IV054 Coding, Cryptography and Cryptographic Protocols **2013 - Exercises IX.**

- 1. Consider Shamir's (10, 3)-secret sharing scheme over \mathbb{Z}_p where p is a large prime. Suppose an adversary corrupts one of the share holders and this share holder intends to give a bad share in the secret cumulation phase. The problem is that nobody knows which share holder is corrupted.
 - (a) Describe a method to reconstruct s given all 10 shares and explain why it works.
 - (b) Determine the smallest number x of shares that are sufficient to reconstruct s. Explain.
 - (c) Is it true that any collection of fewer than x share holders can obtain no information about s? Explain.
- 2. Suppose Alice is using the Schnorr identification scheme where q = 179, p = 3581, t = 7 and $\alpha = 3443$.
 - (a) Verify that α has order q in \mathbb{Z}_p .
 - (b) Let Alice's secret exponent be a = 42. Compute v.
 - (c) Suppose that k = 29. Compute γ .
 - (d) Suppose that Bob sends the challenge r = 61. Compute Alice's response y.
 - (e) Perform Bob's calculations to verify y.
- 3. Consider a village consisting of 13 families (3-4 people) with 5 councilors and a mayor. They want to store a secret so that to recover the secret, the following people have to be present:
 - at least one person from each of at least 9 families;
 - at least 3 councilors;
 - the mayor.

However, they only know Shamir's (n, t)-secret sharing scheme.

Can they do it somehow without affecting the security of the protocol?

(*ie.* so that a set of participants that does not qualify for recovering the secret will still get no information about the secret)

- 4. Consider the Schnorr identification scheme.
 - (a) Why is it important that the steps 1, 2 and 4 in the scheme, as described in the lecture, are in this order? Would it affect security of the protocol if Bob chooses and sends the r first?
 - (b) When following the protocol, after receiving γ from Alice, Bob realizes Alice is using the same γ that she previously used when identifying to him. He saved logfiles of that communication. Can he abuse this?
- 5. Let (m, t) be a message m authenticated by a tag t, computed according to some protocol. Perfectly secure authentication essentially means that the best strategy the adversary has to authenticate any message $m' \neq m$ is to guess it's valid tag t' uniformly at random, even after observing (m, t).

Alice and Bob share a random key and they use it to authenticate their two bit messages with single bit tags. The protocol consists of picking one of the functions from the set H according to the secret key. Alice's message is then $(m, h_k(m))$, where h_k is the hash function chosen according to the secret key. Bob, after receiving (possibly modified) message (m', t') computes $h_k(m')$ and verifies if $t' = h_k(m')$.

More on next page >>>

(a) Consider H given by the following table. Is the protocol secure? Explain your reasoning.

$m \mapsto$	00	01	10	11
h_1	1	1	0	0
h_2	0	0	1	1
h_3	1	0	0	1
h_4	0	1	1	0

- (b) Can you find a set H that provides a secure authentication?
- 6. Let f be a one-way permutation. Consider the following signature scheme for messages from $N = \{1, \ldots, n\}$:
 - To generate keys, choose random $x \in \{0,1\}^n$ and set $y = f^n(x)$ (that is, f applied n times). The public key is y and the private key is x.
 - To sign message $i \in \{1, ..., n\}$, output $f^{n-i}(x)$ (where $f^0(x) = x$ by definition).
 - To verify signature σ on message *i* with respect to public key *y*, check whether $y = f^i(\sigma)$.
 - (a) Show that the above is not a secure (even one-time) signature scheme. Given a signature on a message i, for what messages $F_i \subseteq N$ can an adversary output a forgery?
 - (b) Prove that no polynomial time adversary, given a signature on i, can output a forgery on any message in N \ F_i except with negligible probability.
 - (c) Suggest how to modify the scheme so as to obtain a secure one-time signature scheme.