2012-Exercises V.

1. Let $(n, 3)$ be a public key of the RSA cryptosystem. Describe how the plaintext m can be found, provided the cryptotexts c, c^{\prime} corresponding to the plaintexts $m, m+1$, respectively, are known.
2. You are given $n=177773$ and $\phi(n)=176928$. Factorize n if you know that it has two factors. Do not use brute force.
3. Consider Alice and Bob use Diffie-Hellman protocol to establish a common secret key. Let $p=599$ and $q=11$. Alice and Bob have chosen secret exponents $x=11$ and $y=27$, respectively. Perform in detail steps of the protocol and determine X, Y and the secret key K.
4. Suppose Bob is using RSA with modulus $n=15093209$ and two public exponents $e_{1}=7$ and $e_{2}=17$ corresponding to the same n. Alice wanted to be sure that Bob will get her message, so she encrypted the same plaintext m with both of Bob's public keys and sent $c_{1}=m^{e_{1}}(\bmod n)=2922630$ and $c_{2}=m^{e_{2}}(\bmod n)=1902230$. Without factorization of n determine m.
5. Let x, y be positive integers. Decide whether the following statements are true. For each of them, provide either a counterexample or a proof.
(a) If x divides y^{2}, then x divides y.
(b) If x^{3} divides y^{2}, then x divides y.
6. Suppose that Alice wants to send a message 11010 to Bob using the Knapsack cryptosystem with $X=(1,3,5,11,25), m=181$ and $u=42$.
(a) Find Bob's public key X^{\prime}.
(b) What is the cryptotext c computed by Alice?
(c) Perform in detail Bob's decryption of c.
7. Bob wants more secure RSA, so he tries to repeat encryption of the ciphertext.
(a) Let $n=35$ be the RSA modulus and let m be a plaintext. Show that $e(e(m))=m^{e^{2}}(\bmod 35)=$ m for any legitimate public exponent e which leads to a completely insecure RSA cryptosystem.
(b) Generalize results of (a) and explain how to mount a similar attack in order to decrypt a ciphertext c given the corresponding public key (n, e).
8. Let p, q be primes such that $p \neq q, n=p q, \phi(n)=(p-1)(q-1)$ and $g=\operatorname{gcd}(p-1, q-1)$. Prove that

$$
a^{\phi(n) / g} \equiv 1(\bmod n)
$$

for all a satisfying $\operatorname{gcd}(a, n)=1$.

