IV054 Coding, Cryptography and Cryptographic Protocols **2017 - Exercises VII.**

- 1. Consider Chaum's blind signature scheme with public key (n, e) = (2279, 1135) and private key d = 127. Compute the signature of the message m = 935 using the random integer k = 554. Verify that the signature is the same as if the message was signed with the private key directly.
- 2. Consider the RSA signature scheme with public key n = 96427 and e = 79. You want to obtain the signature for the message m = 14879 and you are given one pick of any message $m' \neq m$ for which you will receive the corresponding signature. Which m' would you pick? Explain your reasoning.
- 3. Consider the ElGamal signature scheme with p = 1367, q = 2 and the public key y = 307. Suppose that you know the signature (a, b) = (652, 945) for the message w = 137. Without computing the private key x, find a valid message-signature pair for a message $w' \neq w$. Explain your reasoning.
- 4. Consider the Diffie-Hellman key exchange protocol with p > 5 a safe prime, *i.e.* there exists a prime r such that p = 2r + 1. Let q be a primitive root modulo p. Suppose that Alice and Bob both choose their secret exponents x, y uniformly in the range $1 \le x, y \le p 2$. Calculate the probability that the shared secret $q^{xy} \mod p$ is equal to 1.
- 5. Alice and Bob use the RSA signature scheme. Alice's public key is (n, e) = (1333, 41). Suppose you have captured two signed messages sent by Alice: $(m_1, sig(m_1)) = (314, 655)$ and $(m_2, sig(m_2)) = (271, 612)$. Without factoring n, find a signature for the message $m_3 = 1162$. Verify that it is valid.
- 6. Sign your UČO (Personal identification number) using the following signature scheme:
 - (a) RSA signature with (d, e, n) = (303703, 7, 1065023).
 - (b) ElGamal signature with (x, q, p, y) = (60221, 3, 555557, 214441) and a random component r = 12345.
 - (c) DSA signature with (p, q, r, x, y) = (585199, 10837, 46053, 1337, 187323) and a random component k = 8348.
- 7. Bob uses the Lamport signature scheme but he wants to save time so he recycles his private keys in the following way. He chooses two permutations σ_0 and σ_1 of the set $\{1, \ldots, k\}$ and computes the new private keys $y'_{i,j}$ from the old private keys $y_{i,j}$ in the following way, for $1 \le i \le k$:

$$y_{i,j}' = y_{\sigma_i^{-1}(i),j}$$

He used his old scheme to sign the message $x_1 \dots x_k$. When are you able to sign a whole message using his new scheme? What is this message?