	CHAPTER 3: CYCLIC CODES, CHANNEL CODING, LIST DECODING
	Cyclic codes are very special linear codes. They are of large interest and importance for several reasons:
Part III	 They posses a rich algebraic structure that can be utilized in a variety of ways. They have extremely concise specifications.
Cyclic codes	 They have extremely concise specifications. Their encodings can be efficiently implemented using simple machinery - shift registers.
	 Many of the practically very important codes are cyclic.
	Channel codes are used to encode streams of data (bits). Some of them, as Concatenated codes and Turbo codes, reach theoretical Shannon bound concerning efficiency, and are currently used very often.
	List decoding is a new decoding mode capable to deal, in an approximate way, with cases of many errors, and in such a case to perform better than classical unique decoding.
	prof. Jozef Gruska IV054 3. Cyclic codes 2/71
IMPORTANT NOTE	BASIC DEFINITION AND EXAMPLES
In order to specify a non-linear binary code with 2^k codewords of length <i>n</i> one may need to write down	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$ and $a_1a_2 \ldots a_{n-1}a_0 \in C$.
In order to specify a non-linear binary code with 2^k codewords of length <i>n</i> one may need	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever
In order to specify a non-linear binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down	Definition A code C is cyclic if(i) C is a linear code;(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$ and $a_1a_2 \ldots a_{n-1}a_0 \in C$.Example(i) Code $C = \{000, 101, 011, 110\}$ is cyclic.(ii) Hamming code $Ham(3, 2)$: with the generator matrix $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$
In order to specify a non-linear binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$ and $a_1a_2 \ldots a_{n-1}a_0 \in C$. Example (i) Code $C = \{000, 101, 011, 110\}$ is cyclic. (ii) Hamming code $Ham(3, 2)$: with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ is equivalent to a cyclic code.
In order to specify a non-linear binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down k	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$ and $a_1a_2 \ldots a_{n-1}a_0 \in C$. Example (i) Code $C = \{000, 101, 011, 110\}$ is cyclic. (ii) Hamming code $Ham(3, 2)$: with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ is equivalent to a cyclic code. (iii) The binary linear code $\{0000, 1001, 0110, 1111\}$ is not cyclic, but it is equivalent to a cyclic code. (iv) Is Hamming code $Ham(2, 3)$ with the generator matrix
In order to specify a non-linear binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down k codewords of length n . In order to specify a binary cyclic code with 2^k codewords of length n it is sufficient to	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$ and $a_1a_2 \ldots a_{n-1}a_0 \in C$. Example (i) Code $C = \{000, 101, 011, 110\}$ is cyclic. (ii) Hamming code $Ham(3, 2)$: with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ is equivalent to a cyclic code. (iii) The binary linear code $\{0000, 1001, 0110, 1111\}$ is not cyclic, but it is equivalent to a cyclic code.
In order to specify a non-linear binary code with 2^k codewords of length n one may need to write down 2^k codewords of length n . In order to specify a linear binary code of the dimension k with 2^k codewords of length n it is sufficient to write down k codewords of length n . In order to specify a binary cyclic code with 2^k codewords of length n it is sufficient to write down	Definition A code C is cyclic if (i) C is a linear code; (ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_0, \ldots a_{n-1} \in C$, then also $a_{n-1}a_0 \ldots a_{n-2} \in C$ and $a_1a_2 \ldots a_{n-1}a_0 \in C$. Example (i) Code $C = \{000, 101, 011, 110\}$ is cyclic. (ii) Hamming code $Ham(3, 2)$: with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$ is equivalent to a cyclic code. (iii) The binary linear code $\{0000, 1001, 0110, 1111\}$ is not cyclic, but it is equivalent to a cyclic code. (iv) Is Hamming code $Ham(2, 3)$ with the generator matrix

FREQUENCY of CYCLIC CODES

cyclic codes of length *n* over *F*:

codes are the only cyclic codes.

linear [7,3] binary codes, but only two of them are cyclic.

Comparing with linear codes, cyclic codes are quite scarce. For example, there are 11 811

Trivial cyclic codes. For any field F and any integer $n \ge 3$ there are always the following

For some cases, for example for n = 19 and F = GF(2), the above four trivial cyclic

No-information code - code consisting of just one all-zero codeword.
 Repetition code - code consisting of all codewords (a, a, ...,a) for a ∈ F.
 Single-parity-check code - code consisting of all codewords with parity 0.

No-parity code - code consisting of all codewords of length *n*

AN EXAMPLE of a CYCLIC CODE

Is the code with the following generator matrix cyclic?

 $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$

It is. It has, in addition to the codeword 0000000, the following codewords

- 1011100	$c_2 = 0101110$	- 0010111
$c_1 = 1011100$	$c_1 + c_3 = 1001011$	$c_3 = 0010111$
$c_1 + c_2 = 1110010$	$c_1 + c_3 = 1001011$	$c_2 + c_3 = 0111001$
-1 - 2	$c_1 + c_2 + c_3 = 1100101$	-2,-3

and it is cyclic because the right shifts have the following impacts

	$c_2 ightarrow c_3,$	
$c_1 ightarrow c_2,$	$c_1+c_3\rightarrow c_1+c_2+c_3,$	$c_3 ightarrow c_1 + c_3$
$c_1+c_2\rightarrow c_2+c_3,$	$c_1 + c_2 + c_3 \rightarrow c_1 + c_2$	$c_2 + c_3 ightarrow c_1$

prof. Jozef Gruska	IV054 3. Cyclic codes	5/71	prof. Jozef Gruska	IV054 3. Cyclic codes	6/71
POLYNOMIALS over GF(1)		NOTICE		
A codeword of a cyclic code is usu and to each such a codeword the p $a_0 + a_1$ will be associated – am ingenious if NOTATION: $F_q[x]$ will denote the deg(f(x)) = the largest m Multiplication of polynomials If $f(x)$ deg(f(x)g) Division of polynomials For every p a unique pair of polynomials For every p a unique pair of polynomials $q(x)$, a(x) = q(x)b(x) Example Divide $x^3 + x + 1$ by $x^2 - x^2$ Definition Let $f(x)$ be a fixed poly to be congruent modulo $f(x)$, not	ally denoted $a_0a_1 \dots a_{n-1}$ polynomial $a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}$ idea!!. set of all polynomials $f(x)$ over GI such that x^m has a non-zero coeffic $x), g(x) \in FQ[x]$, then (x)) = deg(f(x)) + deg(g(x)). pair of polynomials $a(x), b(x) \neq 0$ $r(x)$ in $F_q[x]$ such that f(x) + r(x), deg(r(x)) < deg(b(x)). $+ x + 1$ in $F_2[x]$. nomial in $F_q[x]$. Two polynomials $f(x)$	cient in $f(x)$. in $F_q[x]$ there exists	is a set of cod or <i>C</i> can be se a set of polyne	the words of length n lewords of length n $a_0a_1a_2a_{n-1}$ een as omials of the degree (at most) n $_0 + a_1x + a_2x^2 + + a_{n-1}x^{n-1}$	— 1
if $g(x) - h(x)$ is divisible by $f(x)$.	IV054 3. Cyclic codes	7/71	prof. Jozef Gruska	IV054 3. Cyclic codes	8/71

RINGS of POLYNOMIALS	FIELD $R_n, R_n = F_q[x]/(x^n - 1)$
For any polynomial $f(x)$, the set of all polynomials in $F_q[x]$ of degree less than $deg(f(x))$, with addition and multiplication modulo $f(x)$, forms a ring denoted $F_q[x]/f(x)$. Example Calculate $(x + 1)^2$ in $F_2[x]/(x^2 + x + 1)$. It holds $(x + 1)^2 = x^2 + 2x + 1 \equiv x^2 + 1 \equiv x \pmod{x^2 + x + 1}$. How many elements has $F_q[x]/f(x)$? Result $ F_q[x]/f(x) = q^{deg(f(x))}$. Example Addition and multiplication tables for $F_2[x]/(x^2 + x + 1)$. $\frac{+ 0 \ 1 \ x \ 1 + x}{1 \ 1 \ 1 \ 0 \ 1 \ x \ 1 + x}$ $\frac{0 \ 0 \ 1 \ x \ 1 + x}{1 \ 1 \ x}$ $\frac{0 \ x \ 1 + x \ 1 \ x}{1 \ 1 \ x}$ $\frac{1}{1 \ 0 \ 1 \ x \ 1 + x}$ $\frac{1}{1 \ x}$ $\frac{1}{1 \$	Computation modulo $x^n - 1$ in the field $R_n = F_q[x]/(x^n - 1)$ Since $x^n \equiv 1 \pmod{(x^n - 1)}$ we can compute $f(x) \mod (x^n - 1)$ by replacing, in $f(x)$, $x^n by1$, x^{n+1} by x , x^{n+2} by x^2 , x^{n+3} by x^3 , Replacement of a word $w = a_0a_1a_{n-1}$ by a polynomial $p(w) = a_0 + a_1x + + a_{n-1}x^{n-1}$ is of large importance because multiplication of $p(w)$ by x in R_n corresponds to a single cyclic shift of w $x(a_0 + a_1x + + a_{n-1}x^{n-1}) = a_{n-1} + a_0x + a_1x^2 + + a_{n-2}x^{n-1}$
prof. Jozef Gruska IV054 3. Cyclic codes 9/71	prof. Jozef Gruska IV054 3. Cyclic codes 10/71
An ALGEBRAIC CHARACTERIZATION of CYCLIC CODES	CONSTRUCTION of CYCLIC CODES
Theorem A binary code C of words of length n is cyclic if and only if it satisfies two conditions (i) $a(x), b(x) \in C \Rightarrow a(x) + b(x) \in C$ (ii) $a(x) \in C, r(x) \in R_n \Rightarrow r(x)a(x) \in C$ Proof (1) Let C be a cyclic code. C is linear \Rightarrow (i) holds. (ii) $lf a(x) \in C, r(x) = r_0 + r_1x + \dots + r_{n-1}x^{n-1}then$ $r(x)a(x) = r_0a(x) + r_1xa(x) + \dots + r_{n-1}x^{n-1}a(x)$ is in C by (i) because summands are cyclic shifts of $a(x)$. (2) Let (i) and (ii) hold	Notation For any $f(x) \in R_n$, we can define $\langle f(x) \rangle = \{r(x)f(x) r(x) \in R_n\}$ (with multiplication modulo $x^n - 1$) to be a set of polynomials - a code. Theorem For any $f(x) \in R_n$, the set $\langle f(x) \rangle$ is a cyclic code (generated by f). Proof We check conditions (i) and (ii) of the previous theorem. (i) If $a(x)f(x) \in \langle f(x) \rangle$ and also $b(x)f(x) \in \langle f(x) \rangle$, then $a(x)f(x) + b(x)f(x) = (a(x) + b(x))f(x) \in \langle f(x) \rangle$ (ii) If $a(x)f(x) \in \langle f(x) \rangle$, $r(x) \in R_n$, then $r(x)(a(x)f(x)) = (r(x)a(x))f(x) \in \langle f(x) \rangle$ Example let $C = \langle 1 + x^2 \rangle$, $n = 3$, $q = 2$. In order to determine C we have to compute $r(x)(1 + x^2)$ for all $r(x) \in R_3$. $R_3 = \{0, 1, x, 1 + x, x^2, 1 + x^2, x + x^2, 1 + x + x^2\}$.

prof. Jozef Gruska	IV054 3. Cyclic codes	11/71	prof. Jozef Gruska	IV054 3. Cyclic codes

CHARACTERIZATION THEOREM for CYCLIC CO		CHARACTERIZATION THEOREM for CYCLIC CODES -	
We show that all cyclic codes C have the form $C = \langle f(x) \rangle$ for s	some $f(x) \in R_n$.	continuation	
Theorem Let C be a non-zero cyclic code in R_n . Then = there exists a unique monic polynomial $g(x)$ of the smallest d = $C = \langle g(x) \rangle$ = $g(x)$ is a factor of $x^n - 1$. Proof (i) Suppose $g(x)$ and $h(x)$ are two monic polynomials in C of th D. Then the polynomial $w(x) = g(x) - h(x) \in C$ and it has a s and a multiplication by a scalar makes out of $w(x)$ a monic p the assumption that $g(x) \neq h(x)$ leads to a contradiction.	ne smallest degree, say maller degree than D	(iii) It has to hold, for some $q(x)$ and $r(x)$ $x^{n} - 1 = q(x)g(x) + r(x)$ with $deg r(x) < deg g(x)$ and therefore $r(x) \equiv -q(x)g(x) \pmod{x^{n} - 1}$ and $r(x) \in C \Rightarrow r(x) = 0 \Rightarrow g(x)$ is therefore a factor of $x^{n} - 1$.	
(ii) If $a(x) \in C$, then for some $q(x)$ and $r(x)$ $a(x) = q(x)g(x) + r(x), \qquad (where deg r(x)) = q(x)g(x) + r(x),$	f(x) < deg g(x)).	GENERATOR POLYNOMIALS - definition	
and therefore		Definition If	
$r(x) = a(x) - q(x)g(x) \in C.$		$C = \langle g(x) \rangle$,	
By minimality condition		for a cyclic code C , then g is called the generator polynomial for the code C .	
r(x) = 0			
oand therefore $a(x) \in \langle g(x) \rangle$. prof. Jozef Gruska IV054 3. Cyclic codes	13/71	prof. Jozef Gruska IV054 3. Cyclic codes 14/71	
HOW TO DESIGN CYCLIC CODES?		DESIGN of GENERATOR MATRICES for CYCLIC CODES	
HOW TO DESIGN CYCLIC CODES? The last claim of the previous theorem gives a recipe to get all c given length n in GF(q)	yclic codes of the	Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial $g(x) = g_0 + g_1 x + \ldots + g_r x^r.$	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of	yclic codes of the	Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial $g(x) = g_0 + g_1 x + \ldots + g_r x^r.$ Then dim (C) = n - r and a generator matrix G ₁ for C is	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$.	yclic codes of the	Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial $g(x) = g_0 + g_1 x + \ldots + g_r x^r.$ Then dim (C) = n - r and a generator matrix G ₁ for C is	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$. Problem: Find all binary cyclic codes of length 3.	yclic codes of the	Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial $g(x) = g_0 + g_1 x + \dots + g_r x^r.$ Then dim (C) = n - r and a generator matrix G ₁ for C is $G_1 = \begin{pmatrix} g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & 0 & \dots & 0 \\ 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & \dots & 0 \\ 0 & 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & \dots & 0 \\ \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & g_0 & \dots & g_r \end{pmatrix}$	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$.	yclic codes of the	Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial $g(x) = g_0 + g_1 x + \ldots + g_r x^r.$ Then dim (C) = n - r and a generator matrix G ₁ for C is	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$. Problem: Find all binary cyclic codes of length 3. Solution: Make decomposition	yclic codes of the	Theorem Suppose <i>C</i> is a cyclic code of codewords of length <i>n</i> with the generator polynomial $g(x) = g_0 + g_1 x + \dots + g_r x^r.$ Then dim (<i>C</i>) = <i>n</i> - <i>r</i> and a generator matrix <i>G</i> ₁ for <i>C</i> is $G_1 = \begin{pmatrix} g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & 0 & \dots & 0 \\ 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & \dots & 0 \\ 0 & 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & g_0 & \dots & g_r \end{pmatrix}$ Proof (i) All rows of G1 are linearly independent. (ii) The <i>n</i> - <i>r</i> rows of <i>G</i> represent codewords $g(x), xg(x), x^2g(x), \dots, x^{n-r-1}g(x) (*)$	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$. Problem: Find all binary cyclic codes of length 3. Solution: Make decomposition $x^3 - 1 = (x - 1)(x^2 + x + 1)$	yclic codes of the	Theorem Suppose <i>C</i> is a cyclic code of codewords of length <i>n</i> with the generator polynomial $g(x) = g_0 + g_1 x + \ldots + g_r x^r.$ Then dim (<i>C</i>) = <i>n</i> - <i>r</i> and a generator matrix <i>G</i> ₁ for <i>C</i> is $G_1 = \begin{pmatrix} g_0 & g_1 & g_2 & \ldots & g_r & 0 & 0 & 0 & \ldots & 0 \\ 0 & g_0 & g_1 & g_2 & \ldots & g_r & 0 & 0 & \ldots & 0 \\ 0 & 0 & g_0 & g_1 & g_2 & \ldots & g_r & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \ldots & 0 & 0 & \ldots & 0 & g_0 & \ldots & g_r \end{pmatrix}$ Proof (i) All rows of G1 are linearly independent. (ii) The <i>n</i> - <i>r</i> rows of <i>G</i> represent codewords	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$. Problem: Find all binary cyclic codes of length 3. Solution: Make decomposition $x^3 - 1 = \underbrace{(x-1)(x^2 + x + 1)}_{\text{both factors are irreducible in GF(2)}}$ Therefore, we have the following generator polynomials and cyclic Generator polynomials Code in R_3	yclic codes of the codes of length 3. Code in $V(3,2)$	Theorem Suppose <i>C</i> is a cyclic code of codewords of length <i>n</i> with the generator polynomial $g(x) = g_0 + g_1 x + \dots + g_r x^r.$ Then dim (<i>C</i>) = <i>n</i> - <i>r</i> and a generator matrix <i>G</i> ₁ for <i>C</i> is $G_1 = \begin{pmatrix} g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & 0 & \dots & 0 \\ 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & \dots & 0 \\ 0 & 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & \dots & 0 \\ \dots & \dots & \dots & 0 & 0 & \dots & 0 & g_0 & \dots & g_r \end{pmatrix}$ Proof (i) All rows of G1 are linearly independent. (ii) The <i>n</i> - <i>r</i> rows of <i>G</i> represent codewords $g(x), xg(x), x^2g(x), \dots, x^{n-r-1}g(x) (*)$ (iii) It remains to show that every codeword in <i>C</i> can be expressed as a linear combination of vectors from (*). Indeed, if $a(x) \in C$, then	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$. Problem: Find all binary cyclic codes of length 3. Solution: Make decomposition $x^3 - 1 = \underbrace{(x-1)(x^2 + x + 1)}_{\text{both factors are irreducible in GF(2)}}$ Therefore, we have the following generator polynomials and cyclic Generator polynomials 1 x + 1 $\{0, 1 + x, x + x^2, 1 + x^2\}$	yclic codes of the codes of length 3. $\frac{\text{Code in } V(3,2)}{V(3,2)}$ {000, 110, 011, 101}	Theorem Suppose <i>C</i> is a cyclic code of codewords of length <i>n</i> with the generator polynomial $g(x) = g_0 + g_1 x + \dots + g_r x^r.$ Then dim (<i>C</i>) = <i>n</i> - <i>r</i> and a generator matrix <i>G</i> ₁ for <i>C</i> is $G_1 = \begin{pmatrix} g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 & g_0 & \dots & g_r \end{pmatrix}$ Proof (i) All rows of G1 are linearly independent. (ii) The <i>n</i> - <i>r</i> rows of <i>G</i> represent codewords $g(x), xg(x), x^2g(x), \dots, x^{n-r-1}g(x) (*)$ (iii) It remains to show that every codeword in <i>C</i> can be expressed as a linear combination of vectors from (*). Indeed, if $a(x) \in C$, then a(x) = q(x)g(x). Since deg $a(x) < n$ we have deg $q(x) < n - r$.	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$. Problem: Find all binary cyclic codes of length 3. Solution: Make decomposition $x^3 - 1 = \underbrace{(x-1)(x^2 + x + 1)}_{\text{both factors are irreducible in GF(2)}}$ Therefore, we have the following generator polynomials and cyclic Generator polynomials Code in R_3	yclic codes of the codes of length 3. Code in $V(3,2)$ V(3,2) {000, 110, 011, 101}	Theorem Suppose <i>C</i> is a cyclic code of codewords of length <i>n</i> with the generator polynomial $g(x) = g_0 + g_1 x + \dots + g_r x^r.$ Then dim (<i>C</i>) = <i>n</i> - <i>r</i> and a generator matrix <i>G</i> ₁ for <i>C</i> is $G_1 = \begin{pmatrix} g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & 0 & \dots & 0 \\ 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & \dots & 0 \\ 0 & 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 & g_0 & \dots & g_r \end{pmatrix}$ Proof (i) All rows of G1 are linearly independent. (ii) The <i>n</i> - <i>r</i> rows of <i>G</i> represent codewords $g(x), xg(x), x^2g(x), \dots, x^{n-r-1}g(x) (*)$ (iii) It remains to show that every codeword in <i>C</i> can be expressed as a linear combination of vectors from (*). Indeed, if $a(x) \in C$, then a(x) = q(x)g(x).	
The last claim of the previous theorem gives a recipe to get all c given length n in GF(q) Indeed, all we need to do is to find all factors (in GF(q)) of $x^n - 1$. Problem: Find all binary cyclic codes of length 3. Solution: Make decomposition $x^3 - 1 = \underbrace{(x-1)(x^2 + x + 1)}_{\text{both factors are irreducible in GF(2)}}$ Therefore, we have the following generator polynomials and cyclic Generator polynomials 1 x + 1 $\{0, 1 + x, x + x^2, 1 + x^2\}$	yclic codes of the codes of length 3. $\frac{\text{Code in } V(3,2)}{V(3,2)}$ {000, 110, 011, 101} {000, 111}	Theorem Suppose <i>C</i> is a cyclic code of codewords of length <i>n</i> with the generator polynomial $g(x) = g_0 + g_1 x + \dots + g_r x^r.$ Then dim (<i>C</i>) = <i>n</i> - <i>r</i> and a generator matrix <i>G</i> ₁ for <i>C</i> is $G_1 = \begin{pmatrix} g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & 0 & \dots & 0 \\ 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & 0 & \dots & 0 \\ 0 & 0 & g_0 & g_1 & g_2 & \dots & g_r & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 & g_0 & \dots & g_r \end{pmatrix}$ Proof (i) All rows of G1 are linearly independent. (ii) The <i>n</i> - <i>r</i> rows of <i>G</i> represent codewords $g(x), xg(x), x^2g(x), \dots, x^{n-r-1}g(x) (*)$ (iii) It remains to show that every codeword in <i>C</i> can be expressed as a linear combination of vectors from (*). Indeed, if $a(x) \in C$, then a(x) = q(x)g(x). Since deg $a(x) < n$ we have deg $q(x) < n - r$.	

EXAMPLE

The task is to determine all terna	codes of length 4 and generators for them.
Factorization of $x^4 - 1$ over $GF(x)$	nas the form

$$x^{4} - 1 = (x - 1)(x^{3} + x^{2} + x + 1) = (x - 1)(x + 1)(x^{2} + 1)$$

Therefore, there are $2^3 = 8$ divisors of $x^4 - 1$ and each generates a cyclic code.

	Generator polynomial	Generator matrix
	1	<i>I</i> 4
	x-1	$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$
	x+1	$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$
	$x^{2} + 1$	$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
	$(x-1)(x+1) = x^2 - 1$	$\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$
	$(x-1)(x^2+1) = x^3 - x^2 + x - 1$	$\begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix}$
	$(x+1)(x^2+1)$	$\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$
	$x^4 - 1 = 0$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
prof. Jozef Gruska	IV054 3. Cyclic codes	

EXAMPLE - II

In order to determine all binary cyclic codes of length 7, consider decomposition

$$x^{7} - 1 = (x - 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$$

Since we want to determine binary codes, all minus signs can be replaced by plus signs and therefore

 $x^{7} + 1 = (x + 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1)$

Therefore generators for 2^3 binary cyclic codes of length 7 are

1,
$$a(x) = x + 1$$
, $b(x) = x^3 + x + 1$, $c(x) = x^3 + x^2 + 1$
 $a(x)b(x)$, $a(x)c(x)$, $b(x)c(x)$, $a(x)b(x)c(x) = x^7 + 1$

COMMENTS

prof. Jozef Gruska

The last matrix is not, however, formally a generator matrix - the corresponding code is empty. On the previous slide "generator polynomials" x - 1, $x^2 - 1$ and $x^3 - x^2 + x + 1$ are formally not in R_n because only allowable coefficients are 0, 1, 2. A good practice is, however, to use also coefficients -2, and -1 as ones that are equal, modulo 3, to 1 and 2 and they can be replace in such a way also in matrices to be fully correct formally.

CHECK POLYNOMIALS and PARITY CHECK MATRICES for CYCLIC CODES

Let C be a cyclic [n, k]-code with the generator polynomial g(x) (of degree n - k). By the last theorem g(x) is a factor of $x^n - 1$. Hence

IV054 3. Cyclic codes

18/71

$$x^n - 1 = g(x)h(x)$$

for some h(x) of degree k. (h(x) is called the check polynomial of C.)

Theorem Let *C* be a cyclic code in R_n with a generator polynomial g(x) and a check polynomial h(x). Then an $c(x) \in R_n$ is a codeword of *C* if and only if $c(x)h(x) \equiv 0$ –(this and next congruences are all modulo $x^n - 1$).

Proof Note, that
$$g(x)h(x) = x^n - 1 \equiv 0$$

(i) $c(x) \in C \Rightarrow c(x) = a(x)g(x)$ for some $a(x) \in R_n$
 $\Rightarrow c(x)h(x) = a(x)\underbrace{g(x)h(x)}_{\equiv 0} \equiv 0.$
(ii) $c(x)h(x) \equiv 0$
 $c(x) = q(x)g(x) + r(x), deg \ r(x) < n - k = deg \ g(x)$
 $c(x)h(x) \equiv 0 \Rightarrow r(x)h(x) \equiv 0 \pmod{x^n - 1}$

Since deg (r(x)h(x)) < n - k + k = n, we have r(x)h(x) = 0 in F[x] and therefore

$$r(x) = 0 \Rightarrow c(x) = q(x)g(x) \in C.$$

prof. Jozef Gruska	IV054 3. Cyclic codes	19/71	prof. Jozef Gruska	IV054 3. Cyclic codes	20/71

POLYNOMIAL REPRESENTATION of DUAL CODES	POLYNOMIAL REPRESENTATION of DUAL CODES
Continuation: Since $dim(\langle h(x) \rangle) = n - k = dim(C^{\perp})$ we might easily be fooled to thick that the check polynomial $h(x)$ of the code C generates the dual code C^{\perp} . Reality is "slightly different": Theorem Suppose C is a cyclic $[n, k]$ -code with the check polynomial $h(x) = h_0 + h_1 x + \ldots + h_k x^k$, then (i) a parity-check matrix for C is $H = \begin{pmatrix} h_k & h_{k-1} & \ldots & h_0 & 0 & \ldots & 0 \\ 0 & h_k & \ldots & h_1 & h_0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 & h_k & \ldots & h_0 \end{pmatrix}$ (ii) C^{\perp} is the cyclic code generated by the polynomial $\overline{h}(x) = h_k + h_{k-1}x + \ldots + h_0 x^k$ i.e. by the reciprocal polynomial of $h(x)$.	Proof A polynomial $c(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1}$ represents a code from <i>C</i> if $c(x)h(x) = 0$. For $c(x)h(x)$ to be 0 the coefficients at x^k, \ldots, x^{n-1} must be zero, i.e. $c_0h_k + c_1h_{k-1} + \ldots + c_kh_0 = 0$ $c_1h_k + c_2h_{k-1} + \ldots + c_{k+1}h_0 = 0$ $c_{n-k-1}h_k + c_{n-k}h_{k-1} + \ldots + c_{n-1}h_0 = 0$ Therefore, any codeword $c_0c_1 \ldots c_{n-1} \in C$ is orthogonal to the word $h_kh_{k-1} \ldots h_0 00 \ldots 0$ and to its cyclic shifts. Rows of the matrix <i>H</i> are therefore in C^{\perp} . Moreover, since $h_k = 1$, these row vectors are linearly independent. Their number is $n - k = dim (C^{\perp})$. Hence <i>H</i> is a generator matrix for C^{\perp} , i.e. a parity-check matrix for <i>C</i> . In order to show that C^{\perp} is a cyclic code generated by the polynomial $\overline{h}(x) = h_k + h_{k-1}x + \ldots + h_0x^k$ it is sufficient to show that $\overline{h}(x)$ is a factor of $x^n - 1$. Observe that $\overline{h}(x) = x^k h(x^{-1})$ and since $h(x^{-1})g(x^{-1}) = (x^{-1})^n - 1$ we have that $x^k h(x^{-1})x^{n-k}g(x^{-1}) = x^n(x^{-n} - 1) = 1 - x^n$ and therefore $\overline{h}(x)$ is indeed a factor of $x^n - 1$.
ENCODING with CYCLIC CODES I	prof. Jozef Gruska IV054 3. Cyclic codes 22/71 EXAMPLE
Encoding using a cyclic code can be done by a multiplication of two polynomials - a message (codeword) polynomial and the generating polynomial for the code. Let C be a cyclic $[n, k]$ -code over a Galois field with the generator polynomial $g(x) = g_0 + g_1 x + \ldots + g_{r-1} x^{r-1}$ of degree $r = n - k$. If a message vector m is represented by a polynomial $m(x)$ of the degree k and m is encoded, using the generator matrix G induced by $g(x)$, then $m \Rightarrow c = mG$, Therefore, the following relation between $m(x)$ and $c(x)$ holds c(x) = m(x)g(x). Such an encoding can be realized by the shift register shown in Figure below, where input is the k-bit to-be-encoded message, followed by $n - k$ 0's, and the output will be the encoded message. Shift-register encodings of cyclic codes. Small circles represent multiplication by the corresponding constant, \bigoplus nodes represent modular additions, squares are shift	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$

 $m_{k-1}m_{k-2}\ldots m_2m_1m_0 \longrightarrow \longrightarrow$

 prof. Jozef Gruska
 IV054 3. Cyclic codes
 23/71
 prof. Jozef Gruska
 IV054 3. Cyclic codes
 24/71

cells

MULTIPLICATION of POLYNOMIALS by SHIFT-REGISTERS	HAMMING CODES as CYCLIC CODES I
Let us compute $(m_0 + m1x + \ldots m_{k-1}x^{k-1}) imes (g_0 + g_1x + g_2x^2 \ldots g_{r-1}x^{r-1})$	
$= m_{0}g_{0}$ $+ (m_{0}g_{1} + m_{1}g_{0})x$ $+ (m_{0}g_{2} + m_{1}g_{1} + m_{2}g_{0})x^{2}$ $+ (m_{0}g_{3} + m_{1}g_{2} + m_{2}g_{1} + m_{3}g_{0})x^{3}$ $+ \vdots$	Definition (Again!) Let r be a positive integer and let H be an $r \times (2^r - 1)$ matrix whose columns are all distinct non-zero vectors of $GF(r)$. Then the code having H as its parity-check matrix is called binary Hamming code denoted by $Ham(r, 2)$. It can be shown: Theorem The binary Hamming code $Ham(r, 2)$ is equivalent to a cyclic code. Definition If $p(x)$ is an irreducible polynomial of degree r such that x is a primitive element of the field $F[x]/p(x)$, then $p(x)$ is called a primitive polynomial . Theorem If $p(x)$ is a primitive polynomial over $GF(2)$ of degree r , then the cyclic code $\langle p(x) \rangle$ is the code $Ham(r, 2)$.
prof. Jozef Gruska IV054 3. Cyclic codes 25/71	prof. Jozef Gruska IV054 3. Cyclic codes 26/71
HAMMING CODES as CYCLIC CODES II	PROOF of THEOREM
	The binary Hamming code $Ham(r, 2)$ is equivalent to a cyclic code. It is known from algebra that if $p(x)$ is an irreducible polynomial of degree r, then the ring
Hamming ham (3,2) code has generator polynomial $x^3 + x = 1$. Example Polynomial $x^3 + x + 1$ is irreducible over $GF(2)$ and x is primitive element of the field $F_2[x]/(x^3 + x + 1)$. Therefore, $F_2[x]/(x^3 + x + 1) =$ $\{0, 1, x, x^2, x^3 = x + 1, x^4 = x^2 + x, x^5 = x^2 + x + 1, x^6 = x^2 + 1\}$ The parity-check matrix for a cyclic version of Ham (3,2) $H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$	$\begin{array}{l} F_2[x]/p(x) \text{ is a field of order } 2^r.\\ In addition, every finite field has a primitive element. Therefore, there exists an element \alpha of F_2[x]/p(x) such that\begin{array}{l} F_2[x]/p(x) = \{0, 1, \alpha, \alpha^2, \ldots, \alpha^{2r-2}\}.\\ \text{Let us identify an element } a_0 + a_1 + \ldots a_{r-1}x^{r-1} \text{ of } F_2[x]/p(x) \text{ with the column vector}\\ & (a_0, a_1, \ldots, a_{r-1})^\top\\ \text{and consider the binary } r \times (2^r - 1) \text{ matrix}\\ H = [1 \ \alpha \ \alpha^2 \ldots \alpha^{2^r-2}].\\ \text{Let now } C \text{ be the binary linear code having } H \text{ as a parity check matrix.}\\ \text{Since the columns of } H \text{ are all distinct non-zero vectors of } V(r, 2), C = Ham (r, 2).\\ \text{Putting } n = 2^r - 1 \text{ we get}\\ C = \{f_0f_1 \ldots f_{n-1} \in V(n, 2) f_0 + f_1\alpha + \ldots + f_{n-1}\alpha^{n-1} = 0\}\\ = \{f(x) \in R_n f(\alpha) = 0 \text{ in } F_2[x]/p(x)\}\\ \text{ If } f(x) \in C \text{ and } r(x) \in R_n, \text{ then } r(x)f(x) \in C \text{ because}\end{array}$

prof. Jozef Gruska	IV054 3. Cyclic codes	27/71	prof. Jozef Gruska	IV054 3. Cyclic codes	28/71

EXAMPLES of CYCLIC CODES	GOLAY CODES - DESCRIPTION
EXAMPLES of CYCLIC CODES	Golay codes G_{24} and G_{23} were used by spacecraft Voyager I and Voyager II to transmit color pictures of Jupiter and Saturn. Generator matrix for G_{24} has the form $G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
prof. Jozef Gruska IV054 3. Cyclic codes 29/71	prof. Jozef Gruska IV054 3. Cyclic codes 30/71
GOLAY CODE II	GOLAY CODES - III
Golay code G_{23} is a (23, 12, 7)-code and can be defined also as the cyclic code generated by the codeword 1100011101010000000000 This code can be constructed via factorization of $x^{23} - 1$. In his search for perfect codes Golay observed that $\sum_{j=0}^{3} {\binom{23}{j}} = 2^{23-12} = 2^{11}$ Observe that an $(n, M, 2t + 1)$ -code is perfect if $M \sum_{i=0}^{t} {\binom{n}{i}} (q-1)^i = q^n$. Golay code G_{24} was used in NASA Deep Space Missions - in spacecraft Voyager 1 and Voyager 2. It was also used in the US-government standards for automatic link establishment in High Frequency radio systems. Golay codes are named to honour Marcel J. E. Golay - from 1949.	Golay [24, 12, 8] code is called also extended binary Golay code. Golay [23, 12, 7] code is called also perfect binary Golay code . It is the linear code generated by the polynomial $x^{11} + x^{10} + x^6 + x^5 + x^4 + x^2 + 1/(x^{23} - 1)$

prof. Jozef Gruska IV054 3. Cyclic codes

prof. Jozef Gruska

31/71

IV054 3. Cyclic codes

POLYNOMIAL CODES	BCH CODES and REED-SOLOMON CODES
A Polynomial code generated by a (generator) polynomial $g(x)$ of degree $m < n$ over a GF(q) is the code whose codewords are represented exactly by those polynomials of degree less than n that are divisible by $g(x)$. Example Binary polynomial code with $n = 5$ and $m = 2$ generated by the polynomial $g(x) = x^2 + x + 1$ has codewords $a(x)g(x)$ where $a(x) \in \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\}$ what results in the code with codewords $00000, 00111, 01110, 01001,$ $11100, 11011, 10010, 10101.$	To the most important cyclic codes for applications belong BCH codes and Reed-Solomon codes. Definition A polynomial p is said to be minimal for a complex number x in $GF(q)$ if p(x) = 0 and p is irreducible over $GF(q)$. Definition A cyclic code of codewords of length n over $GF(p^r)$, where p is a prime, is called BCH code ¹ of distance d if its generator $g(x)$ is the least common multiple of the minimal polynomials for $\omega^l, \omega^{l+1}, \dots, \omega^{l+d-2}$ for some I, where ω is the primitive n -th root of unity. If $n = q^m - 1$ for some m , then the BCH code is called primitive. Definition A Reed-Solomon code is a primitive BCH code with $n = q - 1$. Properties: \mathbb{R} Reed-Solomon codes are self-dual. 1 BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered these codes.
BCH CODES - II. Another definition	REED-SOLOMON CODES - basic idea
Let q be a prime, m and integer. Consider $GF(q^m)$ and $n = q^m - 1$. Let ω_n be the primitive n th root of unity in $GF(q^m)$. For all $i < d$ let $m_i(x)$ be the minimal polynomial of ω_n^i with coefficients in $GF(q)$. BCH codes are a special case of polynomial codes. The generator polynomial of a simplified BCH code of the minimal distance d is defined as the least common multiple of $g(x) = lcm(m_1(x), m_2(x), \dots, m_{d-1}(x))$. For BCH codes there exist nice variations of syndrome decoding. They were invented in 1959 by Hocquenghem and, independently, in 1960 by Bose and Ray-Chaudhuri.	A message of k symbols can be encoded by viewing these symbols as coefficients of a polynomial of degree k - 1 over a finite field of order N, evaluating this polynomial at more than k distinct points and sending the outcomes to the receiver. Having more than k points of the polynomial allows to determine exactly, through the Lagrangian interpolation, the original polynomial (message). Variations of Reed-Solomon codes are obtained by specifying ways distinct points are generated and error-correction is performed. Reed-Solomon codes found many important applications from deep-space travel to consumer electronics. They are very useful especially in those applications where one can expect that errors occur in bursts - such as ones caused by solar energy.

35/71

prof. Jozef Gruska

IV054 3. Cyclic codes

36/71

prof. Jozef Gruska

IV054 3. Cyclic codes

REED-SOLOMON CODES - I

REED-SOLOMON CODES - HISTORY and APPLICATIONS

Reed-Solomon codes RSC(k, q), for $k \le q$. are codes generator matrix of which has rows labeled by polynomials X^i , $0 \le i \le k - 1$, columns are labelled by elements $0, 1, \ldots, q - 1$ and the element in a row labeled by a polynomial p and in a column labeled by an element u is p(u).

Each RSC(k, q) code is [q, k, q - k + 1] code

Example Generator matrix for RSC(3,5) code is

1	1	1	1	1	1
	0	1	2	3	$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$
	0	1	4	4	1 /

An interesting property of Reed-Solomon codes:

prof. Jozef Gruska

$$\mathsf{RSC}(k,q)^{\perp} = \mathsf{RSC}(q-k,q)$$

IV054 3. Cyclic codes

Reed-Solomon codes were used in digital television, satellite communication, wireless communication, bar-codes, compact discs, $\mathsf{DVD},\!...$

Reed-Solomon (RS) codes are non-binary cyclic codes.

- They were invented by Irving S. Reed and Gustave Solomon in 1960.
- Efficient decoding algorithm for them was invented by Elwyn Berlekamp and James Massey in 1969.
- Using Reed-Solomon codes one can show that it is sufficient to inject 2e additional symbols into a message in order to be able to correct e errors.
- Reed-Solomon codes can be decoded efficiently using so-called list decoding method (described next).
- \blacksquare In 1977 RS codes have been implemented in Voyager space program
- The first commercial application of RS codes in mass-consumer products was in 1982.

IV054 3. Cyclic codes

40/71

efficiently.are sent over a noisy channel errorShannon's channel coding theorem says that over many common channels there exist data coding schemes that are able to transmit data reliably at all rates smaller than a certain threshold, called nowadays the Shannon channel capacity of a given channel.In case no receiver-to-sender common correction.Moreover, the probability of a decoding error can be made to decrease exponentially as the block length N of the coding scheme goes to infinity.An important parameter of a channel	
 sending them, at the highest possible rate, over a given communication channel and then obtaining the original data reliably, at the receiver side, by decoding the received data efficiently. Shannon's channel coding theorem says that over many common channels there exist data coding schemes that are able to transmit data reliably at all rates smaller than a certain threshold, called nowadays the Shannon channel capacity of a given channel. Moreover, the probability of a decoding error can be made to decrease exponentially as the block length N of the coding scheme goes to infinity. 	DDING I.
 However, the complexity of a "naive" optimum decoding scheme increases exponentially with N - therefore such an optimum decoder rapidly becomes infeasible. As already mentioned, a breakthrough came when D. Forney, in his PhD thesis in 1972, showed that concatenated codes could be used to achieve exponentially decreasing error probabilities at all data rates less than the capacity, with decoding complexity increasing only polynomially with the code block length. in case k bits are encoded by n b The code rate express the amorate, the more redundant is the 	encode streams of data in such a way that if they can be detected and/or corrected by the receiver. unication is allowed, we speak about forward error el code is code rate $r = \frac{k}{n}$ s. ht of redundancy in the code - the lower is the
with N - therefore such an optimum decoder rapidly becomes infeasible.The code rate express the amoAs already mentioned, a breakthrough came when D. Forney, in his PhD thesis in 1972,The code rate express the amo	unication is allowed, we speak about forward error el code is code rate $r = \frac{k}{n}$ s. ht of redundancy in the code - the lower is the

prof. Jozef Gruska

CHANNEL (STREAM) CODING II	CONVOLUTION CODES
Design of a channel code is always a tradeoff between energy efficiency and bandwidth efficiency.	
Codes with lower code rate can usually correct more errors. Consequently, the communication system can operate with a lower transmit power; transmit over longer distances; tolerate more interference from the environment; use smaller antennas; transmit at a higher data rate. These properties make codes with lower code rate energy efficient. On the other hand such codes require larger bandwidth and decoding is usually of higher complexity. The selection of the code rate involves a tradeoff between energy efficiency and bandwidth efficiency.	Our first example of channel codes are convolution codes. Convolution codes have simple encoding and decoding, are quite a simple generalization of linear codes and have encodings as cyclic codes. An (n, k) convolution code (CC) is defined by an $k \times n$ generator matrix, entries of which are polynomials over F_2 . For example, $G_1 = [x^2 + 1, x^2 + x + 1]$ is the generator matrix for a (2, 1) convolution code, denoted CC_1 , and $G_2 = \begin{pmatrix} 1 + x & 0 & x + 1 \\ 0 & 1 & x \end{pmatrix}$ is the generator matrix for a (3, 2) convolution code denoted CC_2
Central problem of channel encoding: encoding is usually easy, but decoding is usually hard.	prof. Jozef Gruska IV054 3. Cyclic codes 42/71
ENCODING of FINITE POLYNOMIALS	EXAMPLES
An (n,k) convolution code with a k x n generator matrix G can be used to encode a k-tuple of plain-polynomials (polynomial input information) $I = (I_0(x), I_1(x), \dots, I_{k-1}(x))$ to get an n-tuple of crypto-polynomials $C = (C_0(x), C_1(x), \dots, C_{n-1}(x))$	EXAMPLE 1 $(x^{3} + x + 1) \cdot G_{1} = (x^{3} + x + 1) \cdot (x^{2} + 1, x^{2} + x + 1)$ $= (x^{5} + x^{2} + x + 1, x^{5} + x^{4} + 1)$
k-tuple of plain-polynomials (polynomial input information) $I = (I_0(x), I_1(x), \dots, I_{k-1}(x))$ to get an n-tuple of crypto-polynomials	$(x^3 + x + 1) \cdot G_1 = (x^3 + x + 1) \cdot (x^2 + 1, x^2 + x + 1)$

ENCODING of INFINITE INPUT STREAMS

ENCODING

The way infinite streams are encoded using convolution codes will be Illustrated on the code CC_1 .

An input stream $I = (I_0, I_1, I_2, ...)$ is mapped into the output stream $C = (C_{00}, C_{10}, C_{01}, C_{11}...)$ defined by

$$C_0(x) = C_{00} + C_{01}x + \ldots = (x^2 + 1)I(x)$$

and

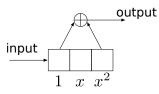
$$C_1(x) = C_{10} + C_{11}x + \ldots = (x^2 + x + 1)I(x).$$

The first multiplication can be done by the first shift register from the next figure; second multiplication can be performed by the second shift register on the next slide and it holds

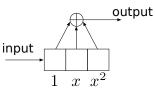
$$C_{0i} = I_i + I_{i+2}, \quad C_{1i} = I_i + I_{i-1} + I_{i-2}.$$

That is the output streams C_0 and C_1 are obtained by convolving the input stream with polynomials of G_1 .

The first shift register



will multiply the input stream by $x^2 + 1$ and the second shift register

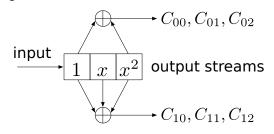


will multiply the input stream by $x^2 + x + 1$.

prof. Jozef Gruska	IV054 3. Cyclic codes	45/71	prof. Jozef Gruska	IV054 3. Cyclic codes	46/71

ENCODING and DECODING

The following shift-register will therefore be an encoder for the code CC_1



For decoding of convolution codes so called

Viterbi algorithm

Is used.

SHANNON CHANNEL CAPACITY

For every combination of bandwidth (W), channel type, signal power (S) and received noise power (N), there is a theoretical upper bound, called **channel capacity** or **Shannon capacity**, on the data transmission rate R for which error-free data transmission is possible.

For so-called Additive White Gaussian Noise (AWGN) channels, that well capture deep space channels, this limit is (so-called Shannon-Hartley theorem):

$$R < W \log \left(1 + rac{S}{N}
ight) \quad \{ ext{bits per second} \}$$

Shannon capacity sets a limit to the energy efficiency of the code.

Till 1993 channel code designers were unable to develop codes with performance close to Shannon capacity limit, that is Shannon capacity approaching codes, and practical codes required about twice as much energy as theoretical minimum predicted.

Therefore there was a big need for better codes with performance (arbitrarily) close to Shannon capacity limits.

Concatenated codes and Turbo codes have such a Shannon capacity approaching property.

prof. Jozef Gruska IV054 3. Cyclic codes 47/71 prof. Jozef Gruska IV054 3. Cyclic codes 48/71	prof. Jozef Gruska IV054 3. Cyclic codes 47/71
---	--

CONCATENATED CODES - I

The basic idea of concatenated codes is extremely simple. Input is first encoded by one code C_1 and the output is then encoded by second code C_2 . To decode, at first C_2 and then C_1 decoding are used.

In 1972 Forney showed that concatenated codes could be used to achieve exponentially decreasing error probabilities at all data rates less than channel capacity in such a way that decoding complexity increases only polynomially with the code block length.

In 1965 concatenated codes were considered as infeasible. However, already in 1970s technology has advanced sufficiently and they became standardize by NASA for space applications.

CONCATENATED CODES - II

Let $C_{in}: A^k \to A^n$ be an [n, k, d] code over alphabet A.

Let $C_{out}: B^K \to B^N$ be an [N, K, D] code over alphabet B with $|B| = |A|^k$ symbols.

Concatenation of C_{out} (as outer code) with C_{in} (as inner code), denoted $C_{out} \circ C_{in}$ is the [nN, kK, dD] code

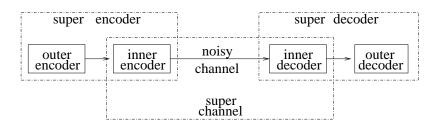
$$C_{out} \circ C_{in} : A^{kK} \to A^{nN}$$

that maps an input message $m = (m_1, m_2, \ldots, m_K)$ to a codeword $(C_{in}(m'_1), C_{in}(m'_2), \ldots, C_{in}(m'_N))$, where

$$(m_{1}^{'}, m_{2}^{'}, \ldots, m_{N}^{'}) = C_{out}(m_{1}, m_{2}, \ldots, m_{K})$$

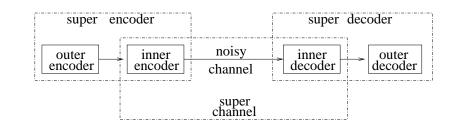
CONCATENATED CODES - III

prof. Jozef Gruska



Of the key importance is the fact that if C_{in} is decoded using the maximum-likelihood principle (thus showing an exponentially decreasing error probability with increasing length) and C_{out} is a code with length $N = 2^n r$ that can be decoded in polynomial time in N, then the concatenated code can be decoded in polynomial time with respect to $n2^{nr}$ and has exponentially decreasing error probability even if C_{in} has exponential decoding complexity.

ANOTHER VIEW of CONCATENATED CODES



- **Outer code:** (n_2, k_2) code over $GF(2^{k_1})$;
- Inner code: (n_1, k_1) binary code
- Inner decoder (n_1, k_1) code
- **Outer decoder** (n_2, k_2) code
- **length** of such a concatenated code is $n_1 n_2$
- **dimension** of such a concatenated code is k_1k_2
- if minimal distances of both codes are d_1 and d_2 , then resulting concatenated code has minimal distance $\geq d_1 d_2$.

	1 6	C 1	
prot.	Jozet	Gruska	

APPLICATIONS

EXAMPLE

prof. Jozef Gruska

- Concatenated codes started to be used for deep space communication starting with Voyager program in 1977 and stayed so until the invention of Turbo codes and I DPC codes
- Concatenated codes are used also on Compact Disc.
- The best concatenated codes for many applications were based on outer Reed-Solomon codes and inner Viterbi-decoded short constant length convolution codes.

IV054 3. Cyclic codes

When the primary antenna failed to deploy on the Galileo mission to Jupiter in 1977, heroic engineering effort was undertaken to design the most powerful concatenated code conceived up to that time, and to program it into the spacecraft computer.

The inner code was a 2^{14} convolution code, decoded by the Viterbi algorithm.

The outer code consisted of multiple Reed-Solomon codes of varying length.

The system achieved a coding gain of more than 10dB at decoding error probabilities of the order 10^{-7} . original anthena was supprosed to send 100,000 bits per second. Small anthena only 10. After all reparations and new codings up to 1000.

Nowadays when so called iterative decoding is used concatenation of even very simple codes can yield superb performance.

IV054 3. Cyclic codes

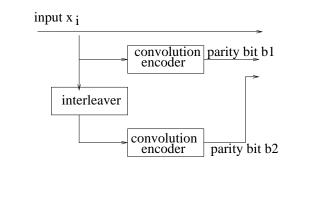
TURBO CODES

prof. Jozef Gruska

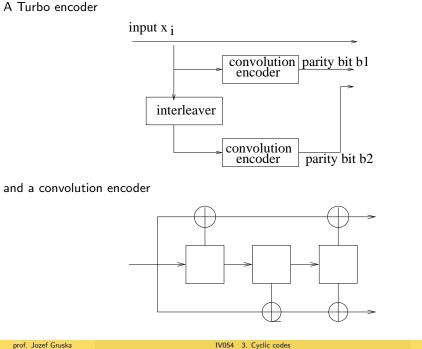
Channel coding was revolutionized by invention of Turbo codes. Turbo codes were introduced by Berrou, Glavieux and Thitimajshima in 1993.

A Turbo code is formed from the parallel composition of two (convolution) codes separated by an interleaver (that permutes blocks of data in a fixed (pseudo)-random way).

A Turbo encoder is formed from the parallel composition of two (convolution) encoders separated by an interleaver.



EXAMPLES of TURBO and CONVOLUTION ENCODERS



53/71

DECODING and PERFORMANCE of TURBO CODES

REACHING SHANNON LIMIT

- A soft-in-soft-out decoding is used the decoder gets from the analog/digital demodulator a soft value of each bit - probability that it is 1 and produces only a soft-value for each bit.
- The overall decoder uses decoders for outputs of two encoders that also provide only soft values for bits and by exchanging information produced by two decoders and from the original input bit, the main decoder tries to increase, by an iterative process, likelihood for values of decoded bits and to produce finally hard outcome a bit 1 or 0.
- Turbo codes performance can be very close to theoretical Shannon limit.
- This was, for example the case for UMTS (the third Generation Universal Mobile Telecommunication System) Turbo code having a less than 1.2-fold overhead. in this case the interleaver worked with block of 40 bits.
- Turbo codes were incorporated into standards used by NASA for deep space communications, digital video broadcasting and both third generation cellular standards.

prof. Jozef Gruska

 Literature: M.C. Valenti and J.Sun: Turbo codes - tutorial, Handbook of RF and Wireless Technologies, 2004 - reachable by Google.

IV054 3. Cyclic codes

- Though Shannon developed his capacity bound already in 1940, till recently code designers were unable to come with codes with performance close to theoretical limit.
- In 1990 the gap between theoretical bound and practical implementations was still at best about 3dB

A decibel is a relative measure. If E is the actual energy and E_{ref} is the theoretical lower bound, then the relative energy increase in decibels is

$$10 \log_{10} \frac{E}{E_{res}}$$

Since $\log_{10} 2 = 0.3$ a two-fold relative energy increase equals 3dB.

For code rate ¹/₂ the relative increase in energy consumption is about 4.8 dB for convolution codes and 0.98 for Turbo codes.

IV054 3. Cyclic codes

60/71

prof. Jozef Gruska	IV054 3. Cyclic codes	57/71	prof. Jozef Gruska	IV054 3. Cyclic codes	58/71
TURBO CODES	SUMMARY		WHY ARE TURB	O CODES SO GOOD?	
 systematic convolution (permutation) dev Soft decoding is a advantage of the visconcept of intrinsional permutations performed by simular shown by simular permutations performed by the systematic permutation performance permutation permutation permutation performance permutation permutat	n iterative process in which each component deco work of other at the previous step, with the aid of	terleaver oder takes f the original e of turbo codes, nnon limit.	 High-weight codew can more easily dis A big advantage o codewords because parity output bits. 	ode is one that has mostly high-weight codeword words are desirable because they are more disting stinguish among them. If Turbo encoders is that they reduce the number their output is the sum of the weights of the in be seen as a refinement of concatenated codes	ct and the decoder er of low-weight nput and two

prof. Jozef Gruska

63/71

prof. Jozef Gruska

IV054 3. Cyclic codes

64/71

IV054 3. Cyclic codes

prof. Jozef Gruska

APPENDIX			APPLICATIONS of REED-SOLOMON CODES
prof. Jozef Gruska	NOM 2. Scylic codes	65/71	 Reed-Solomon codes have been widely used in mass storage systems to correct the burst errors caused by media defects. Special types of Reed-Solomon codes have been used to overcome unreliable nature of data transmission over erasure channels. Several bar-code systems use Reed-Solomon codes to allow correct reading even if portion of a bar code is damaged. Reed-Solomon codes were used to encode pictures sent by the Voyager spacecraft. Modern versions of concatenated Reed-Solomon/Viterbi decoder convolution codin were and are used on the Mars Pathfinder, Galileo, Mars exploration Rover and Cassini missions, where they performed within about 1-1.5dB of the ultimate limit imposed by the shannon capacity.
		03/11	
APPENDIX			GROUPS
APPENDIX	APPENDIX		GROUPS A group <i>G</i> is a set of elements and an operation, call it *, with the following properties a <i>G</i> is closed under *; that is if $a, b \in G$, so is $a * b$. b The operation * is associative, hat is $(a * (b * c) = (a * b) * c, \text{ for any } a, b, c \in G$ b <i>G</i> has an identity <i>e</i> element such that $e * a = a * e = a$ for any $a \in G$. b Every element $a \in G$ has an inverse $a^{-1} \in G$, so that $a * a^{-1} = a^{-1} * a = e$. A group <i>G</i> is called an Abelian group if the operation * is commutative, that is $(a * b = b * a \text{ for any } a, b \in G)$. Example Which of the following sets is an (Abelian) group: a The set of real numbers with * being: (a) addition; (b) multiplication. b The set of matrices of degree <i>n</i> and an operations (a) addition; (b) multiplication. b What happens if we consider only matrices with determinants not equal zero?

RINGS and FIELDS	FINITE FIELDS
A ring <i>R</i> is a set with two operations + (addition) and \cdot (multiplication), with the following properties: a <i>R</i> is closed under + and \cdot . b <i>R</i> is an Abelian group under + (with the unity element for addition called zero). b The associative law for multiplication holds. b <i>R</i> has an identity element 1 for multiplication b The distributive law holds $(a \cdot (b + c) = a \cdot b + a \cdot c \text{ for all } a, b, c \in R$. A ring is called commutative ring if multiplication is commutative A field F is a set with two operations + (addition) and \cdot (multiplication), with the following properties: b <i>F</i> is a commutative ring. c <i>F</i> is a commutative ring. b Non-zero elements of <i>F</i> form an Abelian group under multiplication. A non-zero element <i>g</i> is a primitive element of a field <i>F</i> if all non-zero elements of <i>F</i> are powers of <i>g</i> .	Finite field are very well understood. Theorem If p is a prime, then the integers mod p , $GF(p)$, constitute a field. Every finite field F contains a subfield that is $GF(p)$, up to relabeling, for some prime p and $p \cdot \alpha = 0$ for every $\alpha \in F$. If a field F contains the prime field $GF(p)$, then p is called the characteristic of F . Theorem (1) Every finite field F has p^m elements for some prime p and some m . (2) For any prime p and any integer m there is a unique (up to isomorphism) field of p^m elements $GF(p^m)$. (3) If $f(x)$ is an irreducible polynomial of degree m in $F_p[x]$, then the set of polynomials in $F_p[x]$ with additions and multiplications modulo $f(x)$ is a field with p^m elements.
prof. Jozef Gruska IV054 3. Cyclic codes 69/71	prof. Jozef Gruska IV054 3. Cyclic codes 70/71
FINITE FIELDS $GF(p^k), k > 1$	
There are two important ways GF(4), the Galois field of four elements, is realized. 1. It is easy to verify that such a field is the set	
$GF(4)=\{0,1,\omega,\omega^2\}$	
with operations $+$ and \cdot satisfying laws	
0 + x = x for all x;	
x + x = 0 for all x;	
$1 \cdot x = x \text{ for all } x;$ $\omega + 1 = \omega^2$	
2. Let $Z_2[x]$ be the set of polynomials whose coefficients are integers mod 2. GF(4) is also $Z_2[x] \pmod{x^2 + x + 1}$ therefore the set of polynomials	
0, 1, x, x + 1	
where addition and multiplication are (mod $x^2 + x + 1$).	
3. Let p be a prime and $\mathbf{Z}_p[x]$ be the set of polynomials with coefficients mod p . If $p(x)$ is a irreducible polynomial mod p of degree n , then $\mathbf{Z}_p[x] \pmod{p(x)}$ is a $GF(p^n)$ with p^n elements.	

71/71

IV054 3. Cyclic codes

prof. Jozef Gruska