1. Decrypt the following cryptotexts.

(a) WIWGC RYC CXA VYC VYMW LGXUGWOO. WIWGC OSWL VYC QW BGAIHSBAN.
 CW SEWGW DHNN OSGSPE XAS QWBGXGW CXA YZ WIWGW-NWZUSEWZHUU,
 WIWGW-YOFWZHUU, WIWGW-HVGLGXIHZU LYSE. CXA MZXD CXA DHNN ZIWIWG
 UWS SX SEW WZR XB SEW FXAGZWC. QAS SEHO, OX BYG BGXV
 RHOPXAGYUHUZU, XZNC YRRO SX SEW FXC YZR UNXGC XB SEW PNHVQ.

(b) DZYOH HIBYG ITZYL IUODW TYKHS KBKOJ TZOXY DIGUM XUDID MDIKB
 GITZY LEZYL YIBYO GZJYD DYLIB OBOJT ZOXYD IUSOT TYPDK IDUBM
 SYLG YCMIV OJYBD YBGLW TDYPM UIBQO UISTJ YSDOZ YSDDI GOJHM
 BGDIK BOBPG KFYUL DYPXO GADKO JYDDY L

(c) 0-13-066943-1 0-471-08132-9 0-684-83130-9 0-8476-7438-X
 0-8493-8523-7 0-387-94293-9 978-1-420-07146-7

(d) MAIDEN POET

2. You have captured cryptotext encrypted with the Vigenère cipher such that the string GIEFPHIH
 starts at positions 7, 1253 and 2261. Estimate the key length.

3. Consider the Hill cryptosystem with an $n \times n$ matrix H and the English alphabet used.

 (a) Is the cryptosystem perfectly secure, if we use it to send n encrypted blocks of length n?
 (Assume that all possible messages are sent with the same probability.)

 (b) If not, formulate a necessary and sufficient condition for the plaintext blocks so that the cryp-
 tosystem is perfectly secure.

 (c) How many blocks that obey this condition can be sent at most using the same matrix H?

4. Construct as minimum as possible cryptosystem S and two different key distributions P_K and P'_K
 such that S_{P_K} and $S_{P'_K}$ are both perfectly secure.

5. Perform the known-plaintext attack against 2×2 key matrix of the Hill cryptosystem if you obtained
 plaintext/ciphertext couple lesf/DMFX.

6. Consider the cryptosystem which uses the table given below to encrypt letters into 1-digit or 2-
 digit numbers. Letters from the first row are encrypted with the digit in the corresponding column
 whereas a letter from the second or third row is encrypted with the digit in the corresponding row
 followed with the digit in the corresponding column, eg. $S \rightarrow 7$, $Q \rightarrow 61$. In the second cipher stage,
 modulo 10 subtraction of a secret key number is performed.

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A T O N E S I R</td>
</tr>
<tr>
<td>2 B C D F G H J K L M</td>
</tr>
<tr>
<td>6 P Q U V W X Y Z</td>
</tr>
</tbody>
</table>

 Listen to this short-wave radio broadcast from a numbers station, which reaches you as a special
 agent behind enemy lines. It contains a message which has been encoded by subtraction with the
 following key:

 66153 77185 10800 54937 48159 83271 12895 07132 34987 53954 23074

 Decrypt the message.