2018 - Exercises I.

1. Give an example of
(a) a binary $(3,3,2)$ code;
(b) a ternary $(4,9,3)$ code.
2. Let C_{1} and C_{2} be two block codes of length n. Show that the following holds
(a) $h\left(C_{1} \cap C_{2}\right) \geq \max \left\{h\left(C_{1}\right), h\left(C_{2}\right)\right\}$.
(b) $h\left(C_{3}\right)=h\left(C_{1}\right)+h\left(C_{2}\right)$, where

$$
C_{3}=\left\{x_{1} y_{1} x_{2} y_{2} \ldots x_{n} y_{n} \mid x_{1} \ldots x_{n} \in C_{1}, y_{1} \ldots y_{n} \in C_{2}\right\} .
$$

3. Any two equivalent q-ary codes have the same (n, M, d) parameters. Are any two q-ary codes with the same (n, M, d) parameters equivalent? Prove your answer.
4. Consider a worker in a supermarket finds out a product with corrupted EAN-13 barcode $858 x 035361404$. Help him to find the missing digit x.
5. Show that the Hamming distance satisfies the triangle inequality, i.e.

$$
h(x, z) \leq h(x, y)+h(y, z),
$$

for any words x, y, z.
6. You are going to pay a conference fee for a coding theory conference. Organizers decided to test your knowledge by sending you an incomplete bank account number CZ85 $2018000000123423 x 091$ written in the International Bank Account Number (IBAN) format. Determine the missing number.
7. Let $y=(1,4,3,5,6,7,2)$ be the weight vector.

Consider a code with codewords such that $\sum_{i=1}^{7} y_{i} x_{i} \equiv 0(\bmod 8)$.
(a) Can this code detect or correct any single error?
(b) Can this code detect or correct any transposition error?

Justify your answer.
8. Consider a source is producing symbols with the following probabilities:

A	0.1
B	0.4
C	0.1
D	0.2
E	0.2

(a) Construct a binary Huffman code with minimum variance of codeword length.
(b) Calculate the average bit length of the code constructed in (a).

