IV054 Coding, Cryptography and Cryptographic Protocols **2012 - Exercises VIII.**

- 1. Consider the elliptic curve $E: y^2 = x^3 + 3x^2 + 6x + 17$ over \mathbb{Z}_{23} .
 - (a) Verify that the point P = (2,7) lies on E.
 - (b) Using a transformation into the form $y^2 = x^3 + ax + b$ compute the point 2P.
- 2. Consider the following primality test. An integer n > 0 is a prime if and only if n divides $2^n 2$. Prove or disprove both implications.
- 3. Consider the elliptic curve

$$E = \{\mathcal{O}\} \cup \{(x, y) \in \mathbb{Z}_7^2 \mid y^2 = x^3 + 2x + 1\}.$$

- (a) Find all points of E. Compare the number of points with the Hasse's theorem.
- (b) For each point $P \in E$, compute -P and check that it lies on the curve as well.
- (c) Show that (E, +) is isomorphic to $\mathbb{Z}_{|E|}$.
- 4. Suppose n = pq, where p, q are primes. Let integers i, j, k and L with $k \neq 0$ satisfy

$$L = i(p-1), \quad L = j(q-1) + k \text{ and } a^k \not\equiv 1 \pmod{q}.$$

Let a be a randomly chosen integer satisfying $p \nmid a$ and $q \nmid a$. Prove that

$$\gcd(a^L - 1, n) = p.$$

- 5. (a) Use the ρ -algorithm with $f(x) = x^2 + 1$ and $x_0 = 2$ to find a factor of n = 8383.
 - (b) Try to factorize n = 551 using the elliptic curve $E: y^2 = x^3 + 4x + 4$ and
 - (i) point $P_1 = (1, 3)$,
 - (ii) point $P_2 = (0, 2)$.
- 6. Prove the following theorems.
 - (a) If n is even and n > 2, then $2^n 1$ is composite.
 - (b) If $3 \mid n \text{ and } n > 3$, then $2^n 1$ is composite.
 - (c) If $2^n 1$ is a prime, then n is a prime number.
- 7. Let $n = p^k$ where p is a prime and k > 0. Compute the sum of all positive divisors of n.
- 8. Consider the elliptic curve variant of the Diffie-Hellman key exchange protocol. Suppose Alice chooses random secret $n_a = 11$, Bob chooses $n_b = 7$. Public information contains an elliptic curve $E: y^2 = x^3 + 4x + 20 \pmod{29}$ and its point P = (1, 5). Show in detail steps of the protocol.