2012 - Exercises VIII.

1. Consider the elliptic curve $E: y^{2}=x^{3}+3 x^{2}+6 x+17$ over \mathbb{Z}_{23}.
(a) Verify that the point $P=(2,7)$ lies on E.
(b) Using a transformation into the form $y^{2}=x^{3}+a x+b$ compute the point $2 P$.
2. Consider the following primality test. An integer $n>0$ is a prime if and only if n divides $2^{n}-2$. Prove or disprove both implications.
3. Consider the elliptic curve

$$
E=\{\mathcal{O}\} \cup\left\{(x, y) \in \mathbb{Z}_{7}^{2} \mid y^{2}=x^{3}+2 x+1\right\}
$$

(a) Find all points of E. Compare the number of points with the Hasse's theorem.
(b) For each point $P \in E$, compute $-P$ and check that it lies on the curve as well.
(c) Show that $(E,+)$ is isomorphic to $\mathbb{Z}_{|E|}$.
4. Suppose $n=p q$, where p, q are primes. Let integers i, j, k and L with $k \neq 0$ satisfy

$$
L=i(p-1), \quad L=j(q-1)+k \text { and } a^{k} \not \equiv 1(\bmod q) .
$$

Let a be a randomly chosen integer satisfying $p \nmid a$ and $q \nmid a$. Prove that

$$
\operatorname{gcd}\left(a^{L}-1, n\right)=p
$$

5. (a) Use the ρ-algorithm with $f(x)=x^{2}+1$ and $x_{0}=2$ to find a factor of $n=8383$.
(b) Try to factorize $n=551$ using the elliptic curve $E: y^{2}=x^{3}+4 x+4$ and
(i) point $P_{1}=(1,3)$,
(ii) point $P_{2}=(0,2)$.
6. Prove the following theorems.
(a) If n is even and $n>2$, then $2^{n}-1$ is composite.
(b) If $3 \mid n$ and $n>3$, then $2^{n}-1$ is composite.
(c) If $2^{n}-1$ is a prime, then n is a prime number.
7. Let $n=p^{k}$ where p is a prime and $k>0$. Compute the sum of all positive divisors of n.
8. Consider the elliptic curve variant of the Diffie-Hellman key exchange protocol. Suppose Alice chooses random secret $n_{a}=11$, Bob chooses $n_{b}=7$. Public information contains an elliptic curve $E: y^{2}=x^{3}+4 x+20(\bmod 29)$ and its point $P=(1,5)$. Show in detail steps of the protocol.
