|                                                                                                  | EXAMS                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part I<br>Identification, authentication, secret sharing and e-commerce                          | <ul> <li>December: 21.12.2018 at 9.30 in B410</li> <li>January: 08.01.2019 at 12.00 in B410<br/>15.01.2019 at 12.00 in B410<br/>22.01.2018 at 12.00 in B410</li> </ul> |
| WISDOM                                                                                           | CHAPTER 9: AUTHENTICATION, SECRET SHARING and<br>e-COMMERCE                                                                                                            |
| Keep in mind that a cryptosystem is as secure as<br>its weakest part - security does not add up! | CHAPTER 9: AUTHENTICATION,<br>SECRET SHARING and e-COMMERCE                                                                                                            |

# CONTENTS I. - USER IDENTIFICATION and MESSAGE AUTHENTICATION/INTEGRITY

Most of today's cryptographic applications ask for identification of communicating parties, and/or for data integrity/authentication during communication, rather than for secrecy of transferred data.

#### Main related problems to deal with are:

- User identification (authentication): How can a person/computer prove her/his identity?
- Message authentication: Can tools be provided to find out, for the recipient, that the message received is indeed from the person who was supposed to send it?
- Message integrity: Can tools be provided to decide for the recipient whether or not the message was changed on the fly?

**Important practical objectives are to find identification schemes that are so simple that they can be implemented on smart cards** – they are essentially credit cards equipped with a chip that can perform arithmetical operations and communications.

IV054 1. Identification, authentication, secret sharing and e-commerce

IV054 1. Identification, authentication, secret sharing and e-commerce

With all of the above problems we will deal in the first part of this chapter.

#### MORE FORMALLY and MORE GENERALLY

- Authentication is, in particular, the act of confirmation the identity of a communicating entity (a person or a computer), and, in general, the act of confirmation the truth of an attribute, datum or entity.
- Data integrity refers to maintaining and ensuring the accuracy and consistency of data over its entire life cycle - the accuracy, validity and correctness of data should be ensured from hardware failures, software errors and human errors.

IV054 1. Identification, authentication, secret sharing and e-commerce

IV054 1. Identification, authentication, secret sharing and e-commerce

6/73

8/73

| CONTENTS II SECRET SHARING and E-COMMERCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | USER IDENTIFICATION (AUTHENTICATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Secret sharing problem is the problem how to share a "secret" among a group of users in such a way that only well specified subsets of them can determine the secret.</li> <li>Secret sharing schemes are ideal, for example, for storing information that is highly sensitive and important. For example, for encryption keys.</li> <li>Secret sharing protocols/schemes are another often used cryptographic primitives, with a variety of applications, we will deal with in second part of this chapter.</li> <li>E-commerce: One of the main new applications of the cryptographic techniques is to establish secure and convenient manipulation with digital money (e-money), especially for e-commerce.</li> <li>An example how e-commerce can be realized, in a simplified setting, will be shown at the end of this chapter.</li> </ul> | <ul> <li>User identification (authentication) is a process at which one party (often referred to as a Prover or as Alice), convinces another party (often referred to as a Verifier or as Bob) of Prover's identity.</li> <li>Namely, that the Prover (Alice) convinces the other party that she has indeed participated (or is participating) in the identification process.</li> <li>In other words that the Prover has been herself active in proving her identity in the time the evidence of her identity has been required.</li> <li>The purpose of any identification (authentication) process is to preclude (vylucit) some impersonation (zosobnenie) of one person (the Prover) by someone else.</li> <li>Identification usually serves to control access to a resource (often a resource should be accessed only by privileged users).</li> </ul> |  |

5/73

| OBJECTIVES of IDENTIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USER IDENTIFICATION PROTOCOLS                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>User identification process has to satisfy the following objectives:</li> <li>The Verifier will accept Prover's identity if both parties are honest;</li> <li>The Verifier cannot later, after participating in a successful identification, learn how to act as the Prover and to identify himself (as the Prover) to another verifier;</li> <li>A third party (called attacker here), say <i>E</i>, following the identification process of the Prover to the Verifier, has only a negligible chance to identify itself to someone else successfully as the Prover;</li> <li>Each of the above conditions should remain valid even if an attacker has observed, or has even participated in, several identification processes of the same party.</li> </ul> | <ul> <li>Identification protocols have to satisfy two security conditions:</li> <li>If one party, say Bob (a Verifier), gets a message from the other party, that claims to be Alice (a Prover), then Bob should be able to verify that the sender was indeed Alice.</li> <li>There should be no way to pretend, for a third party, say Charles, when communicating with Bob, that he is Alice without Bob having a large chance to find that out.</li> </ul> |  |  |
| IV054 1. Identification, authentication, secret sharing and e-commerce 9/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IV054 1. Identification, authentication, secret sharing and e-commerce 10/73                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| IDENTIFICATION SYSTEM BASED on a PKC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IDENTIFICATION SYSTEM BASED on a PKC - a better version                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| <ul> <li>Alice chooses a random r and sends e<sub>B</sub>(r) to Bob.</li> <li>Alice identifies a communicating person as Bob if he can send her back r.</li> <li>Bob identifies a communicating person as Alice if she can send him back r.</li> <li>A potential misuse of the above system</li> <li>We show that (any non-honest) Alice could misuse the above identification scheme.</li> <li>Indeed, Alice could intercept a communication of Jane (some new "player") with Bob, and get a cryptotext e<sub>B</sub>(w), the one Jana has been sending to Bob, and then Alice could send e<sub>B</sub>(w) to Bob.</li> <li>Honest Bob, who always follows fully the protocol, would then return w to Alice and she would get this way the plaintext w.</li> </ul>    | <ul> <li>Alice chooses a random r and sends e<sub>B</sub>(r) to Bob.</li> <li>Alice identifies a communicating person as Bob if he can send her back r through e<sub>A</sub>(r, r<sub>1</sub>) for a random r<sub>1</sub>.</li> <li>Bob identifies a communicating person as Alice if she can send him back r, r<sub>1</sub>.</li> </ul>                                                                                                                      |  |  |

| ELEMENTARY AUTHENTICATION PROTOCOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHALLENGE-RESPONSE PROTOCOLS - A SPECIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USER IDENTIFICATIONStatic means of identification: People can be identified by their (a) attributes<br>(fingerprints), possessions (passports), or knowledge (of a key or of a method).Dynamic means of identification: Challenge and respond protocols.Example: Let both Alice and Bob share a key k and a one-way function $f_k$ . Bob sends Alice a random number, or a random string, RAND. Alice sends to Bob $PI = f_k(RAND)$ . If Bob gets PI, then he verifies whether $PI = f_k(RAND)$ .If Bob gets PI, then he verifies whether $PI = f_k(RAND)$ .The process can be repeated to increase probability of a correct identification.MESSAGE AUTHENTICATION – to be discussed in details laterMAC -method (Message Authentication Code) Let Alice and Bob share a key k and an<br>encoding algorithm $A_k$ . To communicate a message m, Alice sends a pair( $m, A_k(m)$ ) – $\{A_k(m)$ is said to<br>be MAC}.If Bob gets ( $m', MAC$ ), then he computes $A_k(m')$ and compares it with MAC. | <ul> <li>In a challenge-response identification protocol a party A proves its identity to a party B by demonstrating knowledge of a secret/method known to be associated with A only, without revealing the secret/method itself to B.</li> <li>Structure of challenge-response protocols: <ul> <li>Commitment (to a secret).</li> <li>Challenge.</li> <li>Response.</li> <li>Verification (of the response).</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IV054       1. Identification, authentication, secret sharing and e-commerce       13/73         THREE-WAY AUTHENTICATION and also KEY-AGREEMENT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV054     1. Identification, authentication, secret sharing and e-commerce     14/73       THREE-WAY AUTHENTICATION and KEY AGREEMENT II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>In this protocol a PKC will be used with encryption/decryption algorithms (e<sub>U</sub>, d<sub>U</sub>), for each user U, and a DSS with signing/verification algorithms(sig<sub>U</sub>, ver<sub>U</sub>). In addition, Alice and Bob will have their, public, identification strings I<sub>A</sub> and I<sub>B</sub>.</li> <li>Alice chooses a random integer r<sub>A</sub>, sets t = (I<sub>B</sub>, r<sub>A</sub>), signs it as sig<sub>A</sub>(I<sub>A</sub>, t) and sends m<sub>1</sub> = (t, sig<sub>A</sub>(I<sub>A</sub>, t)) to Bob.</li> <li>Bob verifies Alice's signature, chooses a random r<sub>B</sub> and a random session key k. He then encrypts k with Alice's public key to get e<sub>A</sub>(k) = c, sets t<sub>1</sub> = (I<sub>A</sub>, r<sub>A</sub>, r<sub>B</sub>, c), and signs it as sig<sub>B</sub>(t<sub>1</sub>). Then he sends m<sub>2</sub> = (t<sub>1</sub>, sig<sub>B</sub>(t<sub>1</sub>)) to Alice.</li> </ul>                                       | <ul> <li>Alice verifies Bob's signature sigs<sub>B</sub>(t<sub>1</sub>) with t<sub>1</sub> = (l<sub>A</sub>, r<sub>A</sub>, r<sub>B</sub>, c),, and then checks that the r<sub>A</sub> she just got matches the one she generated in Step 1. Once verified, she is convinced that she is communicating with Bob. She also gets the session key k via computation</li> <li>D<sub>d<sub>A</sub></sub>(c) = D<sub>d<sub>A</sub></sub>(E<sub>e<sub>A</sub></sub>(k)) = k, sets t<sub>2</sub> = (l<sub>B</sub>, r<sub>B</sub>) and signs it as sig<sub>S<sub>A</sub></sub>(t<sub>2</sub>). Then she sends m<sub>3</sub> = (t<sub>2</sub>, sig<sub>S<sub>A</sub></sub>(t<sub>2</sub>)) to Bob.</li> <li>Bob verifies Alice's signature and checks that r<sub>B</sub> he just got matches his choice in Step 2. If both verifications pass, Alice and Bob have mutually authenticated each others identity and, in addition, have agreed upon a session key k.</li> </ul> |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SCHEMES for DATA AUTHENTICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>The goal of data authentication schemes<br/>(protocols) is to handle the case that data are sent<br/>through unreliable (and/or insecure) channels.</li> <li>By creating a so-called Message Authentication Code<br/>(MAC) and sending this MAC, together with the message,<br/>through an insecure channel, one can create possibility to<br/>verify whether data were not changed in the channel.</li> <li>The price to pay is that communicating parties need to<br/>share a secret random key that needs to be transmitted<br/>through a secure channel.</li> </ul> | SCHEWES for DATA ADTHENTICATION<br>Basic difference between MACs and digital signatures is that MACs are symmetric in<br>the following sense: Anyone who is able to verify MAC of a message is also able to<br>generate the same MAC for that message.<br>A scheme (M, T, K) for a data authentication is given by:<br>= M is a set of possible messages (data)<br>= T is a set of possible MACs – (tags)<br>= K is a set of possible keys<br>Moreover, it is required that<br>= to each $k \in K$ there is a single and easy to compute authentication mapping<br>$auth_k : \{0,1\}^* \times M \to T$<br>= and a single and easy to compute verification mapping<br>$ver_k : M \times T \to \{true, false\}$<br>such that the following two conditions should be satisfied:<br>Correctness: For each $m \in M$ and $k \in K$ the following holds: $ver_k(m, c) = true$ if there<br>exists an $r \in \{0,1\}^*$ such that $c = auth_k(r, m)$<br>Security: For any $m \in M$ and any $k \in K$ it is computationally unfeasible, without a<br>knowledge of k, to determine $t \in T$ such that $ver_k(m, t) = true$ |  |  |
| IV054 1. Identification, authentication, secret sharing and e-commerce 17/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IV054 1. Identification, authentication, secret sharing and e-commerce 18/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| FROM BLOCK CIPHERS to MAC – CBC-MAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DISADVANTAGE of STATIC USER IDENTIFICATION SCHEMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| TROM BEOCK OF HERS to MAC CBC-MAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISADVANTAGE OF STATIC OSER IDENTIFICATION SCHEMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Let C be an encryption algorithm that maps k-bit strings into k-bit strings.<br>If a message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Everybody who knows your password or PIN can impersonate you.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

IV054 1. Identification, authentication, secret sharing and e-commerce

20/73

| CHALLENGE-RESPONSE PROTOCOLS - A GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BASIC Fiat-Shamir IDENTIFICATION SCHEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>SPECIFICATION</li> <li>In a challenge-response identification protocol a party A proves its identity to a party B by demonstrating knowledge of a secret/method known to be associated with A only, without revealing the secret/method itself to B.</li> <li>Structure of challenge-response protocols: <ul> <li>Commitment (to a secret).</li> <li>Challenge.</li> <li>Response.</li> <li>Verification (of the response).</li> </ul> </li> </ul>                                    | <ul> <li>A trusted authority (TA) chooses: large random primes p,q, computes n = pq; and chooses a quadratic residue v ∈ QR<sub>n</sub>, and s such that s<sup>2</sup> ≡ v (mod n). public-key: v private-key: s (that Alice knows, but not Bob)</li> <li>Challenge-response Identification protocol</li> <li>Alice chooses a random r &lt; n, computes x = r<sup>2</sup> mod n and sends x, as her commitment, to Bob.</li> <li>Bob sends to Alice a random bit (as his challenge) b.</li> <li>Alice sends Bob (as her response) y = rs<sup>b</sup> mod n</li> <li>Bob identifies the sender as Alice if and only if, verification, y<sup>2</sup> = xv<sup>b</sup> mod n holds, which is taken as a proof that the sender knows square roots of x and of v.</li> <li>This protocol is a so-called single accreditation protocol</li> <li>Alice proves her identity by convincing Bob that she knows the square root s of v (without revealing s to Bob) and the square root r of x.</li> <li>If protocol is repeated t times, Alice has a chance 2<sup>-t</sup> to fool Bob if she does not know s and r.</li> </ul> |  |  |
| ANALYSIS of Fiat-Shamir IDENTIFICATION I                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANALYSIS of Fiat-Shamir IDENTIFICATION II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <ul> <li>public-key: v<br/>private-key: s (of Alice) such that s<sup>2</sup> = v (mod n).<br/>Detocol</li> <li>Alice chooses a random r &lt; n, computes x = r<sup>2</sup> mod n and sends x (a commitment) to Bob.</li> <li>Bob sends to Alice a random bit b (a challenge).</li> <li>Alice sends to Bob (a response) y = rs<sup>b</sup>.</li> <li>Bob verifies (a verification) if and only if y<sup>2</sup> = xv<sup>b</sup> mod n, proving that Alice knows a square root of x.</li> </ul> | <ul> <li>Analysis</li> <li>The first message is a commitment by Alice that she knows a square root of x.</li> <li>The second message is a challenge by Bob.</li> <li>If Bob sends b = 0, then Alice has to open her commitment and reveal r.</li> <li>If Bob sends b = 1, the Alice has to show her secret s in an "encrypted form".</li> <li>The third message is Alice's response to the challenge of Bob.</li> <li>Completeness: If Alice knows s, and both Alice and Bob follow the protocol, then the response rs<sup>b</sup> is the square root of xv<sup>b</sup>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

#### HOW CAN BAD EVE CHEAT?

Eve can send, to fool Bob, as her commitment, either  $r^2$ for a random r or  $r^2v^{-1}$ 

In the first case Eve can respond correctly to the Bob's challenge b=0, by sending r; but cannot respond correctly to the challenge b = 1.

In the second case Eve can respond correctly to Bob's challenge b = 1, by sending r again; but cannot respond correctly to the challenge b = 0.

Eve has therefore a 50% chance to cheat.

#### Fiat-Shamir IDENTIFICATION SCHEME – PARALLEL VERSION

In the following parallel version of Fiat-Shamir identification scheme the probability of a false identification is decreased.

Choose primes p, q and compute n = pq and choose as security parameters integers k, t. Choose quadratic residues  $v_1, \ldots, v_k \in QR_n$ .

Compute  $s_1, \ldots, s_k$  such that  $s_i = \sqrt{v_i} \mod n$ 

public-key:  $v_1, \ldots, v_k$  secret-key:  $s_1, \ldots, s_k$  of Alice PROTOCOL:

I Alice chooses a random r < n, computes  $a = r^2 \mod n$  and sends a to Bob.

Bob sends Alice a random k-bit string  $b_1 \dots b_k$ .

Alice sends to Bob

$$y = r \prod_{i=1}^{\kappa} s_i^{b_i} \mod n$$

Bob accepts if and only if

$$y^2 = a \prod_{i=1}^k v_i^{b_i} \mod t$$

Alice and Bob repeat this protocol t times, until Bob is convinced that Alice knows  $s_1, \ldots, s_k$ .

The chance that Alice can fool Bob is  $2^{-kt}$ , a significant decrease comparing with the chance  $\frac{1}{2}$  of the previous version of the identification scheme.

| IV054 1. Identification, authentication, secret sharing and e-commerce 25/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV054 1. Identification, authentication, secret sharing and e-commerce 26/73                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE SCHNORR IDENTIFICATION SCHEME – SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Schnorr IDENTIFICATION SCHEME - PROTOCOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>This is a practically attractive, (computationally efficient, in time, space + communication) identification scheme, which minimizes storage + computations performed by Alice (to be, for example, a smart card).</li> <li>Scheme also requires a trusted authority (TA) who</li> <li>■ chooses: a large prime p &lt; 2<sup>512</sup>, a large prime q dividing p - 1 and q ≤ 2<sup>140</sup>, an α ∈ Z<sub>p</sub><sup>*</sup> of order q, a security parameter t such that 2<sup>t</sup> &lt; q, p, q, α, t are made public.</li> <li>■ establishes: a secure digital signature scheme with a secret signing algorithm sig<sub>TA</sub> and a public verification algorithm ver<sub>TA</sub>.</li> </ul> | <ul> <li>Alice chooses a random 0 ≤ k &lt; q and computes<br/>γ = α<sup>k</sup> mod p.</li> <li>Alice sends to Bob her certificate C (Alice) = (ID(Alice), v, s) and also γ.</li> <li>Bob verifies the signature of TA by checking that<br/>ver<sub>TA</sub>(ID(Alice), v, s) = true.</li> <li>Bob chooses a random 1 ≤ r ≤ 2<sup>t</sup>, where t &lt; lg q is a security parameter and sends<br/>it to Alice (often t ≤ 40).</li> <li>Alice computes and sends to Bob<br/>y = (k + ar) mod q.</li> <li>Bob verifies that</li> </ul> |
| Protocol for issuing a certificate to Alice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\gamma \equiv \alpha^{y} v^{r} \mod p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>■ TA establishes Alice's identity by conventional means and forms a 512-bit string ID(Alice) which contains the identification information.</li> <li>■ Alice chooses a secret random 0 ≤ a ≤ q - 1 and computes v = α<sup>-a</sup> mod p and sends v to the TA.</li> <li>■ TA generates signature s = sig<sub>TA</sub>(ID(Alice), v)</li> </ul>                                                                                                                                                                                                                                                                                                                                                             | This way Alice proofs her identity to Bob. Indeed,<br>$\alpha^{y}v^{r} \equiv \alpha^{k+ar}\alpha^{-ar} \mod p$<br>$\equiv \alpha^{k} \mod p$<br>$\equiv \gamma \mod p$ .<br>Total storage needed: 512 bits for ID(Alice), 512 bits for v, 320 bits for s (if DSS is<br>used). In total – 1344 bits.<br>Total communication needed from: Alice $\rightarrow$ Bob – 1996 (= 1344+512+140) bits,                                                                                                                                        |
| and sends to Alice as her certificate: C (Alice) = $(ID(Alice), v, s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bob $\rightarrow$ Alice 40 bits (to send $r$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IV054 1. Identification, authentication, secret sharing and e-commerce 27/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV054 1. Identification, authentication, secret sharing and e-commerce 28/73                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Okamoto IDENTIFICATION SCHEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Okamoto IDENTIFICATION SCHEME – BASICS ONCE MORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| The disadvantage of the Schnorr identification scheme is that there is no proof of its security. For the following modification of the Schnorr identification scheme presented below, for so called Okamoto identification scheme, a proof of security exists.<br><b>Basic setting:</b> To set up the scheme TA chooses:<br><ul> <li>a large prime <math>p \le 2^{512}</math>,</li> <li>a large prime <math>q \ge 2^{140}</math> dividing <math>p - 1</math>;</li> <li>two elements <math>\alpha_1, \alpha_2 \in Z_p^*</math> of the order q.</li> </ul> <li>TA makes public <math>p, q, \alpha_1, \alpha_2</math> and keeps secret (also before Alice and Bob)<br/><math>c = lg_{\alpha_1}\alpha_2</math>.</li> <li>Finally, TA chooses a signature scheme and a hash function.<br/><b>Issuing a certificate to Alice</b> <ul> <li>TA establishes Alice's identity and issues her identification string ID(Alice).</li> <li>Alice secretly and randomly chooses <math>0 \le a_1, a_2 \le q - 1</math> and sends to TA<br/><math>v = \alpha_1^{-a_1} \alpha_2^{-a_2} \mod p</math>.</li> <li>TA generates a signature <math>s = sig_{TA}(ID(Alice), v)</math> and sends to Alice the certificate<br/>C(Alice) = (ID(Alice), v, s).</li> </ul></li> | Basic setting         TA chooses: a large prime $p \le 2^{512}$ , large prime $q \ge 2^{140}$ dividing p - 1; two elements $\alpha_1, \alpha_2 \in Z_p^*$ of order q. TA keep secret (also from Alice and Bob) $c = \lg_{\alpha_1} \alpha_2$ .         Issuing a certificate to Alice         TA establishes Alice's identity and issues an identification string ID(Alice).         Alice randomly chooses $0 \le a_1, a_2 \le q - 1$ and sends to TA. $v = \alpha_1^{-a_1} \alpha_2^{-a_2} \mod p$ .         TA generates a signature $s = sig_{TA}(ID(Alice), v)$ and sends to Alice the certificate C (Alice) = (ID(Alice), v, s). |  |  |  |
| IV054 1. Identification, authentication, secret sharing and e-commerce 29/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV054 1. Identification, authentication, secret sharing and e-commerce 30/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Okamoto IDENTIFICATION SCHEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATA (MESSAGE) INTEGRITY and AUTHENTICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Okamoto IDENTIFICATION SCHEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| <ul> <li>Alice chooses random 0 ≤ k<sub>1</sub>, k<sub>2</sub> ≤ q − 1 and computes<br/>γ = α<sub>1</sub><sup>k<sub>1</sub></sup>α<sub>2</sub><sup>k<sub>2</sub> mod p.</sup></li> <li>Alice sends to Bob her certificate (ID(Alice), v, s) and γ.</li> <li>Bob verifies the signature of TA by checking that<br/>ver<sub>TA</sub>(ID(Alice), v, s) = true.</li> <li>Bob chooses a random 1 ≤ r ≤ 2<sup>t</sup> and sends it to Alice.</li> <li>Alice sends to Bob<br/>y<sub>1</sub> = (k<sub>1</sub> + a<sub>1</sub>r) mod q; y<sub>2</sub> = (k<sub>2</sub> + a<sub>2</sub>r) mod q.</li> <li>Bob verifies<br/>γ ≡ α<sub>1</sub><sup>y<sub>1</sub></sup>α<sub>2</sub><sup>y<sub>2</sub>v<sup>r</sup> (mod p)</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATA (MESSAGE) INTEGRITY<br>and<br>AUTHENTICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

| DATA INTEGRITY and AUTHENTICATION PROBLEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AUTHENTICATION CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>One of the main features of the current information processing era is that it becomes more and more a (big) data-driven era - society is accumulating enormous amounts of data and has big problems with its reliable and efficient storing, transmission and processing.</li> <li>In general, data integrity refers to maintaining and assuring the accuracy and consistency of data over their whole real life cycle and becomes a very important feature of database systems.</li> </ul> | <ul> <li>They provide methods to ensure authentication of data/messages – that a message has not been tampered/changed, and that the message originated with the presumed sender. The goal is to achieve authentication even in the presence of Mallot, a man in the middle, who can observe transmitted messages and replace them by messages of his own choice.</li> <li>Formally, an authentication code consists of:</li> <li>A set M of possible messages.</li> <li>A set T of possible authentication tags.</li> <li>A set K of possible hears</li> </ul> |  |
| The goal is to ensure accuracy, validity and correctness of data - a protection from<br>hardware, software and human errors.                                                                                                                                                                                                                                                                                                                                                                         | A set K of possible keys.<br>A set R of authentication algorithms $a_k : M \to T$ , one for each $k \in K$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| In database systems, data integrity is normally enforced by a series of so called<br>integrity constrains/rules.                                                                                                                                                                                                                                                                                                                                                                                     | Transmission process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

- Closely related to data integrity problems is the problem of authentication of data at their transmissions.
- With the use of cryptographic techniques to deal with data authentication problem we deal briefly in the next.
- Alice and Bob jointly choose a secret key k.
- If Alice wants to send a message w to Bob, she sends (w, t), where  $t = a_k(w)$ .
- If Bob receives (w, t) he computes t' = a<sub>k</sub>(w) and if t = t', then Bob accepts the message w as authentic.

| IV054 1. Identification, authentication, secret sharing and e-commerce | 33/73 | IV054 1. Identification, authentication, secret sharing and e-commerce | 34/73 |
|------------------------------------------------------------------------|-------|------------------------------------------------------------------------|-------|
|                                                                        |       |                                                                        |       |

#### ATTACKS and DECEPTION PROBABILITIES

There are two basic types of attacks Mallot, the man in the middle, can do.

**Impersonation.** Mallot introduces a message (w, t) into the channel – expecting that message will be received as being sent by Alice.

Substitution. Mallot replaces a message (w, t) in the channel by another one, (w', t') – expecting that message will be accepted as being sent by Alice.

With any impersonation (substitution) attack a probability  $P_i(P_s)$  is associated that Mallot will deceive Bob, if Mallot follows an optimal strategy.

In order to determine such probabilities we need to know probability distributions  $P_m$  on messages and  $P_k$  on keys.

In the following so called **authentication matrices**  $|K| \times |M|$  will tabulate all authentication tags. The item in a row corresponding to a key k and in a column corresponding to a message w will contain the authentication tag  $t_k(w)$ .

The goal of **authentication codes**, to be discussed next, is to decrease probabilities that Mallot performs successfully impersonation or substitution.

### THE AUTHENTICATION MATRIX - EXAMPLE

Let  $M = T = Z_3$ ,  $K = Z_3 \times Z_3 - -Z_3 = \{0, 1, 2\}$ . For  $(i, j) \in K$  and  $w \in M$ , let  $t_{ij}(w) = (iw + j) \mod 3$ . The matrix key  $\times$  message of authentication tags has now the form

| Key   | 0 | 1 | 2 |   |
|-------|---|---|---|---|
| (0,0) | 0 | 0 | 0 |   |
| (0,1) | 1 | 1 | 1 |   |
| (0,2) | 2 | 2 | 2 |   |
| (1,0) | 0 | 1 | 2 |   |
| (1,1) | 1 | 2 | 0 |   |
| (1,2) | 2 | 0 | 1 |   |
| (2,0) | 0 | 2 | 1 |   |
| (2,1) | 1 | 0 | 2 |   |
| (2,2) | 2 | 1 | 0 |   |
| (2,2) | 2 | 1 | 0 | J |

**Impersonation attack:** Let us assume that Mallot picks a message w and tries to guess the correct authentication tag.

Problem is that for each message w and each tag a there are exactly three keys k such that  $t_k(w) = a$ . Hence  $P_i = \frac{1}{3}$ .

Substitution attack: By checking the table one can see that if Mallot observes an authenticated message (w, a), then there are exactly three possibilities for the key that was used.

Moreover, for each choice (w', a'),  $w \neq w'$ , there is exactly one of the three possible keys for (w',a') that can be used. Therefore  $P_s = \frac{1}{3}$ .

| IV054 1. Identification, authentication, secret sharing and e-commerce | 35/73 | IV054 1. Identification, authentication, secret sharing and e-commerce | 36/73 |
|------------------------------------------------------------------------|-------|------------------------------------------------------------------------|-------|

| ORTHOGONAL ARRAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONSTRUCTION and BOUNDS for OAs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Definition: An orthogonal array OA(n, k, $\lambda$ ) is a $\lambda n^2 \times k$ array of n symbols, such that<br>is any two columns of the array every one of the possible $n^2$ pairs of symbols occurs in<br>exactly $\lambda$ rows.<br>Example: OA(3,3,1) obtained from the authentication matrix presented before:<br>$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{pmatrix}$ Theorem: Suppose we have an orthogonal array OA(n, k, $\lambda$ ). Then there is an<br>authentication code with $ M  = k,  T  = n,  K  = \lambda n^2$ and $P_1 = P_s = \frac{1}{n}$ .<br>Proof: Use each row of the orthogonal array as an authentication rule (key) with equal<br>probability. Therefore we have the following correspondence:<br>$\frac{\left  \frac{\text{orthogonal array}}{\text{column}} \right  \frac{\text{authentication rule}}{\text{message}} \\ \text{authentication tag} \end{bmatrix}$ | In an orthogonal array OA(n, k, $\lambda$ )<br>a n determines the number of authenticators/tags (security of the code);<br>k is the number of messages the code can accommodate;<br>a $\lambda$ relates to the number of keys $-\lambda n^2$ .<br>The following holds for orthogonal arrays.<br>a If p is prime, then OA(p, p, 1) exits.<br>b Suppose there exists an OA(n, k, $\lambda$ ). Then<br>$\lambda \ge \frac{k(n-1)+1}{n^2}$ ;<br>s Suppose that p is a prime and $d \le 2$ an integer. Then there is an orthogonal array<br>$OA(p, \frac{(p^d - 1)}{(p - 1)}, p^{d-2})$ .<br>Let us have an authentication code with $ A  = n$ and $P_i = P_s = \frac{1}{n}$ . Then $ K  \ge n^2$ .<br>Moreover, $ K  = n^2$ if and only if there is an orthogonal array $OA(n, k, 1)$ , where<br>$ M  = k$ and $P_K(k) = \frac{1}{n^2}$ for every key $k \in K$ .<br>The last claim shows that there are no much better approaches to authentication codes<br>with deception probabilities as small as possible than orthogonal arrays. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| COMMENTS on ORTHOGONAL ARRAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SECRET SHARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>OCMENTS on ORTHOGONAL ARRAYS</li> <li>Orthogonal arrays are a very important concept of recreational mathematics, combinatorial mathematics, coding theory.</li> <li>They were introduced by Rao in 1946.</li> <li>One of the non-trivial questions is for which parameters one can construct the corresponding Orthogonal array.</li> <li>There is a library of more than 200 Orthogonal arrays.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <section-header><section-header><text><text><text><text></text></text></text></text></section-header></section-header>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| SECRET SHARING - PROBLEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BASIC IDEA of the (n,t) THRESHOLD SECRET SHARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In some applications, it is of importance to distribute a sensitive information, called here as a secret (for example an algorithm how to open a safe or a secret key) among several parties in such a way that only a well define subsets of parties can determine the secret - if members of the parties cooperate.<br>For example, in some cases one can increase security of confidential information, say a secret key, by sharing it between several parties.<br>In the following we show how to solve this problem in the following "threshold" setting:<br>How to "partition" a number S (called here as a "secret") into $n$ "shares" and distribute them among $n$ parties in such a way that for a fixed (threshold) $t < n$ any $t$ , or more, of parties can create S, but no $t - 1$ , or less, of parties will have the slightest idea how to get the secret. | In order to distribute a secret (number) S among <i>n</i> parties,<br>a dealer creates a degree $t - 1$ random polynomial p such<br>that $p(0)=S$ and distributes to parties, as their "shares" of<br>the secret, - values of p in separate points of <i>p</i> .<br>Since each degree $t - 1$ polynomial p is uniquely<br>determined by any <i>t</i> points on p, the above distribution of<br>points allows any <i>t</i> users to determine <i>p</i> , and so also<br>p(0)=S, and no smaller group of parties, can have the<br>slightest idea about S. |
| IV054 1. Identification, authentication, secret sharing and e-commerce 41/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IV054 1. Identification, authentication, secret sharing and e-commerce 42/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SECRET SHARING between TWO PARTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THRESHOLD SECRET SHARING SCHEMES - FORMALITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A dealer creates shares of a binary-string secret s and<br>distributes them between two parties $P_1$ and $P_2$ as follows:<br><b>He chooses a random binary string b</b> , of the same<br><b>length as s, and</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | An important special simple case of secret sharing schemes are <b>threshold secret sharing</b><br><b>schemes</b> at which a certain threshold of participant is needed and sufficient to assemble<br>the secret.<br>For example, a vault in the bank can be opened only if at least two out of three<br>responsible employees use their knowledge and tools (keys) to open the vault.                                                                                                                                                                   |

sends **b** (as a "share" of **s**), to  $P_1$  and sends  $s \oplus b$  (as another share of s), to  $P_2$ .

This way, none of the parties  $P_1$  and  $P_2$  alone has a slightest idea about s, but both together easily recover s by computing

## $b \oplus (s \oplus b) = s$ .

The above scheme can be easily extended to the case of nusers so that only all of them can reveal the secret. 43/73

## MALITIES

out of three responsible employees use their knowledge and tools (keys) to open the vault.

**Definition:** Let  $t \le n$  be positive integers. A (n, t)-threshold scheme is a method of sharing a secret S among a set P of n parties,  $P = \{P_i | 1 \le i \le n\}$ , in such a way that any t, or more, parties can compute the value S, but no group of t - 1, or less, parties can compute S.

Secret S is chosen by a "dealer"  $D \notin P$ .

It is assumed that the dealer "distributes" the secret through shares to parties secretly and in such a way that no party knows shares of other parties.

| THE CASE $n = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BASIC PROPERTIES of SECURE SECRET SHARING SCHEMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Such a case is easy to deal with.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All shares have to be "as large as the secret" in an (n, t) secret sharing scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| In the case of an $m$ bit secret $S$ ,<br>each but one of $n$ parties is assigned a different $m$ bit<br>random number<br>and the last participant gets, as his share $X \oplus S$ , where $X$<br>is xor of all remaining random shares.<br>By xoring all shares the secret $S$ can be obtained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Indeed, any share SH<sub>i</sub> has to have the property that no group of t – 1 of the remaining shares contains any information about the secret, but adding the share SH<sub>i</sub>, the secret can be obtained.</li> <li>Therefore: (1) No share can contain "some information about secret"; (2) but also each share has to contain "all information about the secret" - both in some sense.</li> <li>All secure secret sharing schemes have to use random elements.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IV054       1. Identification, authentication, secret sharing and e-commerce       45/73         Shamir's (n,t)-THRESHOLD SCHEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IV054     1. Identification, authentication, secret sharing and e-commerce     46/73       Shamir's SCHEME — TECHNICALITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Initial phase:</b><br>Dealer D chooses a prime p, n randomly chosen integers $x_i$ , $1 \le i \le n$ and sends $x_i$ to the user $P_i$ .<br>The values $x_i$ are then made public.<br><b>Share distribution:</b> Suppose that the dealer D wants to distribute a secret $S \in Z_p$ among $n$ parties. (1) D randomly chooses, and keeps secret, $t - 1$ elements of $Z_p$ , $a_1, \ldots, a_{t-1}$ .<br>(b) For $1 \le i \le n$ , the dealer D computes "shares" $y_i = a(x_i)$ , where<br>$a(x) = S + \sum_{j=1}^{t-1} a_j x^j \mod p$ .<br>(3) Finally, D sends the share $y_i$ to the party $P_i$ , $1 \le i \le n$ and keeps coefficients $a_i$ secret.<br><b>Secret accumulation:</b> Let parties $P_{i_1}, \ldots, P_{i_t}$ want to determine the secret S. Since, unknown to them, polynomial $a(x)$ has degree $t-1$ they know that it has, in general, the form<br>$a(x) = a_0 + a_1 x + \ldots + a_{t-1} x^{t-1}$ ,<br>and therefore they can determine all coefficients $a_i$ from t equations $a(x_i) = y_{i_j}$ , where all arithmetic is done modulo p.<br>It can be shown that equations obtained this way are linearly independent and the system has a unique solution.<br>In such a case $S = a_0$ . | Shamir's scheme uses the following result concerning polynomials over fields $Z_p$ , where p is prime.<br>Theorem Let $f(x) = \sum_{i=0}^{t-1} a_i x^i \in Z_p[x]$ be a polynomial of degree t - 1 and let<br>$\Omega = \{(x_i, f(x_i)) \mid x_i \in Z_p, i = 1,, t, x_i \neq x_j \text{ if } i \neq j\}$<br>For any $Q \subseteq \Omega$ , let $P_Q = \{g \in Z_p[x]   deg(g) \leq t - 1, g(x) = y \text{ for all } (x, y) \in Q\}$ . Then it holds:<br>$P_\Omega = \{f(x)\}$ , i.e. f is the only polynomial of degree t - 1, whose graph contains all t points in $\Omega$ .<br>If Q is a proper subset of $\Omega$ and $x \neq 0$ for all $(x, y) \in Q$ , then each $a \in Z_p$ appears with the same frequency as the constant coefficient of polynomials in $P_Q$ .<br>Corollary: (Lagrange formula) Let $f(x) = \sum_{i=0}^{t-1} a_i x^i \in Z_p[x]$ be a polynomial and let $P = \{(x_i, f(x_i)) \mid i = 1,, t, x_i \neq x_j, i \neq j\}$ . Then<br>$f(x) = \sum_{i=1}^{t} f(x_i) \prod_{1 \leq j \leq t, j \neq i} \frac{x - x_j}{x_i - x_j}$ |

To distribute **n** shares of a secret S among parties  $P_1, \ldots, P_n$  a dealer - a trusted authority TA - proceeds as follows:

- TA chooses a prime  $p > max\{S, n\}$  and sets  $a_0 = S$ .
- TA selects randomly  $a_1, \ldots, a_{t-1} \in Z_p$  and creates the polynomial  $f(x) = \sum_{i=1}^{t} a_i x^i$ .
- TA computes  $s_i = f(i), i = 1, ..., n$  and transfers each  $(i, s_i)$  to the party  $P_i$  in a secure way.

Any group  ${\sf J}$  of  ${\sf t}$  or more parties can compute the secret. Indeed, from the previous corollary we have

$$S = a_0 = f(0) = \sum_{i \in J} f(i) \prod_{j \in J, j \neq i} \frac{j}{j-i}$$

In case |J| < t, then each  $a_0 \in Z_p$  is equally likely to be the secret.

- Security: The scheme is information theoretically secure.
- Minimality: The size of each share does not exceed the size of the secret.
- Dynamicity: Shares can be replaced by another ones without affecting other shares.
- Flexibility: Parties can obtain different number of shares according to their importance (within an organization they are in).

| IV054 1. Identification, authentication, secret sharing and e-commerce 49/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV054 1. Identification, authentication, secret sharing and e-commerce 50/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ORTHOGONAL ARRAYS BASED SHARING SCHEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SECRET SHARING – GENERAL CASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>General form of orthogonal arrays:</b> An $t - (n, k, \lambda)$ orthogonal array for $t \le k$ is a $\lambda n^t \times k$ array, whose entries are from a set X of n points such that in every subset of t columns of the array, every t-tuple of points of X appears in exactly $\lambda$ rows.<br>A $t - (n, n + 1, 1)$ orthogonal array may be used to construct a perfect $(n, t)$ threshold secret sharing scheme, in the following way:<br>Let A be an $t - (v, n + 1, 1)$ orthogonal array. The first n columns will be used to provide shares to the parties, while the last column represents the secret to be shared. If the dealer wishes to share a secret S only the rows of A where the last entry is S are used in the scheme. The dealer then randomly selects one of these rows and sends out to the party $P_i$ the entry in this raw and in the column $i$ as the share. | A serious limitation of the threshold secret sharing schemes is that all groups of parties with the same number of parties have the same access to the secret.<br>Practical situations usually require that some (sets of) parties are more important than others.<br>Let P be a set of parties. To deal with the above situation such concepts as an authorized set of users of P and access structures are used.<br>An 'authorized set of parties $A \subseteq P$ is a set of parties who should be able, when cooperating, to construct the secret.<br>An unauthorized set of parties $U \subseteq P$ is a set of parties who alone should not be able to learn anything about the secret.<br>Let P be a set of parties. The access structure $\Gamma \subseteq 2^P$ is a set of subsets of parties such that $A \in \Gamma$ for all authorized sets A and $U \in 2^P - \Gamma$ for all unauthorized sets U.<br>Theorem: For any access structure there exists a secret sharing scheme realizing this access structure. |
| IV054 1. Identification, authentication, secret sharing and e-commerce 51/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IV054 1. Identification, authentication, secret sharing and e-commerce 52/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| $P = \{P_1, P_2, P_3, P_4, P_5\}$ is the set of subsets of P that contains sets $\{P_2, P_5\}, \{P_1, P_4\}, \{P_1, P_2, P_3\}$ and all their supersets. $P = \{P_1, P_2, P_3, P_4, P_5\}$ $\{P_2, P_5\}, \{P_1, P_4\}, \{P_1, P_2, P_3\}$ $P = \{P_1, P_2, P_3, P_4, P_5\}$ $P = \{P_1, P_2, P_4, P_5, P_5\}$ $P = \{P_1, P_2, P_4, P_5, P_5\}$ $P = \{P_1, P_2, P_4, P_5, P_5\}$ $P = \{P_1, P_2, P_5, P_5\}$ $P = \{P_1, P_2, P_5\}$ $P = \{P_1, P_5\}$ $P = \{P_1$ | EXAMPLE of an ACCESS STRUCTURE                                                                                                                                     | SECRET SHARING SCHEME with VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feldman's (n,k)-PROTOCOLFeldman's (n,k)-PROTOCOL - continuationFeldman's protocol is an example of the secret sharing scheme with verification. The<br>protocol is a generalization of Shamir's protocol. It is assumed that all n participants can<br>broadcast messages to all others and each of them can determine all senders.<br>Given are large primes $p, q, q (p-1), q > n$ and $h  generator of Z_p^*. All thesenumbers, and also the number g = h^{\frac{p-1}{q}} \mod p, will be public.As in Shamir's scheme, to share a secret S, the dealer assigns to each party P_i a specificrandom x_i from \{1, \dots, q-1\} and generates a random secret polynomialf(x) = \sum_{j=0}^{k-1} a_j x^j \mod q (1)If (1) does not hold, P_i asks, using the broadcasting scheme, the dealer tobroadcast correct value of y_i. If there are at least k such requests, or somof the new values of y_i does not satisfy (1), the dealer is considered as notreliable.One can easily verify that if the dealer works correctly, then all relations (hold.Observe that (v_j)^{x_j^i} = g^{a_j x_j^i} and therefore$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $P = \{P_1, P_2, P_3, P_4, P_5\}$<br>is the set of subsets of P that contains sets<br>$\{P_2, P_5\},  \{P_1, P_4\}  \{P_1, P_2, P_3\}$<br>and all their supersets. | <ul> <li>sharing it between several parties.</li> <li>Some secret sharing scheme are such that they work even in case some parties behave incorrectly.</li> <li>A secret sharing scheme with verification is such a secret sharing scheme that: <ul> <li>Each party P<sub>i</sub> is capable to verify correctness of his/her share s<sub>i</sub></li> <li>No party P<sub>i</sub> is able to provide incorrect information and to convince other parties about its correctness</li> </ul> </li> <li>In general, a player might lie about his own share, in order to gain information about other shares. Secret sharing schemes with verification allow players to be certain that none of the other players is lying about his share.</li> </ul> |
| Feldman's protocol is an example of the secret sharing scheme with verification. The protocol is a generalization of Shamir's protocol. It is assumed that all n participants can broadcast messages to all others and each of them can determine all senders.<br>Given are large primes $p, q, q (p-1), q > n$ and $h  generator of Z_p^*. All these numbers, and also the number g = h^{\frac{p-1}{q}} \mod p, will be public.As in Shamir's scheme, to share a secret S, the dealer assigns to each party P_i a specific random x_i from \{1, \dots, q-1\} and generates a random secret polynomial f(x) = \sum_{j=0}^{k-1} a_j x^j \mod q \qquad (1) If (1) does not hold, P_i asks, using the broadcasting scheme, the dealer to broadcast correct value of y_i. If there are at least k such requests, or some of the new values of y_i does not satisfy (1), the dealer is considered as not follow.One can easily verify that if the dealer works correctly, then all relations (nod.)Observe that (v_j)^{x_j^i} = g^{a_j x_j^i} and therefore$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feldman's (n,k)-PROTOCOL                                                                                                                                           | Feldman's (n,k)-PROTOCOL - continuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

IV054 1. Identification, authentication, secret sharing and e-commerce

IV054 1. Identification, authentication, secret sharing and e-commerce

| SECRET SHARING using CHINESE REMAINDER THEOREM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blakley's SECRET SHARING SCHEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| There are at least two threshold secret sharing schemes in which shares are generated by reduction of a secret <i>S</i> modulo some integers $m_i$ and the secret is essentially recovered by solving a system of linear congruences using the Chinese remainder Theorem.<br><b>Basic idea for</b> $(n, t)$ secret sharing scheme: Choose <i>n</i> relatively prime integers $m_1 < m_2 < \ldots < m_n$ , and a secret<br>$\prod_{i='n-t+2}^n m_i < S < \prod_{i=1}^t m_i.$ <i>i</i> -th share will be $s_i = S \mod m_i$ Recovery of the secret <i>S</i> from the shares $s_{i_1}, s_{i_2}, \ldots s_{i_t}$ is done by solving system of equations<br>$S \equiv s_{i_j} \mod m_{i_j}, j = 1, 2, \ldots t$<br>Observe that the above condition for <i>S</i> implies that <i>S</i> is smaller than the product of any choice <i>t</i> of <i>m</i> 's, but, at the same time, greater than any choice of $t - 1$ of them. | <ul> <li>This is a secret sharing scheme based on the following facts:</li> <li>Two nonparallel lines in the same plane intersect at exactly one point.</li> <li>Three nonparallel planes in space intersect in exactly one point.</li> <li>In general any <i>n</i> nonparallel (<i>n</i> – 1)-dimensional hyperplanes intersect in exactly one point.</li> <li>The secret can be therefore encoded as any single coordinate of the point of the intersection of <i>n</i> nonparallel (<i>n</i> – 1)-dimensional hyperplanes.</li> </ul> |
| IV054 1. Identification, authentication, secret sharing and e-commerce 57/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IV054 1. Identification, authentication, secret sharing and e-commerce 58/73                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VISUAL SECRET SHARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E-COMMERCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The basic idea is to create, for a visual information (a secret) S, a set of <i>n</i> transparencies in such a way that one can see S only if all <i>n</i> transparencies are overlaid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Very important is to ensure security of e-money<br>transactions needed for e-commerce.<br>In addition to providing security and privacy, the task is<br>also to prevent alterations of purchase orders and forgery<br>of credit card information.                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| BASIC REQUIREMENTS for e-COMMERCE SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HISTORICAL COMMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Authenticity: Participants in transactions cannot be impersonated and signatures cannot be forged.</li> <li>Integrity: Documents (purchase orders, payment instructions,) cannot be forged.</li> <li>Privacy: Details of transaction should be kept secret.</li> <li>Security: Sensitive information (as credit card numbers) must be protected.</li> <li>Anonymity: Anonymity of money senders should be guaranteed.</li> <li>Additional requirement: In order to allow an efficient fighting of the organized crime a system for processing e-money has to be such that under well defined conditions it has to be possible to revoke customer's identity and flow of e-money.</li> </ul>                                                                                                                                                                                                                                                                                      | So called Secure Electronic Transaction protocol<br>was created to standardize the exchange of credit<br>card information.<br>Development of SET initiated in 1996 credit card<br>companies MasterCard and Visa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IV054 1. Identification, authentication, secret sharing and e-commerce 61/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV054 1. Identification, authentication, secret sharing and e-commerce 62/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EXAMPLE – DUAL SIGNATURE PROTOCOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CARDHOLDER and SHOP ACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>We present a protocol to solve the following security and privacy problem in e-commerce:<br/>How to arrange e-shopping in such a way that shoppers' banks should not know what shoppers/cardholders are ordering and shops should not learn credit card numbers of shoppers.</li> <li>Participants of our e-commerce protocol will be: banks, shoppers/cardholders, shops</li> <li>The cardholder will use the following information:</li> <li>GSO – Goods and Services Order (cardholder's name, shop's name, items being ordered, their quantity,)</li> <li>PI - Payment Instructions (shop's name, card number, total price,)</li> <li>Protocol will use also a public hash function h.</li> <li>RSA cryptosystem will also be used and</li> <li>e<sub>C</sub>, e<sub>S</sub> and e<sub>B</sub> will be public (encryption) keys of the cardholder, shop, bank and</li> <li>d<sub>C</sub>, d<sub>S</sub> and d<sub>B</sub> will be their secret (decryption) keys.</li> </ul> | <ul> <li>A cardholder performs the following procedure – to create a GSO-goods and services order</li> <li>Computes HEGSO = h(e<sub>S</sub>(GSO)) – the hash value of the encryption of GSO.</li> <li>Computes HEPI = h(e<sub>B</sub>(PI)) – hash value of the encryption of the payment instructions for the bank.</li> <li>Computes HPO = h(HEPI  HEGSO) – Hash value of the Payment Order.</li> <li>Signs HPO by computing "Dual Signature" DS = d<sub>C</sub>(HPO).</li> <li>Sends e<sub>S</sub>(GSO), DS, HEPI, and e<sub>B</sub>(PI) to the shop.</li> <li>The Shop does the following: – to create payment instructions</li> <li>Calculates h(e<sub>S</sub>(GSO)) = HEGSO;</li> <li>Calculates h(HEPI HEGSO) and e<sub>C</sub>(DS). If they are equal, the shop has verified by that the cardholder signature;</li> <li>Computes d<sub>S</sub>(e<sub>S</sub>(GSO)) to get GSO.</li> <li>Sends HEGSO, HEPI, e<sub>B</sub>(PI), and DS to the bank.</li> </ul> |

IV054 1. Identification, authentication, secret sharing and e-commerce

63/73

IV054 1. Identification, authentication, secret sharing and e-commerce

#### **BANK and SHOP ACTIONS DIGITAL MONEY** Is it possible to have electronic (digital) money? The Bank has received HEPI, HEGSO, $e_B(PI)$ , and DS and performs the following It seems that not, because copies of digital information are indistinguishable from their actions. origin and one could therefore hardly prevent double spending,.... **I** Computes $h(e_B(PI))$ – which should be equal to HEPI. T. Okamoto and K. Ohia formulated six properties digital money systems should have. **2** Computes $h(h(e_B(PI)) || HEGSO)$ which should be equal to $e_C(DS) = HPO$ . **1** One should be able to send e-money through e-networks. **3** Computes $d_B(e_B(PI))$ to obtain PI; 2 It should not be possible to copy and reuse e-money. I Returns an encrypted (with $e_{S}$ ) digitally signed authorization to shop, guaranteeing 3 Transactions using e-money could be done off-line - that is no communication with the payment. central bank should be needed during translation. Shop completes the procedure by encrypting, with $e_{C}$ , the receipt to the cardholder, One should be able to sent e-money to anybody. indicating that transaction has been completed. 5 An e-coin could be divided into e-coins of smaller values. It is easy to verify that the above protocol fulfills basic requirements concerning security, privacy and integrity. Several systems of e-money have been created that satisfy all or at least some of the above requirements. IV054 1. Identification, authentication, secret sharing and e-commerce 65/73 IV054 1. Identification, authentication, secret sharing and e-commerce 66/73 **BLIND SIGNATURES – APPLICATIONS BLIND SIGNATURES** – protocols Schnorr's simplified identification scheme in which Bank proves its identity by Blind digital signatures allow the signer (bank) to sign a message without seeing its proving that it knows x. content. Bank chooses a random $r \in \{0, \dots, q-1\}$ and send $a = g^r$ to Bob. {By that Bank "commits" itself to r Scenario: Customer Bob would like to give e-money to Shop. E-moneys have to be Bob sends to Bank a random $c \in \{0, \ldots, q-1\}$ {a challenge}. signed by a Bank. Shop must be able to verify Bank's signature. Later, when Shop sends Bank sends to Bob $b = r - cx \{a \text{ response}\}.$ e-money to Bank, Bank should not be able to recognize that it signed these e-money for Bob accepts the proof that bank knows x if $a = g^b y^c$ . {because $y = g^x$ } Bob. Bank has therefore to sign money blindly. **2** Transfer of the identification scheme to a signature scheme: Bob can obtain a blind signature for a message m from Bank by executing the Schnorr Bob chooses as c = h(m || a), where m is the message to be signed. blind signature protocol described on the next slide. Signature: (c, b); Verification rule: $a = g^b y^c$ ; Transcript: (a, c, b). **Shnorr's blind signature scheme** Basic setting Bank sends to Bob $a' = g^{r'}$ with random $r' \in \{0, \dots, q-1\}$ . Bob chooses random $u, v, w \in \{0, ..., q-1\}, u \neq 0$ , computes $a = a'^{u}g^{v}y^{w}$ , Bank chooses large primes p, q | (p-1) and an $g \in \mathbb{Z}_p$ of order q. $c = h(m||a), c' = (c - w)u^{-1}$ and sends c' to Bank. Let $h: \{0,1\}^* \to Z_p$ be a collision-free hash function. Bank sends to Bob b' = r' - c'x. Bank's secret will be a randomly chosen $x \in \{0, \dots, p-1\}$ . **Bob verifies** whether $a' = g^{b'} y^{c'}$ , computes b = ub' + v and gets blind signature Public information: $(p, q, g, y = g^{x})$ . $\sigma(m) = (c, b)$ of m. Verification condition for the blind signature: $c = h(m||g^by^c)$ .

| APPENDIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SOME BASIC CONCEPTS OF APPLIED CRYPTOGRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>In applied cryptography literature the following concepts are often used:</li> <li>random string - a string obtained by tossing coins.</li> <li>nonce - a number that is used only once (in a use of a protocol).</li> <li>salt - a short random string.</li> <li>salting (padding) - attaching a short random string - a salt</li> <li>A use of such concepts will be illustrated in the next.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IV054 1. Identification, authentication, secret sharing and e-commerce 69/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IV054 1. Identification, authentication, secret sharing and e-commerce 70/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DIGITAL CASH TRANSACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E-cash withdraw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DIGITAL CASH TRANSACTIONS<br>Basic players and procedures:<br>Bank uses RSA with encryption (decryption) exponent<br>e(d) and modulus $n$ .<br>Digital money; $(m, m^d)$ , where $m$ is unique identification<br>number of a coin, $m^d$ is its bank signature.<br>Bank records all coin identification numbers in a<br>database of used coins together with an<br>identification of the money owner.<br>Blind signatures - blinding To sign a coin $m$ by a bank,<br>customer (Bob) chooses a random $r$ , sends<br>$t = r^e m (mod n)$ to bank. the bank signs it and<br>sends $u = t^d$ to Bob. By computing $ur^{-1}$ Bob<br>gets $m^d$ . | <ul> <li>E-cash withdraw</li> <li>Bob generates 100 sets of 100 unique strings S<sub>j</sub> = {l<sub>jk</sub>}<sup>100</sup><sub>k=1</sub>, 1 ≤ j ≤ 100, such that each l<sub>jk</sub> uniquely identifies Bob.</li> <li>Bob splits each l<sub>jk</sub> into two pieces l<sub>jk</sub> = (L<sub>jk</sub>, R<sub>jk</sub>).</li> <li>Bob sends to bank 100 blinded money orders M<sub>j</sub> = (100\$, m<sub>j</sub>, r<sub>j</sub><sup>e</sup> m<sub>j</sub>, {L<sub>jk</sub>, R<sub>jk</sub>}<sup>100</sup><sub>k=1</sub>), where all m<sub>j</sub> and r<sub>j</sub> are randomly chosen. Bank chooses randomly one of 100 money orders, say M<sub>100</sub>, checks that all remaining ones are for the same amounts, have different m<sub>j</sub> and that each L<sub>jk</sub> ⊕ R<sub>jk</sub> identifies Bob. If all is O.K. Bank signs M<sub>j</sub>. Bob unblinds signature to get ECash coin (m<sub>100</sub>, m<sup>d</sup><sub>100</sub>).</li></ul> |

#### **E-CASH SPENDING**

- I Shop verifies bank's signature by computing  $(m_{100}^d)^e = m_{100}$ .
- Shop sends Bob a random binary string  $b_1 b_2 \dots b_{100}$  and asks Bob to reveal  $L_{100_k}$  if  $b_k = 1$  and  $R_{100_k}$  if  $b_k = 0$  what Bob does, for all k. Afterwards, shop sends the money order to bank together with the chosen binary string b and Bob's responses.
- **Bank** checks its used coins database. If  $m_{100}$  is not there, bank deposits 100\$ into shop's account and  $m_{100}$  into its used coins database, together with Bob's identification, and let shop to know that the money order is. O.K. Shop then sends goods to Bob.
- If  $m_{100}$  is in the database of used coins, the money order is rejected. Bank then compares the identity string on false money order with the stored identity string attached to  $m_{100}$ . If they are the same, bank knows that shop duplicated the money order. If they differ, then bank knows that the entity who gave it to the shop must have copied it. In case the coin  $(m_{100}, m_{100}^d)$  was spent with another shop, then that shop gave Bob another binary string (in step 2). Bank compares corresponding binary strings to find an *i*, where *i*-th bits differ. This means that one shop asked Bob to reveal  $R_i$  and second  $L_i$ . By computing  $L_i \oplus R_i$  bank reveals Bob's identity, which can be reported to authorities.

IV054 1. Identification, authentication, secret sharing and e-commerce