Part VII

CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important
inventions/applications of modern cryptography.

The problem is how can a user sign (electronically)
an (electronic) message such that everybody (or the
intended addressee only) can verify the signature
that should be good enough also for legal purposes.

Moreover, a properly implemented digital signature should
give the receiver a reason to believe that the received
message was created by the claimed sender and was not
altered in transit.

In many countries digital signatures have legal
significance.

prof. Jozef Gruska IV054 7. Digital signatures 2/60

DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitalizing our usual
signature and attaching them to the messages
(documents) that need to be signed?

No, because such signatures could be easily
removed and attached to some other documents or
messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the message that is being
signed.

prof. Jozef Gruska IV054 7. Digital signatures 3/60

HASH FUNCTIONS - SUMMARY

Cryptographically secure hash functions h are such one-way
functions that map huge sets S to much smaller sets H (of
"hashes/fingerprints”) and have the following properties:

For no w € S it is feasible to find a wy € S such that
h(w) = h(w).

It is infeasible to find two different w, w; € S such that
h(w) = h(w).

prof. Jozef Gruska IV054 7. Digital signatures 4/60

BASIC IDEAS

BASIC IDEAS

Example: Assume that each user A can use a special public-key cryptosystem (ea,da).

One way to sign a message w by a user A so that any user can verify the signature, is to
apply on w (as the signing procedure) the mapping da :

da(w) signature verification: ea(da(w)) = w

One way to sign a message w by a user A so that only the user B can verify the
signature, is to apply on w (as the signing procedure) at first the mapping da and then,
on the outcome, eg:

eg(da(w)) signature verification: ea(dg(es(da(w)))) = w

A way to send a message w, and a signed message digest of w, obtained by using a hash
function h so that any responder can verifier the signature:

(w, da(h(w)))

prof. Jozef Gruska IV054 7. Digital signatures 5/60

EXAMPLE

Example Assume Alice succeeds to factor the
integer Bob used, as modulus, to sign his will,
using RSA, 20 years ago.

Even if the key has already expired, Alice can
rewrite Bob's will, leaving fortune to her, and date
it 20 years ago.

Moral: It may pay off to factor a single integers
usmg many very powerful computers for many

prof. Jozef Gruska IV054 7. Digital signatures 6,/60

DIGITAL SIGNATURES - BASIC GOALS

Basic requirements - |. Digital signatures should be such that each user should be able
to verify signatures of other users, but that should give him/her no information how to
sign a message on behalf of any other user.

Basic requirements - Il A valid digital signature should give the recipient reasons to
believe that the message was created by a known sender and that it was not altered in
transit.

Note An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always looks
the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from) the
origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).

prof. Jozef Gruska IV054 7. Digital signatures 7/60

DIGITAL SIGNATURES - BASIC MODES

If only signature (but not the encryption of the message) are of importance, then it
suffices that Alice sends to Bob

(w, da(w))
Caution: Signing a message w by A for B by

es(da(w))
is O.K., but the symmetric solution, with encoding first:

c = da(es(w))
is not good.
Indeed, an active enemy, the tamperer, can intercept the message, then can compute
dr(ea(c)) = dr(es(w))

and can send the outcome to Bob, pretending that it is from him/tamperer (without
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the same
can be used for digital signature.

prof. Jozef Gruska IV054 7. Digital signatures 8/60

WHY TO SIGN HASHES of MESSAGES and not MESSAGES
THEMSELVES

There are several reasons why it is better to sign hashes of messages than messages
themselves.

For efficiency: Hashes are much shorter and so are their signatures - this is a way to
save resources (time,...)

For compatibility Messages are typically bit strings. Digital signature schemes, such
as RSA, operate often on other domains. A hash function can be used to convert an
arbitrary input into the proper form.

For integrity: If hashing is not used, a message has to be often split into blocks and
each block signed separately. However, the receiver may not able to find out
whether all blocks have been signed and in the proper order.

prof. Jozef Gruska IV054 7. Digital signatures 9/60

A SCHEME of DIGITAL SIGNATURE SYSTEMS - SIMPLIFIED
VERSION

A digital signature system (DSS) consists of:
m P - the space of possible plaintexts (messages).
m S - the space of possible signatures.
m K - the space of possible keys.
=

For each k € K there is a signing algorithm sigx and a corresponding verification
algorithm ver, such that
sigk : P — S.
very : P® S — {true, false}

and

true if s = sigk(w);

verg(w,s) =) gx(w):,
false otherwise.

Algorithms sigx and ver, should be computable in polynomial time.

Verification algorithm can be publicly known; signing algorithm (actually only its
key) should be kept secret

prof. Jozef Gruska IV054 7. Digital signatures 10/60

DIGITAL SIGNATURE SCHEMES |

Digital signature schemes are basic tools for authentication and non-repudiation of
messages. A digital signature scheme allows anyone to verify signature of any sender S
without providing any information how to generate signatures of S.
A Digital Signature Scheme (M, S, K, K,) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing - one for each signer

K, - a set of public keys for verification - one for each signer

Moreover, it is required that:

For each k from Kj, there exists a single and easy to compute signing mapping
sigr: {0,1}* XM — S
For each k from K, there exists a single and easy to compute verification mapping

veri: M x S — {true, false}

such that the following two conditions are satisfied:

prof. Jozef Gruska IV054 7. Digital signatures 11/60

DIGITAL SIGNATURES SCHEMES Il - conditions

Correctness:
For each message m from M and public key k in K,, it should hold
vere(m,s) = true
if there is an r from {0,1}" such that
s = sigi(r, m)
for a private key | from K, corresponding to the public key k.
Security:

For any w from M and k in K, , it should be computationally infeasible, without the
knowledge of the private key corresponding to k, to find a signature s from S such that

verc(w, s) = true.

prof. Jozef Gruska IV054 7. Digital signatures 12/60

ATTACK MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK : The attacker is only given the public verification key.

KNOWN SIGNATURES ATTACK : The attacker is given valid signatures for several
messages known but not chosen by the attacker.

CHOSEN SIGNATURES ATTACK : The attacker is given valid signatures for sever al
messages chosen by the attacker.

ADAPTIVE CHOSEN SIGNATURES ATTACKS : The attacker is given valid

signatures for sever al messages chosen by the attacker where messages
chosen may depend on previous signatures given for chosen messages.

prof. Jozef Gruska IV054 7. Digital signatures 13/60

LEVELS of BREAKING of DIGITAL SIGNATURES

m Total break of a signature scheme: The adversary manages to recover the secret
key from the public key.

m Universal forgery: The adversary can derive from the public key an algorithm which
allows to forge the signature of any message.

m Selective forgery: The adversary can derive from the public key a method to forge
signatures of selected messages (where selection was made a priory the knowledge of
the public key).

m Existential forgery: The adversary is able to create from the public key a valid
signature of a message m (but has no control for which m).

Observe that to forge a signature scheme means to produce a new signature - it is not
forgery to obtain from the signer a valid signature.

prof. Jozef Gruska IV054 7. Digital signatures 14/60

A DIGITAL SIGNATURE of one BIT

Let us start with a very simple, but much illustrative (though non-practical), example
how to sign a single bit.

Design of the signature scheme:
A one-way function f(x) is chosen.
Two integers ko and ki are chosen and kept secret by the signer, and three items
f, (0, s0), (1, s1)
are made public, where
so = f(ko), s1 = (k1)
Signature of a bit b:
(b, kb).
Verification of such a signature

Sp = f(kb)

SECURITY?

prof. Jozef Gruska IV054 7. Digital signatures 15/60

FROM RSA CRYPTOSYSTEM to RSA SIGNATURES

The idea of RSA cryptosystem is simple.
Public key: modulus n = pg and encryption exponent e.
Secret key: decryption exponent d and primes p, q

Encryption of a message w: ¢ = w®
Decryption of the cryptotext ¢: w = ¢?.

Does it has a sense to change the order of these two operations: To do first
c=w’

and then
c?

Is this a crazy idea? No, we just ned to call these operations differently. Indeed,

d
S=w

will be seen as the signature of the message w

and

as a verification of such the signature

prof. Jozef Gruska IV054 7. Digital signatures

16/60

RSA SIGNATURES and ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w:

d

s = (w,0), where 0 = w® mod n

Verification of a signature s = (w, 0):
w = ¢° mod n?

Attacks

m It might happen that Bob accepts a signature not produced by Alice. Indeed, let
Eve, using Alice’s public key, compute w* and say that (w®, w) is a message signed
by Alice.

Everybody verifying such a signature as Alice’s signature gets w® = w°®.
m Some new signatures can be produced without knowing the secret key.

Indeed, is o1 and o2 are signatures for wi and ws, then o102 and 01_1 are signatures

for wiws and Wfl.

prof. Jozef Gruska IV054 7. Digital signatures 17/60

ENCRYPTIONS versus SIGNATURES

Let each user U use a cryptosystem with encryption and decryption algorithms: ey, du

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption: eu(w)
Decryption: du (eu(w))

PUBLIC-KEY SIGNATURES

Signing: du(w)
Verification of the signature: eu (du(w))

prof. Jozef Gruska IV054 7. Digital signatures 18/60

FROM PKC to DSS - again

Any public-key cryptosystem in which the plaintext and cryptotext space are the same,
can be used for digital signature.

Signing of a message w by a user A so that any user can verify the signature:
da(w).
Signing of a message w by a user A so that only user B can verify the signature:
eg(da(w)).

Sending a message w and a signed message digest of w obtained by using a (standard)
hash function h:

(w, da(h(w)))-

If only signature (but not the encryption of the message) are of importance, then it
suffices that Alice sends to Bob

(w, da(w)).

prof. Jozef Gruska IV054 7. Digital signatures 19/60

RABIN SIGNATURES

A collision-resistant hash function h: {0,1}* — {0,1}* is used for some fixed k.

Keys generation The signer S chooses primes p, g of size approximately k/2 and
computes n = pq.
n is the public key
the pair (p, q) is the secret key.

Signing :

m To sign a message w, the signer chooses random string U and
calculates h(wU);
If h(wU) ¢ QR(n), the signer picks a new U and repeats the process;
Signer solves the equation x? = h(wlU) mod n;
The pair (U, x) is the signature of w.

Verification Given a message w and a signature (U, x) the verifier V computes x*
and h(wU) and verifies that they are equal.

prof. Jozef Gruska IV054 7. Digital signatures 20/60

IMPORTANT FACTS

Fact 1

a=b (mod(p—1))

then for any integer x
x* = x"(modp)

Fact 2
If a, n, x,y are integers and gcd(a, n) = 1, then

x =y (mod¢(n)) implies a* = a” (modn)

prof. Jozef Gruska IV054 7. Digital signatures 21/60

ElGamal SIGNATURES

Design of the EIGamal digital signature system: choose: prime p, integers
1 < g < x < p, where g is a primitive element of Z;;

Compute: y = g* mod p
key K = (p, a, x, y)
public key (p, g, y) - secret key: x
Signature of a message w: Let r € Z;_; be randomly chosen and kept secret.
sig(w, r) = (a, b),
where a = ¢" mod p
and b = (w — xa)r~! (mod (p — 1)).
Verification: accept a signature (a,b) of w as valid if

y’a” = ¢ (mod p)

(Indeed: yaab = qaxqrb = qax+wfax+k(p71)

q" (mod p))

prof. Jozef Gruska IV054 7. Digital signatures 22/60

ElGamal SIGNATURE - EXAMPLE

Example
choose: p=11,q=2,x=28
compute: y = q* =2 mod 11 = 3

message w = 5 is signed as (a,b) (where Ja = g" mod p,w = xa+ rb mod (p

if we choose r = 9 — (this choice is O.K. because gcd(9, 10) = 1)
then we compute a = ¢" =2° mod 11 = 6
solve equation: 5 =86+ 9b (mod 10)
that is 7 = 9b (mod 10) = and so we get b=3

signature is now: (6, 3)

prof. Jozef Gruska IV054 7. Digital signatures

—1)

23/60

SECURITY of ElGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge EIGamal signature
(with x - secret; p, g and y = ¢* mod p - public):

sig(w, r) = (a, b);
where r is random and a = ¢" mod p; b = (w — xa)r * (modp — 1).

First suppose Eve tries to forge signature for a new message w, without knowing x.

m If Eve first chooses a value a and tries to find the corresponding b, it has to compute
the discrete logarithm

a

lgaq™y—2,
(because a® = q’(“’*x‘?)F1 = g *@ = g%y~ ?) what is infeasible.
m If Eve first chooses b and then tries to find a, she has to solve the equation
y?ab = ¢ = g¥ (mod p).
It is not known whether this equation can be solved for any given b efficiently.
B If Eve chooses a and b and tries to determine w such that (a,b) is signature of w,
then she has to compute discrete logarithm

lggy?a®.
‘random” message this way.

Hence, Eve can not sign a

prof. Jozef Gruska IV054 7. Digital signatures 24/60

From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA is a digital signature standard, described on the next two slides, that is a
modification of ElGamal digital signature scheme. It was proposed in August 1991 and
adopted in December 1994,

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify its signature many years after the message is signed.

Since EIGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

prof. Jozef Gruska IV054 7. Digital signatures 25/60

DIGITAL SIGNATURE STANDARD I

In December 1994, on the proposal of the National Institute of Standards and
Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.

Design of DSA

The following global public key components are chosen:

m p - a random [-bit prime, 512 </ < 1024, | = 64k.

® g - a random 160-bit prime dividing p -1.

s r= hP~1/4 mod p, where h is a random primitive element of Z,, such that r > 1,
r # 1 (observe that r is a g-th root of 1 mod p).

A The following user's private key component is chosen:
= x - a random integer (once), 0 < x < q,
El The following value is also made public

my = r* mod p.

@ Keyis K= (p,q,r x Y)

prof. Jozef Gruska IV054 7. Digital signatures 26/60

DIGITAL SIGNATURE STANDARD II

Signing and Verification

Signing of a 160-bit plaintext w
m choose random 0 < k < g
m compute a = (r* mod p) mod q
m compute b = k™*(w + xa) mod q where kk™' =1 (mod q)
= signature: sig(w, k) = (a, b)
Verification of signature (a, b)
m compute z=bh"! mod g
m compute u3 = wz mod g, u2 = az mod q
verification:

verk(w, a, b) = true < (r*y*> mod p) mod g=a

prof. Jozef Gruska IV054 7. Digital signatures

27/60

Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers vi,..., vk and

1

compute, as a secret key, si,...,Sk,Si = 1/v. = mod n.

i

Protocol for Alice to sign a message w:
Alice first chooses (as a security parameter) an integer t, then t random integers

1<n,...,rn <n, and computes x; = r,»2 mod n, for 1 </ < t.

Alice uses a publicly known hash function h to compute H = h(wxix2 ... x;) and
then uses the first kt bits of H, denoted as by, 1 <i < t,1 < j < k as follows.
Alice computes y1, ..., ¥t

yi= r,Hs mod n

Alice sends to Bob w, all bj, all y; and also h {Bob already knows Alice’s public key
Vi,.. oy Vk}

Bob finally computes zi, ..., zx, where
k

k k

zi=y? ij,-j mod n = r? H(vfl)b"f H vjb'j =rl=x
J=1 j= Jj=1

and verifies that the first k X t bits of h(wxix2 ... x;) are the bj values that Alice

has sent to him.

Security of this signature scheme is 27,

Advantage over the RSA-based signature scheme: only about 5% of modular

multiplications are needed.

prof. Jozef Gruska IV054 7. Digital signatures 28/60

SAD STORY

Alice and Bob got to jail - and, unfortunately, to different
jails.

Walter, the warden, allows them to communicate by
network, but he will not allow their messages to be
encrypted.

Problem: Can Alice and Bob set up a subliminal channel,
a covert communication channel between them, in full

view of Walter, even though the messages themselves that
they exchange contain no secret information?

prof. Jozef Gruska IV054 7. Digital signatures 29/60

Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that ged(n, k) = 1.

They calculate h = k™2 mod n= (k™')> mod n.

They make h, n to be public key

They keep secret k as trapdoor information.

Let w be secret message Alice wants to send (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w' (it has to be such that gcd(w ',n) = 1)
Signing by Alice:

S5 =
S =

Signature: (51, S2). Alice then sends to Bob (w', 51, S2)

Signature verification method for Walter: w' = SZ — hSZ(' mod n)
/
w
Decryption by Bob: w = -———~ mod n
yp y CEVES)

-(WWl—i—w) mod n

(% —w) mod n

w

STESNIT

prof. Jozef Gruska IV054 7. Digital signatures 30/60

LAMPORT ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use
only - from any cryptographically secure one-way function.

Let k be a positive integer and let P = {0, 1}* be the set of messages.
Let f: Y — Z be a one-way function where Y is a set of "signatures”.

For1<i<k,j=0.1let y; € Y be chosen randomly and z; = f(y;).
The key K consists of 2k y's and z's. y's form the secret key, z's form the public key.
Signing of a message x = xi ... xx € {0,1}*
sign(xi ... xk) = (Vixas---» Yk) = (a1,. .., ak) - notation
and
verif (x1... Xk, a1,...,ak) = true & f(a;) =z, 1 < i < k
Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used to sign only one message.

prof. Jozef Gruska IV054 7. Digital signatures 31/60

LAMPORT SIGNATURE - ANOTHER VIEW

A cryptographically secure hash function h: {0,1}* — {0,1

1%% is available as well

as a cryptographically secure random number generator G.

Keys generation: To create the private key the signer S uses the random number

Signing

Verification

prof. Jozef Gruska

generator G to generate 256 pairs of random 256-bits numbers (in total
2 x 256 x 256 bits - 16 KB in total). This will be secret key of the signer.
To create the public key S, signer hashes each of the 512 random
numbers in the private key, creating 512 hashes, each of 256 bits (16 KB
in total). The 512 numbers form the public key.

If the signer S wants to sign a message w she computes first h(w).
Afterwards, to each of 256 bits in the hash, S picks the corresponding
number from its private key - if the i-th bit is 0 (1), S chooses the first
(second) number of the i-th pair.This gives the signer 256 random
numbers (8 KB in total). These numbers are the signature of the
message w.

To verify the Signer's signature of the message w the verifier V first
computes h(w).Then V uses bits of the hash to pick out 256 of the
hashes of Signer’'s public key.V picks the hashes in the same manner that
signer picked the random numbers for the signature.The verifier then
computes 256 hashes of the 256 random numbers of the Signer's
signature. If these 256 hashes match exactly 256 hashes he just picked

from Signer's public kev then the signature is valid.If not somethlng went
V054 7. Digital signatures

Lamport signature - 1.

An interest in the Lamport signatures steams to a
large extend from the fact that it is believed that
Lamport signatures with large hash functions will
stay secure even when quantum computers are
available.

prof. Jozef Gruska IV054 7. Digital signatures 33/60

MERKLE SIGNATURES - I.

Merkle signature scheme with a parameter m = 2" allows
to sign any of the given 2" messages (and no other).

The scheme is based on so-called hash trees and uses a
fixed collision resistant hash function h as well as Lamport
one-time signatures and its security depends on their
security.

The main reason why Merkle Signature Scheme is of

interest, is that it is believed to be resistant to attacks
using quantum computers.

prof. Jozef Gruska IV054 7. Digital signatures 34/60

MERKLE SIGNATURES - IlI.

Public key generation - a single key for all signings At first one needs to generate
public keys PK; and secret keys SK; for all 2" messages m; and to compute also h(PK;)
for all i < 2.

As the next step a complete binary tree with 2" leaves is designed and the value h(PK;)
is stored in the i-the leave, counting from left to right. Moreover, to each internal node
the hash of the concatenation of hashes of its two children is stored. The hash assigned
to the root is the public key of the Merkle signature scheme and the tree is called Merkle
tree. See next figure for a Merkle tree.

[h]

hash of concatenation of hashes
of children

L

h(PKK;) in the i~th node

prof. Jozef Gruska IV054 7. Digital signatures 35/60

MERKLE SIGNATURE - 1.

Signature generation To sign a message m;, this message is firs signed using the one-use
signature scheme with keys (PK;, SK;). This signature plus a sequence of n hashes
chosen from all those nodes that are needed to compute the hash of the root, is the
Merkle signature, see next figure where hashes assigned tom the gray node and a
sequence of black nodes form the signature.

The verifier knows the public key - hash assigned to the root and signature created as
above. This allows him to compute all hashes assigned to the root from the leave to the
root and to verify that the value assigned this way agrees with he public key - hash
assigned to the root.

[h]

hash of concatenation of hashes
of children
[
h(PKK;)

in the i-th node

prof. Jozef Gruska IV054 7. Digital signatures 36/60

GMR SIGNATURE SCHEME

In 1988 Shafi Goldwasser, Silvio Micali and Ronald Rivest
were the first to define rigorously security requirements for
digital signature schemes.

They also presented a new signature scheme, known
nowadays as GMR signature scheme.

It was the first signature scheme that was proven as being
robust against an adaptive chosen message attacks:an
adversary who receives signatures of messages of his
choice (where each message may be chosen in a way that
depends on the signatures of previously chosen messages)
cannot later forge the signature even of a single additional
message.

prof. Jozef Gruska IV054 7. Digital signatures 37/60

SIGNING of HASHES /FINGERPRINTS

Signature schemes presented so far allow to sign only "short” messages.

For example, DSS is used to sign 160 bit messages (with 320-bit signatures).

A naive solution is to break long message into a sequence of short ones and to sign each
block separately.

Disadvantages: signing is slow and for long signatures integrity is not protected.

The solution is to use a fast public hash function h which maps a message of any length
to a fixed length hash. The hash is then signed.

Example:

message w arbitrary length
message digest z=h(w) 160bits

El Gamal signature y = sig(z) 320bits

If Bob wants to send a signed message w he sends (w, sig(h(w)).

prof. Jozef Gruska IV054 7. Digital signatures 38/60

TIMESTAMPING

There are various ways that a digital signature can be compromised.

For example: if Eve determines the secret key of Bob, then she can forge signatures of
any Bob’s message she likes. If this happens, authenticity of all messages signed by Bob
before Eve got the secret key is to be questioned.

The key problem is that there is no way to determine when a message was signed.

A timestamping protocol should provide a proof that a message was signed at a certain
time.

In the following pub denotes some publicly known information that could not be
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of a signature on a message w, using a hash function h.
Bob computes z = h(w);

Bob computes z' = h(z

| pub); = { ||} denotes concatenation
Bob computes y = sig(z');
Bob publishes (z, pub, y) in the next day newspaper.

It is now clear that signature could not be done after the triple (z, pub, y) was published,
but also not before the date pub was known.

prof. Jozef Gruska IV054 7. Digital signatures 39/60

BLIND SIGNATURES

The basic idea is that Alice makes Bob to sign a message m without Bob knowing m,
therefore blindly

— this is needed in e-commerce.

Blind signing can be realized by a two party protocol, between the Alice and Bob, that
has the following properties.

m In order to sign (by Bob) a message m, Alice creates, using a blinding procedure,
from the message m a new message m+ from which m can not be obtained without
knowing a secret, and sends m+ to Bob.

= Bob signs the message mx to get a signature syu+ (of mx) and sends sm. to Alice.
The signing is to be done in such a way that Alice can afterwards compute, using an
unblinding procedure, from Bob's signature sy, of m* — Bob's signature sp, of m.

prof. Jozef Gruska IV054 7. Digital signatures 40/60

Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.
Let Bob’s RSA public key be (n, e) and his private key be d.
Let m be a message, 0 < m < n,
PROTOCOL:
m Alice chooses a random 0 < k < n with ged(n, k) = 1.

m Alice computes m* = mk® (mod n) and sends it to Bob (this way Alice blinds the
message m).

u Bob computed s* = (m*)? (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

u Alice computes s = k~!s*(mod n) to obtain Bob’s signature m¢ of m (Alice
performs unblinding of m*).

Verification is equivalent to that of the RSA signature scheme.

prof. Jozef Gruska IV054 7. Digital signatures 41/60

FAIL-THEN-STOP SIGNATURES

They are signatures schemes that use a trusted authority and provide ways to prove, if it
is the case, that a powerful enough adversary is around who could break the signature
scheme and therefore such a signature scheme should not be used any longer.

The scheme is maintained by a trusted authority that chooses a secret key for each
signer, keeps them secret, even from the signers themselves, and announces only the
related public keys.

An important idea is that signing and verification algorithms are enhanced by a so-called
proof-of-forgery algorithm. When the signer sees a forged signature he is then able to
compute his secret key. By submitting this key to the trusted authority he can prove the
existence of a forgery and this way to achieve that any further use of the signature
scheme is stopped.

So called Heyst-Pedersen Scheme is an example of a Fail-Then-Stop signature Scheme.

prof. Jozef Gruska IV054 7. Digital signatures 42/60

DIGITAL SIGNATURES with ENCRYPTION and RESENDING

let us consider the following communication between Alice and Bob:
Alice signs the message: sa(w).
B Alice encrypts the signed message: eg(sa(w)) and sends it to Bob.
B Bob decrypts the signed message: dg(es(sa(w))) = sa(w).
1 Bob verifies the signature and recovers the message va(sa(w)) = w.
Consider now the case of resending the message as a receipt
H Bob signs and encrypts the message and sends to Alice ea(sg(w)).
@ Alice decrypts the message and verifies the signature.

Assume now: vy = €y, Sx = dx for all users x.

prof. Jozef Gruska IV054 7. Digital signatures 43/60

A SURPRISING ATTACK to the PREVIOUS SCHEME

Mallot intercepts eg(sa(w)).
Later Mallot sends eg(sa(w)) to Bob pretending it is
from him (from Mallot).

Bob decrypts and “verifies” the message by computing

em(dp(es(da(w)))) = em(da(w)) — a garbage.
Bob goes on with the protocol and returns to Mallot
the receipt:

em(ds(em(da(w))))
Mallot can then get w.
Indeed, Mallot can compute
ea(du(es(dm(en(ds(em(da(w)))))))) = w.

prof. Jozef Gruska IV054 7. Digital signatures 44/60

ANOTHER MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

Alice sends the pair (eg(es(w)||A), B) to Bob.

B Bob uses dg to get A and w, and acknowledges the receipt by sending the pair
(ea(ea(w)||B), A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A, B, . ..
are strings.)

What can an active eavesdropper C do?

m C can learn (ea(ea(w)||B), A) and therefore ea(w’) for w’ = ea(w)||B.

= C can now send to Alice the pair (ea(ea||w’)||C), A).

Alice, thinking that this is the step 1 of the protocol, acknowledges the receipt by
sending the pair (ec(ec(w’)||A), C) to C.

C is now able to learn w' and therefore also ea(w).
= C now sends to Alice the pair (ea(ea(w)||C), A).

Alice makes acknowledgment by sending the pair (ec(ec(w)||A), C).

m Cis now able to learn w.

prof. Jozef Gruska IV054 7. Digital signatures 45/60

PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, |, n such that kK + / < n, a trapdoor permutation
f:D— D,DcC{0,1}",
a pseudorandom bit generator
G :{0,1} — {0,1}* x {0,1}"" " w — (Gi(w), G2(w))
and a hash function
h:{0,1}* — {0,1}".

The following PSS scheme is applicable to messages of arbitrary length.
Signing: of a message w € {0,1}".

Choose random r € {0,1}* and compute m = h(w/|r).

B Compute G(m) = (G1(m), G2(m)) and y = m||(G1(m) @ r)|| G2(m).

Bl Signature of wis o = f1(y).
Verification of a signed message (w, o).

= Compute f(o) and decompose f(c) = m||t||u, where |[m| = I, |t| = k and

luj=n—(k+1).
m Compute r =t @ Gi(m).
= Accept signature o if h(wl||r) = m and Gz(m) = u; otherwise reject it.

prof. Jozef Gruska IV054 7. Digital signatures

46/60

Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS -
repetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z;
and then they perform, through a public channel, the following activities.

m Alice chooses, randomly, a large 1 < x < p — 1 and computes
X = qg* mod p.
m Bob also chooses, again randomly, a large 1 < y < p — 1 and computes
Y = g’ mod p.
m Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.
m Alice computes Y™ mod p and Bob computes X” mod p and then each of them has
the key
K = g mod p.
An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute ¢ from ¢~ and ¢”, what

is believed to be infeasible.
prof. Jozef Gruska IV054 7. Digital signatures 47/60

AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U has a signature algorithm sy and a verification algorithm vy .
The following protocol allows Alice and Bob to establish a key K to use with an
encryption function ex and to avoid the man-in-the-middle attack.

Alice and Bob choose large prime p and a generator g € Z,.
Alice chooses a random x and Bob chooses a random .
Alice computes ¢ mod p, and Bob computes ¢¥ mod p.
Alice sends g* to Bob.

Bob computes K = ¢ mod p.
Bob sends ¢” and ex(ss(q”, g*)) to Alice.

A

3]

a

6]

Alice computes K = ¢ mod p.
B Alice decrypts ex(se(q”, g*)) to obtain sg(q”, g*).

@ Alice verifies, using an authority, that vg is Bob's verification algorithm.
i Alice uses vg to verify Bob's signature.

i Alice sends ex(sa(g*, q”)) to Bob.

= Bob decrypts, verifies va, and verifies Alice’s signature.

n

An enhanced version of the above protocol is known as Station-to-Station protocol.

prof. Jozef Gruska IV054 7. Digital signatures 48/60

SECURITY of DIGITAL SIGNATURES

It is very non-trivial to define security of a digital
signature.

Definition A chosen message attack is a
process by which on an input of a verification key
one can obtain a signature (corresponding to the
given key) to a message of its choice.

A chosen message attack is considered to be
successful (in so called existential forgery) if it
outputs a valid signature for a message for which
it has not requested a signature during the attack.

prof. Jozef Gruska IV054 7. Digital signatures 49/60

THRESHOLD DIGITAL SIGNATURES

The idea of a (t+1, n) threshold signature scheme is to distribute the power of the
signing operation to (t+1) parties out of n.

A (t+1) threshold signature scheme should satisfy two conditions.

Unforgeability means that even if an adversary corrupts t parties, he still cannot
generate a valid signature.

Robustness means that corrupted parties cannot prevent uncorrupted parties to generate
signatures.

Shoup (2000) presented an efficient, non-interactive, robust and unforgeable threshold
RSA signature schemes.

There is no proof yet whether Shoup’s scheme is provably secure.

prof. Jozef Gruska IV054 7. Digital signatures 50/60

HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.

In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.

The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989

ElGamal digital signatures were invented in 1984.

In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect) security of digital signature
schemes.

prof. Jozef Gruska IV054 7. Digital signatures 51/60

APPENDIX

GENERAL OBSERVATIONS - I.

Digital signatures are often used to implement electronic signatures - this is a
broader term that refers to any electronic data that carries the intend of a signature.
Not all electronic signatures use digital signatures.

In some countries digital signatures have legal significance

Properly implemented digital signatures are more difficult to forge than the
handwritten ones.

Digital signatures can also provide non-repudiation. This means that the signer
cannot successfully claim: (a) that he did not signed a message, (b) his private key
remain secret.

Whitfield Diffie and Martin Hellman were the first, in 1976, to describe the idea of
digital signatures, although they only conjectured that such schemes exist.

The first broadly marketed software package to offer digital signature was Lotus
Notes 1.0, released in 1989, which used RSA algorithm

prof. Jozef Gruska IV054 7. Digital signatures 53/60

GENERAL OBSERVATIONS - II.

DSA was adopted in US as Federal Information Processing
Standard for digital signatures in 1991.

Adaptation was revised in 1996, 2000, 2009 and 2013

DES is covered by US-patent attributed to David W.
Krantz (former NSA employe). Claus P. Schnor claims
that his US patent covered DSA.

prof. Jozef Gruska IV054 7. Digital signatures 54/60

SPECIAL TYPES of DIGITAL SIGNATURES

Append-Only Signatures (AOS) have the property that any party given an AOS
signature sig[M1] on message Mi1 can compute sig[M:||M>] for any message M.
(Such signatures are of importance in network applications, where users need to
delegate their shares of resources to other users).

Identity-Based signatures (IBS) at which the identity of the signer (i.e. her email
address) plays the role of her public key. (Such schemes assume the existence of a
TA holding a master public-private key pair used to assign secret keys to users based
on their identity.)

Hierarchically Identity-Based Signatures are such IBS in which users are arranged in
a hierarchy and a user at any level at the hierarchy can delegate secret keys to her
descendants based on their identities and her own secret keys.

prof. Jozef Gruska IV054 7. Digital signatures 55/60

GROUP SIGNATURES

At Group Signatures (GS) a group member can compute a signature that reveals
nothing about the signer’s identity, except that he is a member of the group. On the
other hand, the group manager can always reveal the identity of the signer.

Hierarchical Group Signatures (HGS) are a generalization of GS that allow multiple

group managers to be organized in a tree with the signers as leaves. When verifying
a signature, a group manager only learns to which of its subtrees, if any, the signer

belongs.

Aggregate signatures They are signature schemes that support aggregation in the
following sense: Given n signatures on n messages from n users, it is possible to
aggregate all these signatures into a single signature whose size is constant in the
number of users in such a way that this single signature will convince the verifier
that the n users did indeed signed the n original messages.

prof. Jozef Gruska IV054 7. Digital signatures 56/60

UNCONDITIONALLY SECURE DIGITAL SIGNATURES

Any of the digital signature schemes introduced so far can be forged by anyone having
enough computer power.

Chaum and Roijakkers (2001) developed, for any fixed set of users, an unconditionally
secure signature scheme with the following properties:

Any participant can convince (except with exponentially small probability) any other
participant that his signature is valid.

A convinced participant can convince any other participant of the signature's
validity, without interaction with the original signer.

prof. Jozef Gruska IV054 7. Digital signatures 57/60

BIRTHDAY PARADOX ATTACK on DIGITAL SIGNATURE

Assume Alice uses a hash function that produces 50 bits.

Fred, who wants Alice to sign a fraudulent contract, find 30 places in a
good document, where he can make change in the document (adding a
coma, space, ...) such that Alice would not notice that. By choosing at
each place whether to make or not a change, he can produce 230
documents essentially identical with the original good document.

230

Similarly, Fred makes changes of the fraudulent document.

Considering birthday problem with n = 250 — 230 e get that r = Vn,
with A = 210 and therefore with probability 1 — e™10%* ~ 1 there is a
version of the good document that has the same hash as a version of the
fraudulent document.

Finding a match, Fred can ask Alice to sign a good version and then
append the signature to the fraudulent contract.

prof. Jozef Gruska IV054 7. Digital signatures 58/60

BREAKING CRYPTOSYSTEMS and DIGITAL SIGNATURES

We say that an encryption system has
been broken if one can determine a
plaintext from a cryptotext (often).

A digital signature system is considered
as broken if one can (often) forge
signatures.

In both cases, a more ambitious goal is
to find the private key.

prof. Jozef Gruska IV054 7. Digital signatures 59/60

FORGING and MISUSING of ElIGamal SIGNATURES

There are ways to produce, using EIGamal signature scheme, some valid forged
signatures, but they do not allow an opponent to forge signatures on messages of his/her
choice.

For example, if 0 </, j < p—2and ged(j, p- 1) = 1, then for
a=4q'y/ modp; b=—aj"" mod (p—1); w=—ajj~" mod (p—1)
the pair
(a, b) is a valid signature of the message w.
This can be easily shown by checking the verification condition.

There are several ways ElGamal signatures can be broken if they are not used carefully
enough.

For example, the random r used in the signature should be kept secret. Otherwise the
system can be broken and signatures forged. Indeed, if r is known, then x can be
computed by

x=(w—rb)a~! mod (p—1)
and once x is known Eve can forge signatures at will.
Another misuse of the EIGamal signature system is to use the same r to sign two

messages. In such a case x can be computed and the system can be broken.

prof. Jozef Gruska IV054 7. Digital signatures 60/60

	Digital signatures
	CHAPTER 7: Digital signatures
	Digital Signatures - Observation
	Hash functions
	Basic ideas
	Example
	Digital signatures – basic goals
	Digital signatures
	Why to sign hashes of messages and not messages themselves
	A scheme of digital signature systems – a simplified version
	Digital Signature Schemes I
	Digital Signature Schemes II - conditions
	Attack models on digital signatures
	Levels of breaking of digital signatures
	A digital signature of one bit
	From RSA cryptosystem to RSA signatures
	RSA signatures and their attacks
	Encryptions versus signatures
	From PKC to DSS - again
	Rabin signatures
	Important facts
	ElGamal signatures
	ElGamal signatures - example
	Security of ElGamal signatures
	From ElGamal to DSA I
	Digital Signature Standard
	Digital Signature Standard
	Fiat-Shamir signature scheme
	Sad story
	Ong-Schnorr-Shamir subliminal channel scheme
	Lamport one-time signatures
	Lamport signature - another view
	Lamport signature - III.
	Merkle signatures - I.
	Merkle signatures - II.
	Merkle signatures - III.
	GMR signature scheme
	Signing of hashes/fingerprints
	Timestamping
	Blind signatures
	Chaum’s blind signatures
	Fail-then-stop signatures
	Digital signatures with encryption and resending
	A surprising attack to the previous scheme
	Another MAN-IN-THE-MIDDLE attack
	Probabilistic signature schemes - PSS
	Diffie-Hellman Public Establishment of Secret Keys
	Authenticated Diffie-Hellman key exchange
	Security of digital signatures
	Threshold Signature Schemes
	HISTORY of DIGITAL SIGNATURES
	Appendix
	General observations - I
	General observations - II
	SPECIAL TYPES of DIGITAL SIGNATURES
	GROUP SIGNATURES
	Unconditionally secure digital signatures
	Birthday Paradox attack on digital signatures
	Breaking cryptosystems versus digital signatures
	Forging and misusing of ElGamal signatures

