:
(a) $C_{1}=\{0000,1000,0100,0010,0001,1111\}$
(b) $C_{2}=\{000,100,001,101\}$
2. Consider the binary cyclic code of length 7 with the generating polynomial $g(x)=x^{4}+x^{2}+x+1$.
(a) Find the generator matrix.
(b) Find the parity check polynomial and the parity check matrix.
(c) Encode 110.
3. For each code C with codewords of length n a reverse code \bar{C} is defined as

$$
\bar{C}=\left\{x_{1} x_{2} \ldots x_{n} \mid x_{n} x_{n-1} \ldots x_{1} \in C\right\} .
$$

(a) Show that for each cyclic code C, its reverse code \bar{C} is also cyclic.
(b) Show that for each binary cyclic code C with codewords of length $n \leq 6, C=\bar{C}$.
(c) Find an example of a binary code with codewords of length 7 , such that $C \neq \bar{C}$.
4. Prove the following. Let C_{1} and C_{2} be cyclic codes with generator polynomials $g_{1}(x)$ and $g_{2}(x)$. Then $C_{1} \subseteq C_{2}$ if and only if $g_{2}(x)$ divides $g_{1}(x)$.
5. (a) How many binary cyclic codes of length 7 are there?
(b) How many ternary cyclic codes of length 7 are there?
(c) Is there a ternary cyclic code of length 10 and dimension 7 ?
6. Find the generator polynomial of the code

$$
C=\left\{a_{1} \cdots a_{n} \mid a_{1}, \ldots, a_{n} \in \mathbb{Z}_{p}, \sum_{i=1}^{n} a_{i} \equiv 0 \quad(\bmod p)\right\}
$$

where p is prime.
7. Consider the convolution code defined by the generator matrix

$$
G=\left(\begin{array}{ccc}
x^{2}+x+1 & 1 & x+1 \\
1 & x^{2} & x^{2}+x
\end{array}\right)
$$

and encode the message $\left(x+1, x^{2}\right)$ using this code.
8. Let $k \in \mathbb{N}_{0}$ be a non negative integer. How many binary cyclic codes of length 2^{k} are there?

