IV054 Coding, Cryptography and Cryptographic Protocols

2012 - Exercises IX.

1. Let G be a cyclic group of prime order p and let g be its generator. Alice's private is some $x<p$ and her public key is $X=g^{x}$. Consider the following user identification scheme:

- Alice randomly chooses $r<p$ and sends $R=g^{r}$ and $S=g^{x-r}$ to Bob.
- Bob responds by sending a randomly chosen bit b.
- If $b=0$, Alice sends $z=r$ to Bob, otherwise she sends $z=x-r$.
(a) Find and explain the acceptance condition.
(b) Show that the adversary Eve is able to impersonate Alice with probability $\frac{1}{2}$.
(c) Propose a change which makes the protocol more secure.

2. Consider the Shamir's (5, 3)-threshold secret sharing scheme with $p=211$. Participants P_{1}, P_{2} and P_{3} with shares $(1,171),(2,46)$ and $(3,170)$ want to reconstruct the secret. Show in detail their computation.
3. Let h_{1}, h_{2} be hash functions with the same length of outputs such that one of them is strongly collision-free. Use them to find a strongly collision-free hash function h. Show that your function has the desired property.
4. Suppose you are an army cryptographer. Your mission is to design a secret sharing scheme allowing one General and one Lieutenant General or five Lieutenant Generals to fire a missile. Accomplish your mission.
5. There are four persons in a room, and one of them is a foreign spy. Other three persons share a secret using the Shamir's threshold scheme with $p=11$. Any two of them can recover the secret. The foreign spy chooses his share randomly. Together with the secret sharing participants, the four shares are as follows:

$$
P_{A}:(1,7), \quad P_{B}:(3,0), \quad P_{C}:(5,10), \quad P_{D}:(7,9)
$$

Find out who is the foreign spy and calculate the secret.
6. Consider the following authentication protocol:

In the protocol, an entity A authenticates herself to another entity B with the help of an authentication server S. We denote a secret key shared by entities X and Y by $K_{X Y}$, and let N_{X} denote a random value generated by X freshly for each instance of the protocol. The encryption of a message m by a key K is denoted $\{m\}_{K}$.
(a) Show that a malicious user M can impersonate A to B without any contribution from A.
(b) Propose a corrected version of the protocol.
7. Suppose Alice and Bob share a random secret key and they want to use it to authenticate their messages $0 \leq m \leq 32$. To authenticate a message m with a 2 -bit tag t, Alice chooses two numbers $0<q<37$ and $0 \leq r<37$ according to the shared key, computes a hash of m :

$$
t=((q m+r)(\bmod 37))(\bmod 4)
$$

and sends (m, t) to Bob.
Bob receives a possibly modified pair $\left(m^{\prime}, t^{\prime}\right)$ and computes $t_{b}=\left(\left(q m^{\prime}+r\right)(\bmod 37)\right)(\bmod 4)$. If $t_{b}=t^{\prime}$, he accepts.
(a) What is the probability of successful mounting an impersonation attack?
(b) What is the probability of successful mounting a substitution attack?

