2012 - Exercises VII.

1. Let m be a message which the adversary Eve intends to sign using the RSA signature scheme with a public key (n, e) and a private key d. Suppose that Eve can obtain a signature of any message $m^{\prime} \neq m$. Show that this enables her to sign m.
2. Consider the RSA signature scheme with public key $(n, e)=(1927,1483)$. Verify signatures s_{i} of messages w_{i}.
(a) $w_{1}=11, s_{1}=416$;
(b) $w_{2}=123, s_{2}=1477$;
(c) $w_{3}=56, s_{3}=200$.
3. Consider the following signature scheme. Alice has a public key (p, g, X, Y), where $p \geq 3$ is a prime, g is a generator of $\left(\mathbb{Z}_{p}^{*}, \cdot\right), X=g^{x}(\bmod p)$ and $Y=g^{y}(\bmod p)$, and a private key (x, y) where $x, y \in \mathbb{Z}_{p}^{*}$. The signature of a message m is $s=y+x m(\bmod p)$. Find a verification algorithm for this scheme and show its correctness.
4. Suppose Alice uses the Fiat-Shamir signature scheme with $v_{1}=6003, v_{2}=1919, v_{3}=2980, s_{1}=$ $44, s_{2}=45, s_{3}=46, h(x)=x \bmod 2011$ and $n=7223$.
Show in detail the computation steps of signing message 33 with $r_{1}=1200, r_{2}=2400, r_{3}=3600$.
5. Consider the DSA signature scheme with a hash function H. If H is not one-way, show that we can forge a triplet (m, a, b) such that (a, b) is valid signature for the message m.
6. Consider the DSA signature scheme. Let (p, q, r, x, y) be a key. Suppose the public parameters

$$
p=48731, \quad q=443, \quad \text { and } \quad r=5260
$$

The element r was computed as $r \equiv 7^{48730 / 443}(\bmod 48731)$, where 7 is a primitive root modulo 48731. Alice chooses the secret signing key $x=242$.
(a) What is Alice's public verification key y ?
(b) Alice signs the message $m=343$ using $k=427$. What is the signature? Perform all steps of her calculation and all steps of Bob's verification.
7. Let n be a large composite modulus (of unknown factorization), k and s be two elements of \mathbb{Z}_{n}^{*} such that $s^{2}=-k(\bmod n)$. Let $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{n}$ be a cryptographic hash function. Find a signature algorithm which uses the public key k, the secret key s if you know that the verification of a signature (x, y) of a message m consists in checking that

$$
x^{2}+k y^{2} \equiv H(m)(\bmod n)
$$

