IV054 Coding, Cryptography and Cryptographic Protocols **2012 - Exercises III.**

1. Consider the following binary linear [8, 5]-code C generated with

	1	1	1	1	0	0	0	0
	1	0	0	0	1	0	0	0
G =	0	1	0	0	0	1	0	0
	0	0	1	0	0	0	1	0
	1	1	1	0	0	0	0	1

- (a) Prove that C is a cyclic code.
- (b) Find the generator polynomial of C.
- 2. Which of the following binary codes are cyclic? Explain your reasoning.
 - (a) $C_1 = \{000, 001, 100, 101\}$
 - (b) $C_2 = \{000, 001, 010, 100\}$
 - (c) $C_3 = \{0, 1\}$
 - (d) $C_4 = \{0000, 0101, 1010, 1111\}$
- 3. Compute a generator polynomial and a parity check polynomial of a binary cyclic code of length 12 and dimension 5. Encode the word 00100.
- 4. Provide the generator polynomial of the smallest binary cyclic code containing codeword 0001001.
- 5. Consider a binary cyclic code C with a generator polynomial g(x). Show that g(1) = 0 if and only if weight of each word in C is even.
- 6. How many quinary cyclic codes of length seven are there? Give a generator polynomial for each of them.
- 7. Let C be a cyclic code over \mathbb{F}_q of length 7 such that 1110000 is an element of C. Show that C is a trivial code (*ie.* \mathbb{F}_q^n or $\{0^n\}$) if q is not a power of 3.