2018 - Exercises II.

1. How many codewords has the smallest ternary linear code that contains codewords 1000000,0001000 , 0000010 and 0001020 ?
2. Let $C_{1}, C_{2}, C_{3} \subseteq \mathbb{F}_{q}^{n}$ be linear codes. Decide whether the following codes are linear. Prove your answers.
(a) $C_{1} \cdot C_{2}=\left\{u \cdot v \mid u \in C_{1}, v \in C_{2}\right\}$, where \cdot denotes concatenation
(b) $C_{1} \triangle C_{2}$, where \triangle denotes symmetric difference
(c) $C_{1} \triangle C_{2} \triangle C_{3}$
3. Consider a binary $[n, k]$-code C consisting of all linear combinations from $S=\{100110,110011,111100,010101\}$.
(a) Find the generator and parity check matrix in standard form.
(b) Find n and k of this code. What is the minimal distance of C ?
(c) Find all coset leaders and their corresponding syndromes. Decode received word 101101 using syndrome decoding.
4. Prove that the code

$$
C=\left\{a_{1} \cdots a_{n} \mid a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}, \sum_{i=1}^{n} a_{i}^{q}=0\right\}
$$

is linear and find its parity check matrix.
5. Decide and prove which of the following 5-ary codes are linear:
(a) $C_{1}=\left\{x_{1} \cdots x_{5} \mid x_{1}+x_{2}+x_{3}+x_{4}+x_{5}(\bmod 2)=0\right\}$
(b) $C_{2}=\left\{x_{1} \cdots x_{5} \mid x_{1}+x_{2}+x_{3}+x_{4}+x_{5}(\bmod 2)=1\right\}$
(c) $C_{3}=\left\{x_{1} \cdots x_{5} \mid f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)+f_{4}\left(x_{4}\right)+f_{5}\left(x_{5}\right)(\bmod 5)=s\right\}$, where $f_{i}(x)=a_{i}(x)+b_{i}$ are linear functions and $s=b_{1}+b_{2}+b_{3}+b_{4}+b_{5}(\bmod 5)$.
6. Prove the following statement. Let C be a linear code with the parity check matrix H. Then $h(C)$ is the size of the smallest set of linearly dependent rows of H.
7. Let C be an $[n, k, d]_{q^{-}}$-code. Consider a code C^{\prime} constructed from C by removing the $i-$ th and j-th coordinate of each codeword:

$$
C^{\prime}=\left\{x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{j-1} x_{j+1} \cdots x_{n} \mid x_{1} \cdots x_{n} \in C\right\}
$$

(a) Prove that C^{\prime} is a linear code.
(b) Find the values n, k, d of C^{\prime}.
8. Show that the binary code with the following generator matrix is equivalent to a Hamming code.

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

