Part II Linear codes	WHY LINEAR CODES Most of the important codes are special types of so-called linear codes. Linear codes are of very large importance because they have very concise description,
	very nice properties, very easy encoding
	and, in general,
	an easy to describe decoding.
	Many practically important linear codes have also an efficient decoding.
	prof. Jozef Gruska IV054 2. Linear codes 2/48
GALOI FIELDS $GF(q)$ – where q is a prime.	LINEAR CODES
It is the set $\{0,1,\ldots,q-1\}$ with two operations	Linear codes are special sets of words of a fixed length n over an alphabet
addition modulo $q - + \mod q$ multiplication modulo $q - \times \mod q$	$\Sigma_q = \{0,, q - 1\}$, where q is a (power of) prime. In the following two chapters F_q^n (or $V(n, q)$) will be considered as the vector spaces of all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements set $\{0,, q - 1\}$ and with
addition modulo $q - + mod q$	$\Sigma_q = \{0,, q - 1\}$, where q is a (power of) prime. In the following two chapters F_q^n (or $V(n, q)$) will be considered as the vector spaces of all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements set $\{0,, q - 1\}$ and with arithmetical operations modulo q .) Definition A subset $C \subseteq F_q^n$ is a linear code if
addition modulo $q - + \mod q$ multiplication modulo $q - \times \mod q$ Example - $GF(3)$	$\Sigma_q = \{0,, q - 1\}$, where q is a (power of) prime. In the following two chapters F_q^n (or $V(n, q)$) will be considered as the vector spaces of all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements set $\{0,, q - 1\}$ and with arithmetical operations modulo q .)
addition modulo $q - + \mod q$ multiplication modulo $q - \times \mod q$ Example - $GF(3)$ $2+2=1$ $2 \times 2 = 1$	$\Sigma_q = \{0,, q - 1\}$, where q is a (power of) prime. In the following two chapters F_q^n (or $V(n, q)$) will be considered as the vector spaces of all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements set $\{0,, q - 1\}$ and with arithmetical operations modulo q .) Definition A subset $C \subseteq F_q^n$ is a linear code if $u + v \in C$ for all $u, v \in C$ $au \in C$ for all $u \in C$, and all $a \in GF(q)$ Example Codes C_1, C_2, C_3 introduced in Lecture 1 are linear codes.
addition modulo $q - + \mod q$ multiplication modulo $q - \times \mod q$ Example - $GF(3)$ $2 + 2 = 1$ $2 \times 2 = 1$ Example - $GF(7)$	$\Sigma_q = \{0,, q - 1\}$, where q is a (power of) prime. In the following two chapters F_q^n (or $V(n, q)$) will be considered as the vector spaces of all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements set $\{0,, q - 1\}$ and with arithmetical operations modulo q .) Definition A subset $C \subseteq F_q^n$ is a linear code if $\blacksquare u + v \in C$ for all $u, v \in C$ $\blacksquare au \in C$ for all $u \in C$, and all $a \in GF(q)$
addition modulo $q - + \mod q$ multiplication modulo $q \times \mod q$ Example - $GF(3)$ $2+2=1$ $2 \times 2=1$ Example - $GF(7)$ $5+5=3$ $5 \times 5=4$	$\Sigma_q = \{0,, q - 1\}, \text{ where } q \text{ is a (power of) prime.}$ In the following two chapters F_q^n (or $V(n, q)$) will be considered as the vector spaces of all <i>n</i> -tuples over the Galoi field $GF(q)$ (with the elements set $\{0,, q - 1\}$ and with arithmetical operations modulo q .) Definition A subset $C \subseteq F_q^n$ is a linear code if $u + v \in C \text{ for all } u, v \in C$ $au \in C \text{ for all } u \in C, \text{ and all } a \in GF(q)$ Example Codes C_1, C_2, C_3 introduced in Lecture 1 are linear codes. Lemma A subset $C \subseteq F_q^n$ is a linear code iff one of the following conditions is satisfied $C \text{ is a subspace of } F_q^n.$

CHAPTER 2: LINEAR CODES

-					
prof. Jozef Gruska	IV054 2. Linear codes	3/48	prof. Jozef Gruska	IV054 2. Linear codes	4/48

EXERCISE	BASIC PROPERTIES of LINEAR CODES I
Which of the following binary codes are linear? $C_{1} = \{00, 01, 10, 11\}$ $C_{2} = \{000, 011, 101, 110\}$ $C_{3} = \{00000, 01101, 10110, 11011\}$ $C_{5} = \{101, 111, 011\}$ $C_{6} = \{000, 001, 010, 011\}$ $C_{7} = \{0000, 1001, 0110, 1110\}$ How to create a linear code? Notation? If <i>S</i> is a set of vectors of a vector space, then let $\langle S \rangle$ be the set of all linear combinations of vectors from <i>S</i> . Theorem For any subset <i>S</i> of a linear space, $\langle S \rangle$ is a linear space that consists of the following words: I the zero word, all words in <i>S</i> , all sums of two or more words in <i>S</i> .	Notation: Let $w(x)$ (weight of x) to denote the number of non-zero entries of x. Lemma If $x, y \in F_q^n$, then $h(x, y) = w(x - y)$. Proof $x - y$ has non-zero entries in exactly those positions where x and y differ. Theorem Let C be a linear code and let weight of C, notation $w(C)$, be the smallest of the weights of non-zero codewords of C. Then $h(C) = w(C)$. Proof There are $x, y \in C$ such that $h(C) = h(x, y)$. Hence $h(C) = w(x - y) \ge w(C)$. On the other hand, for some $x \in C$ $w(C) = w(x) = h(x, 0) \ge h(C)$. Consequence If C is a code with m codewords and it is not linear, then in order to determine $h(C)$ one has to make in general $\binom{m}{2} = \Theta(m^2)$ comparisons in the worst case. If C is a code with m codewords, then in order to compute $h(C), m - 1$ comparisons
Example $S = \{0100, 0011, 1100\}$ $\langle S \rangle = \{0000, 0100, 0011, 1100, 0111, 1011, 1000, 1111\}.$	are enough.
prof. Jozef Gruska IV054 2. Linear codes 5/48	prof. Jozef Gruska IV054 2. Linear codes 6/48
BASIC PROPERTIES of LINEAR CODES II	ADVANTAGES and DISADVANTAGES of LINEAR CODES I.
If C is a linear $[n, k]$ -code, then it has a basis Γ consisting of k codewords and each codeword of C is a linear combination of the codewords from its basis Γ . Example	 Advantages - big. Minimal distance h(C) is easy to compute if C is a linear code. Linear codes have simple specifications. To specify a non-linear code usually all codewords have to be listed. To specify a linear [n, k]-code it is enough to list k codewords (of a basis).
If C is a linear $[n, k]$ -code, then it has a basis Γ consisting of k codewords and each codeword of C is a linear combination of the codewords from its basis Γ .	 Advantages - big. ■ Minimal distance h(C) is easy to compute if C is a linear code. ■ Linear codes have simple specifications. ■ To specify a non-linear code usually all codewords have to be listed. ■ To specify a linear [n, k]-code it is enough to list k codewords (of a basis). Definition A k × n matrix whose rows form a basis of a linear [n, k]-code (subspace) C is said to be the generator matrix of C. Example One of the generator matrices of the binary code
If C is a linear $[n, k]$ -code, then it has a basis Γ consisting of k codewords and each codeword of C is a linear combination of the codewords from its basis Γ . Example Code $C_4 = \{0000000, 1111111, 1000101, 1100010, 0110010, 0110001, 1011000, 0101100, 0010110, 0001011, 00010110, 00010110, 00010110, 00010110, 0001011, 1000101, 1000100, 00100110, 0100011, 0100011, 11010001, 1101000]$ has, as one of its bases, the basis $\{1111111, 1000101, 1100010, 0110001, 0110001\}$. How many different bases has a linear code? Theorem A binary linear code of dimension k has	Advantages - big. Minimal distance $h(C)$ is easy to compute if C is a linear code. Linear codes have simple specifications. To specify a non-linear code usually all codewords have to be listed. To specify a linear $[n, k]$ -code it is enough to list k codewords (of a basis). Definition A $k \times n$ matrix whose rows form a basis of a linear $[n, k]$ -code (subspace) C is said to be the generator matrix of C . Example One of the generator matrices of the binary code $C_2 = \begin{cases} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{cases}$ is the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ and one of the generator matrices of the code
If C is a linear $[n, k]$ -code, then it has a basis Γ consisting of k codewords and each codeword of C is a linear combination of the codewords from its basis Γ . Example Code $C_4 = \{0000000, 1111111, 1000101, 1100010, \\0110001, 1011000, 0101100, 0010110, \\0001011, 0111010, 0011101, 1001110, \\0100111, 1010011, 1101001, 1110100\}$ has, as one of its bases, the basis $\{1111111, 1000101, 1100010, 0110001\}$. How many different bases has a linear code?	Advantages - big. Minimal distance $h(C)$ is easy to compute if C is a linear code. Linear codes have simple specifications. To specify a non-linear code usually all codewords have to be listed. To specify a linear $[n, k]$ -code it is enough to list k codewords (of a basis). Definition A $k \times n$ matrix whose rows form a basis of a linear $[n, k]$ -code (subspace) C is said to be the generator matrices of the binary code $C_2 = \begin{cases} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{cases}$ is the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

ADANTAGES and DISADVANTAGES of LINEAR CODES II.	EQUIVALENCE of LINEAR CODES I
Disadvantages of linear codes are small:	 Definition Two linear codes on GF(q) are called equivalent if one can be obtained from another by the following operations: (a) permutation of the words or positions of the code; (b) multiplication of symbols appearing in a fixed position by a non-zero scalar.
 Linear <i>q</i>-codes are not defined unless <i>q</i> is a power of a prime. The restriction to linear codes might be a restriction to weaker codes than sometimes desired. 	Theorem Two $k \times n$ matrices generate equivalent linear $[n, k]$ -codes over F_q^n if one matrix can be obtained from the other by a sequence of the following operations: (a) permutation of the rows (b) multiplication of a row by a non-zero scalar (c) addition of one row to another (d) permutation of columns (e) multiplication of a column by a non-zero scalar Proof Operations (a) - (c) just replace one basis by another. Last two operations convert a generator matrix to one of an equivalent code.
prof. Jozef Gruska IV054 2. Linear codes 9/48	prof. Jozef Gruska IV054 2. Linear codes 10/48
EQUIVALENCE of LINEAR CODES II	ENCODING with LINEAR CODES
Theorem Let <i>G</i> be a generator matrix of an $[n, k]$ -code. Rows of <i>G</i> are then linearly independent .By operations (a) - (e) the matrix <i>G</i> can be transformed into the form: $[I_k A]$ where I_k is the $k \times k$ identity matrix, and <i>A</i> is a $k \times (n - k)$ matrix. Example $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	is a vector × matrix multiplication Let C be a linear $[n, k]$ -code over F_q^n with a generator $k \times n$ matrix G. Theorem C has q^k codewords. Proof Theorem follows from the fact that each codeword of C can be expressed uniquely as a linear combination of the basis codewords/vectors. Corollary The code C can be used to encode uniquely q^k messages - datawords. Let us identify messages with elements of F_q^k . Encoding of a dataword $u = (u_1, \ldots, u_k)$ using the generator matrix G: $u \cdot G = \sum_{i=1}^k u_i r_i$ where r_1, \ldots, r_k are rows of G. Example Let C be a $[7, 4]$ -code with the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$ A message (u_1, u_2, u_3, u_4) is encoded as:??? For example: 0 & 0 & 0 is encoded as? 0000000

UNIQUENESS of ENCODING	LINEAR CODES as SYSTEMATIC CODES
with linear codes	
Theorem If $G = \{w_i\}_{i=1}^k$ is a generator matrix of a binary linear code <i>C</i> of length <i>n</i> and dimension <i>k</i> , then the set of codewords/vectors $v = \mu G$	Since to each linear $[n, k]$ -code C there is a generator matrix of the form $G = [I_k A]$ encoding of a dataword w
v = uG ranges over all 2 ^k codewords of C as u ranges over all 2 ^k datawords of length k. Therefore	with G has the form
$C = \{ uG u \in \{0,1\}^k \}$	$wG = w \cdot wA$
Moreover $u_1 G = u_2 G$ if and only if	and therefore with such an encoding we can see the code <i>C</i> as being a systematic code.
$u_1 = u_2.$ Proof If $u_1G - u_2G = 0$, then	Each linear code can therefore be seen, at a proper encoding, as being systematic code.
$0 = \sum_{i=1}^{k} u_{1,i} w_i - \sum_{i=1}^{k} u_{2,i} w_i = \sum_{i=1}^{k} (u_{1,i} - u_{2,i}) w_i$ And, therefore, since w_i are linearly independent, $u_1 = u_2$.	
prof. Jozef Gruska IV054 2. Linear codes 13/48	prof. Jozef Gruska IV054 2. Linear codes 14/48
DECODING of LINEAR CODES - BASICS	DECODING of LINEAR CODES - TECHNICALITIES
DECODING of LINEAR CODES - BASICS	DECODING of LINEAR CODES - TECHNICALITIES Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector . The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred.
DECODING of LINEAR CODES - BASICS Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector . The decoder must
	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector . The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred.
	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector . The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe main Decoding method some technicalities have to be introduced
Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received,	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector . The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set
Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$
Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received,	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets:
Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector.	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x x \in C\}$ is called a coset (<i>u</i> - coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\},$
Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must therefore decide, given y ,	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x x \in C\}$ is called a coset (<i>u</i> - coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\}$, $0100 + C = \{0100, 1111, 0001, 1010\} = 0001 + C$, $0010 + C = \{0010, 1001, 0111, 1100\}$. Are there some other cosets in this case? Theorem Suppose C is a linear $[n, k]$ -code over F_q^n . Then
Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must therefore decide, given y , which x was sent,	Decoding problem: If a codeword: $x = x_1 \dots x_n$ is sent and the word $y = y_1 \dots y_n$ is received, then $e = y - x = e_1 \dots e_n$ is said to be the error vector. The decoder must decide, from y, which x was sent, or, equivalently, which error e occurred. To describe main Decoding method some technicalities have to be introduced Definition Suppose C is an $[n, k]$ -code over F_q^n and $u \in F_q^n$. Then the set $u + C = \{u + x x \in C\}$ is called a coset (u-coset) of C in F_q^n . Example Let $C = \{0000, 1011, 0101, 1110\}$ Cosets: 0000 + C = C, $1000 + C = \{1000, 0011, 1101, 0110\}$, $0100 + C = \{0100, 1111, 0001, 1010\} = 0001 + C$, $0010 + C = \{0010, 1001, 0111, 1100\}$. Are there some other cosets in this case?

NEAREST NEIGHBOUR DECODING SCHEME

Each vector having minimum weight in a coset is called a coset leader.

1. Design a (Slepian) standard array for an [n, k]-code C - that is a $q^{n-k} \times q^k$ array of the form:

codewords	coset leader	codeword 2		codeword 2 ^k
	coset leader +			+
		+	+	+
	coset leader	+		+
	coset leader			

Example

prof. Jozef Gruska

0000	1011	0101	1110
1000	0011	1101	0110
0100	1111	0001	1010
0010	1001	0111	1100

A word y is decoded as codeword of the first row of the column in which y occurs. Error vectors which will be corrected are precisely coset leaders! In practice, this decoding method is too slow and requires too much memory.

IV054 2. Linear codes

PROBABILITY of GOOD ERROR CORRECTION

What is the probability that a received word will be decoded correctly - that is as the codeword that was sent (for binary linear codes and binary symmetric channel)?

Probability of an error in the case of a given error vector of weight *i* is

$$p^i(1-p)^{n-i}.$$

Therefore, it holds.

Theorem Let C be a binary [n, k]-code, and for i = 0, 1, ..., n let α_i be the number of coset leaders of weight i. The probability $P_{corr}(C)$ that a received vector when decoded by means of a standard array is the codeword which was sent is given by

$$P_{corr}(C) = \sum_{i=0}^{n} \alpha_i p^i (1-p)^{n-i}.$$

Example For the [4, 2]-code of the last example

$$\alpha_0 = 1, \alpha_1 = 3, \alpha_2 = \alpha_3 = \alpha_4 = 0.$$

Hence

17/48

$$P_{corr}(C) = (1-p)^4 + 3p(1-p)^3 = (1-p)^3(1+2p)$$

IV054 2. Linear codes

If p = 0.01, then $P_{corr} = 0.9897$

PROBABILITY of GOOD ERROR DETECTION

Suppose a binary linear code is used only for error detection.

The decoder will fail to detect errors which have occurred if the received word y is a codeword different from the codeword x which was sent, i. e. if the error vector e = y - x is itself a non-zero codeword.

The probability $P_{undetect}(C)$ that an incorrect codeword is received is given by the following result.

Theorem Let C be a binary [n, k]-code and let A_i denote the number of codewords of C of weight i. Then, if C is used for error detection, the probability of an incorrect message being received is

 $P_{undetect}(C) = \sum_{i=0}^{n} A_i p^i (1-p)^{n-i}.$

Example In the case of the [4, 2] code from the last example

$$A_2 = 1 \ A_3 = 2 \ P_{undetect}(C) = p^2(1-p)^2 + 2p^3(1-p) = p^2 - p^4.$$

For p = 0.01

$$P_{undetect}(C) = 0.00009999.$$

prof. Jozef Gruska	IV054 2. Linear codes	19/48	prof. Jozef Gruska	IV054 2. Linear

18/48

DUAL CODES

prof. Jozef Gruska

Inner product of two vectors (words)

$$u = u_1 \ldots u_n, \quad v = v_1 \ldots v_n$$

in F_q^n is an element of GF(q) defined (using modulo q operations) by

 $u \cdot v = u_1 v_1 + \ldots + u_n v_n$.

Example In F_2^4 : 1001 \cdot 1001 = 0 In F_3^4 : 2001 · 1210 = 2 $1212 \cdot 2121 = 2$

If $u \cdot v = 0$ then words (vectors) u and v are called orthogonal.

Properties If $u, v, w \in F_q^n, \lambda, \mu \in GF(q)$, then $u \cdot v = v \cdot u, (\lambda u + \mu v) \cdot w = \lambda(u \cdot w) + \mu(v \cdot w).$

Given a linear [n, k]-code C, then the dual code of C, denoted by C^{\perp} , is defined by

$$C^{\perp} = \{ v \in F_q^n \, | \, v \cdot u = 0 \text{ for all } u \in C \}$$

Lemma Suppose C is an [n, k]-code having a generator matrix G. Then for $v \in F_a^n$ 0.

$$v \in C^{\perp} \Leftrightarrow vG^{\perp} =$$

where G^{\top} denotes the transpose of the matrix G.

20/48

PARITE CHECKS versus ORTHOGONALITY	EXAMPLE
For understanding of the role the parity checks play for linear codes, it is important to understand relation between orthogonality and special parity checks. If binary words x and y are orthogonal, then the word y has even number of ones (1's) in the positions determined by ones (1's) in the word x. This implies that if words x and y are orthogonal, then x is a parity check word for y and y is a parity check word for x. Exercise: Let the word 100001 be orthogonal to a set S of binary words of length 6. What can we say about the words in S?	For the $[n, 1]$ -repetition code C , with the generator matrix G = (1, 1,, 1) the dual code C^{\perp} is $[n, n-1]$ -code with the generator matrix G^{\perp} , described by $G^{\perp} = \begin{pmatrix} 1 & 1 & 0 & 0 & & 0 \\ 1 & 0 & 1 & 0 & & 0 \\ & 1 & 0 & 0 & & 1 \end{pmatrix}$
prof. Jozef Gruska IV054 2. Linear codes 21/48	prof. Jozef Gruska IV054 2. Linear codes 22/48
prof. Jozef Gruska IV054 2. Linear codes 21/48 PARITY CHECK MATRICES I	prof. Jozef Gruska IV054 2. Linear codes 22/48 PARITY CHECK MATRICES
Example If $C_5 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, then $C_5^{\perp} = C_5$. If	PARITY CHECK MATRICES Definition A parity-check matrix H for an $[n, k]$ -code C is a generator matrix of C^{\perp} . Theorem If H is a parity-check matrix of C, then $C = \{x \in F_q^n xH^{\top} = 0\},$ and therefore any linear code is completely specified by a parity-check matrix. Example Parity-check matrix for
Example If $C_5 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, then $C_5^{\perp} = C_5$.	PARITY CHECK MATRICES Definition A parity-check matrix H for an $[n, k]$ -code C is a generator matrix of C^{\perp} . Theorem If H is a parity-check matrix of C, then $C = \{x \in F_q^n x H^{\top} = 0\},$ and therefore any linear code is completely specified by a parity-check matrix.

prof. Jozef Gruska IV054 2. Linear codes 23/48 prof. Jozef Gruska IV054 2. Linear codes

24/48

SYNDROME DECODING	KEY OBSERVATION for SYNDROM COMPUTATION
Theorem If $G = [I_k A]$ is the standard form generator matrix of an $[n, k]$ -code C , then a parity check matrix for C is $H = [-A^{\top} I_{n-k}]$. Example	When preparing a "syndrome decoding" it is sufficient to store only two columns: one for coset leaders and one for syndromes. Example
Generator matrix $G = \begin{vmatrix} I_4 & \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$ \Rightarrow parity check m. $H = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix} I_3 \end{vmatrix}$ Definition Suppose H is a parity-check matrix of an $[n, k]$ -code C . Then for any $y \in F_q^n$ the following word is called the syndrome of y : $S(y) = yH^{\top}$. Lemma Two words have the same syndrome iff they are in the same coset. Syndrom decoding Assume that a standard array of a code C is given and, in addition, let in the last two columns the syndrome for each coset be given. $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 \\ 0 \\ Mhen a word y is received, then compute S(y) = yH^{\top}, then locate S(y) in the "syndrome column". Afterwords locate y in the same row and decode y as the codeword in the same column and in the first row.$	$\begin{aligned} & \begin{array}{c} \mbox{coset leaders} \mbox{syndromes} \\ & l(z) & z \\ & 0000 & 00 \\ & 1000 & 11 \\ & 0100 & 01 \\ & 0010 & 10 \\ \end{aligned} \\ \hline \label{eq:coset} \hline \\ \mbox{Step 1 Given } y \mbox{ compute } S(y). \\ \hline \\ \mbox{Step 2 Locate } z = S(y) \mbox{ in the syndrome column.} \\ \hline \\ \mbox{Step 3 Decode } y \mbox{ as } y - l(z). \\ \hline \\ \hline \\ \mbox{Example If } y = 1111, \mbox{ the } S(y) = 01 \mbox{ and the above decoding procedure produces} \\ & 1111-0100 = 1011. \\ \hline \\ \hline \\ \hline \\ \mbox{Syndrom decoding is much faster than searching for a nearest codeword to a received word. However, for large codes it is still too inefficient to be practical. \\ \hline \\ \hline \\ \mbox{In general, the problem of finding the nearest neighbour in a linear code is NP-complete. Fortunately, there are important linear codes with really efficient decoding. \\ \hline \end{array} $
prof. Jozef Gruska IV054 2. Linear codes 25/48	prof. Jozef Gruska IV054 2. Linear codes 26/48
HAMMING CODES	HAMMING CODES - DECODING
HAMMING CODES An important family of simple linear codes that are easy to encode and decode, are so-called Hamming codes. Definition Let r be an integer and H be an $r \times (2^r - 1)$ matrix columns of which are all non-zero distinct words from F'_2 . The code having H as its parity-check matrix is called binary Hamming code and denoted by $Ham(r, 2)$. Example $Ham(2, 2) : H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $Ham(3, 2) = H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$ Theorem Hamming code $Ham(r, 2)$ = is $[2^r - 1, 2^r - 1 - r]$ -code, = has minimum distance 3, = and is a perfect code. Properties of binary Hamming codes Coset leaders are precisely words of weight ≤ 1 . The syndrome of the word $0 \dots 010 \dots 0$ with 1 in j-th position and 0 otherwise is the transpose of the j-th column of H.	 HAMMING CODES - DECODING Decoding algorithm for the case the columns of <i>H</i> are arranged in the order of increasing binary numbers the columns represent. Step 1 Given y compute syndrome S(y) = yH^T. Step 2 If S(y) = 0, then y is assumed to be the codeword sent. Step 3 If S(y) ≠ 0, then assuming a single error, S(y) gives the binary position of the error.

EXAMPLE	ADVANTAGES of HAMMING CODES
For the Hamming code given by the parity-check matrix $H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ and the received word y = 1101011, we get syndrome S(y) = 110 and therefore the error is in the sixth position. Hamming code was discovered by Hamming (1950), Golay (1950). It was conjectured for some time that Hamming codes and two so called Golay conthe only non-trivial perfect codes. Comment	
Hamming codes were originally used to deal with errors in long-distance telephon	calls.
prof. Jozef Gruska IV054 2. Linear codes 29	/48 prof. Jozef Gruska IV054 2. Linear codes 30/48
IMPORTANT CODES	GOLAY CODES - DESCRIPTION
 Hamming (7, 4, 3)-code. It has 16 codewords of length 7. It can be used to s 2⁷ = 128 messages and can be used to correct 1 error. Golay (23, 12, 7)-code. It has 4 096 codewords. It can be used to transmit 8 messages and can correct 3 errors. Quadratic residue (47, 24, 11)-code. It has 16 777 216 codewords and can be used to transmit 140 737 488 355 238 messages and correct 5 errors. 	end Golay codes G_{24} and G_{23} were used by Voyager I and Voyager II to transmit color picture of Jupiter and Saturn. Generation matrix for G_{24} has the following simple form

31/48

prof. Jozef Gruska

IV054 2. Linear codes

32/48

IV054 2. Linear codes

prof. Jozef Gruska

GOLAY CODES - CONSTRUCTION

TWO SIMPLY DEFINED CODES

Matrix ${\it G}$ for Golay code ${\it G}_{24}$ has actually a simple and regular construction.

The first 12 columns are formed by a unitary matrix I_{12} , next column has all 1's.

Rows of the last 11 columns are cyclic permutations of the first row which has 1 at those positions that are squares modulo 11, that is

0, 1, 3, 4, 5, 9.

- Maximum length code is $[2^m 1, m, 2^{m-1}]$ -code with the generator matrix whose columns are all binary representations of numbers from 1 to $2^m = n$.
- Hadamard code *HC*_{2n} is the code with generator matrices defined recursively as

$$M_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

and

$$M_{2n} = \begin{bmatrix} M_n & M_n \\ M_n & \bar{M_n} \end{bmatrix}$$

where \bar{M}_n is the complementary matrix to M_n (with 0 and 1 interchanged).

prof. Jozef Gruska	IV054 2. Linear codes	33/48	prof. Jozef Gruska	IV054 2. Linear codes	34/48
EXAMPLE			REED-MULLER	CODES	
Hadamard code	$M_4 = egin{bmatrix} 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \end{bmatrix}$		 [2^m, k, 2^{m-r}]-codes with The generator matrix where Q_r is a matrix with G_{0,m} is a row vector G_{1,m} is obtained to column numbers. matrix Q_r is obtaining production 	ursively defined, family of so called $RM_{r,m}$ bin th $k = 1 + {\binom{m}{1}} + \ldots + {\binom{m}{r}}.$ $G_{r,m} \text{ for } RM_{r,m} \text{ code has the form}$ $G_{r,m} = {\binom{G_{r-1,m}}{Q_r}}$ with dimension ${\binom{m}{r}} \times 2^m$ where tor of the length 2^m with all elements 1. from $G_{0,m}$ by adding columns that are binary to ined by considering all combinations of r rows ts of these rows/vectors, component by compo- ultiplication constitues a row of Q_r .	representations of the s of $G_{1,m}$ and by
prof. Jozef Gruska	IV054 2. Linear codes	35/48	prof. Jozef Gruska	IV054 2. Linear codes	36/48

and

Codes R(m - r - 1, m) and R(r, m) are dual codes.

REED-MULLER CODES II

Reed-Muller codes form a family of codes defined recursively with interesting properties and easy decoding.

If D_1 is a binary $[n, k_1, d_1]$ -code and D_2 is a binary $[n, k_2, d_2]$ -code, a binary code C of length 2n is defined as follows $C = \{u|u + v, where \ u \in D_1, v \in D_2\}$.

Lemma C is $[2n, k_1 + k_2, min\{2d_1, d_2\}]$ -code and if G_i is a generator matrix for D_i , i = 1, 2, then $\begin{bmatrix} G_1 & G_1 \\ 0 & G_2 \end{bmatrix}$ is a generator matrix for C.

Reed-Muller codes R(r, m), with $0 \le r \le m$ are binary codes of length $n = 2^m \cdot R(m, m)$ is the whole set of words of length n, R(0, m) is the repetition code.

If 0 < r < m, then R(r + 1, m + 1) is obtained from codes R(r + 1, m) and R(r, m) by the above construction.

Theorem The dimension of R(r, m) equals $1 + \binom{m}{1} + \ldots + \binom{m}{r}$. The minimum weight of R(r, m) equals 2^{m-r} . Codes R(m - r - 1, m) and R(r, m) are dual codes.

rof. Jozef Gruska IV054 2. Linear codes 37/48	prof. Jozef Gruska IV054 2. Linear codes 38/48				
NGLETON and PLOTKIN BOUNDS	SHORTENING and PUNCTURING of LINEAR CODES				
determine distance of a linear code can be computationally hard task. For that reason rious bounds on distance can be much useful.	If C is a q-ary linear $[n, k, d]$ -code, then				
ngleton bound: If C is a q-ary (n, M, d) -code. en $M \leq q^{n-d+1}.$	$D = \{(x_1, \dots, x_{n-1}) (x_1, \dots, x_{n-1}, 0) \in C\}.$ is a linear code - a shortening of the code C. If $d > 1$, then D is a linear $[n - 1, k, d^*]$ -code or $[n - 1, k, d - 1]$ -code a shortening of the code C.				
oof Take some $d-1$ coordinates and project all codewords to the resulting coordinates.	Corollary: If there is a q-ary $[n, k, d]$ -code, then shortening yields a q-ary				
The resulting codewords are all different and therefore M cannot be larger than the mber of q -ary words of length $n - d - 1$.	[n-1, k-1, d]-code.				
des for which $M = q^{n-d+1}$ are called MDS-codes (Maximum Distance Separable).	If C is a q-ary $[n, k, d]$ -code and				
	$E = \{(x_1, \ldots, x_{n-1}) (x_1, \ldots, x_{n-1}, x) \in C, \text{ for some } x \leq q\},$				
brollary: If C is a binary linear $[n, k, d]$ -code, then $d \le n - k + 1$.	then E is a linear code - a puncturing of the code C .				
$\sigma \subseteq H = K + 1$	If $d > 1$, then E is an $[n - 1, k, d^*]$ code where $d^* = d - 1$ if C has a minimum weight codeword with wit non-zero llast coordinate and $D^* = d$ otherwise.				
$d \leq rac{n2^{k-1}}{2^k-1}.$ otkin bound implies thaterror-correcting codes with $d \geq n(1-1/q)$ have only	When $d = 1$, then E is an $[n - 1, k, 1]$ code, if C has no codeword of weight 1 whose nonzero entry is in last coordinate; otherwise, if $k > 1$, then E is an $[n - 1, k - 1, d^*]$ code with $d^* > 1$				
lynomially many codewords and hence are not very interesting.	prof. Jozef Gruska IV054 2. Linear codes 40/48				

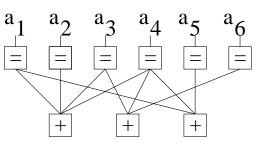
REED-SOLOMON CODES	SOCCER GAMES BETTING SYSTEM			
An important example of MDS-codes are <i>q</i> -ary Reed-Solomon codes RSC(<i>k</i> , <i>q</i>), for $k \le q$. They are codes generator matrix of which has rows labelled by polynomials X^i , $0 \le i \le k - 1$, columns by elements $0, 1, \ldots, q - 1$ and the element in a row labelled by a polynomial p and in a column labelled by an element <i>u</i> is $p(u)$. RSC(<i>k</i> , <i>q</i>) code is $[q, k, q - k + 1]$ code. Example Generator matrix for RSC(3, 5) code is $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 4 & 4 & 1 \end{bmatrix}$ Interesting property of Reed-Solomon codes: $RSC(k, q)^{\perp} = RSC(q - k, q)$. Reed-Solomon codes are used in digital television, satellite communication, wireless communication, barcodes, compact discs, DVD, They are very good to correct burst errors - such as ones caused by solar energy.	Ternary Golay code with parameters (11, 729, 5) can be used to bet for results of 11 soccer games with potential outcomes 1 (if home team wins), 2 (if guests win) and 3 (in case of a draw). If 729 bets are made, then at least one bet has at least 9 results correctly guessed. In case one has to bet for 13 games, then one can usually have two games with pretty sure outcomes and for the rest one can use the above ternary Golay code.			
prof. Jozef Gruska IV054 2. Linear codes 41/48	prof. Jozef Gruska IV054 2. Linear codes 42/48 LDPC (Low-Density Parity Check) - CODES			
DIE Jozef Frusta 1054 2. Linear codes 43/48	 A LDPC code is a binary linear code whose parity check matrix is very sparse - it contains only very few 1's. A linear [n, k] code is a regular [n, k, r, c] LDPC code if r << n, c << n - k and its parity-check matrix has exactly r 1's in each row and exactly c 1's in each column. In the last years LDPC codes are replacing in many important applications other types of codes for the following reasons: LDPC codes are in principle also very good channel codes, so called Shannon capacity approaching codes, they allow the noise threshold to be set arbitrarily close to the theoretical maximum - to Shannon limit - for symmetric channel. Good LDPC codes can be decoded in time linear to their block length using special (for example "iterative belief propagation") approximation techniques. Some LDPC codes were first developed by Robert R. Gallager in 1963, but considered as impractical at that time. They were rediscovered in 1996. Parity-check matrices for LDPC codes are often (pseudo)-randomly generated, subject to sparsity constrains. Such LDPC codes are proven to be good with a high probability. 			

LDPC codes were discovered in 1960 by R.C. Gallager in his PhD thesis, but ignored till 1996 when linear time decoding methods were discovered for some of them.

LDPC codes are used for: deep space communication; digital video broadcasting; 10GBase-T Ethernet, which sends data at 10 gigabits per second over Twisted-pair cables; Wi-Fi standard,....

BI-PARTITE (TANNER) GRAPHS REPRESENTATION of LDPC CODES

An [n, k] LDPC code can be represented by a bipartite graph between a set of *n* top "variable-nodes (v-nodes)" and a set of bottom (n - k) "parity check nodes (c-nodes)".



The corresponding parity check matrix has n - k rows and n columns and *i*-th column has 1 in the *j*-th row exactly in case if *i*-th v-node is connected to *j*-th c-node.

	(1	1	1	1	0	0	
H =	0	0	1	1	0	1	
H =	1	0	0	1	1	0	Ϊ

prof. Jozef Gruska	IV054 2. Linear codes	45/48	prof. Jozef Gruska	IV054 2. Linear codes	46/48		
TANNER GRAPH	S - CONTINUATION		LDPC CODES APPLICATIONS				
The LDPC-code with t	he Tanner graph $a_1 a_2 a_3 a_4 a_5 a_6$ = $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$		 In recent year has codes introduced In 2003, an LDPC the new DVB-S2 LDPC is also used 	s been interesting competition between LDPC in Chapter 3 for various applications. C code beat six turbo codes to become the e standard for satellite transmission for digital d for 10Gbase-T Ethernet, which sends data	rror correcting code in television.		
	$H = \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			ed-pair cables. C codes are also part of of the Wi-Fi 802.11 s in the High Throughput PHY specification.	standard as an optional		
and the following const	$a_1 + a_2 + a_3 + a_4 = 0$						
	$a_1 + a_2 + a_3 + a_4 = 0$ $a_3 + a_4 + a_6 = 0$ $a_1 + a_4 + a_5 = 0$						
prof. Jozef Gruska	IV054 2. Linear codes	47/48	prof. Jozef Gruska	IV054 2. Linear codes	48/48		