IV054 Coding, Cryptography and Cryptographic Protocols 2011 - Exercises VIII.

- 1. Let $n \ge 2$ be an integer. Show that the number $n^{40} + 1$ is composite.
- 2. Does the elliptic curve equation $y^2 = x^3 + 10x + 5$ define a group over \mathbb{F}_{17} ?
- 3. (a) Use the first Pollard's rho method with pseudorandom function $f(x) = x^2 + 1$ and $x_0 = 3$ to find a factor of 4577.
 - (b) Find a factor of 143 using the curve $E: y^2 = x^3 + 2x + 1 \pmod{143}$ and its point P = (1, 119).
- 4. To which group is the elliptic curve $E: y^2 = x^3 + 4x + 1$ over \mathbb{Z}_7 isomorphic to? Compute the addition table of E.
- 5. Find an integer 1 < x < 2011 such that $x^{11} 1$ is a multiple of 2011 or show that such an integer does not exist.
- 6. Design an elliptic curve counterpart of Shank's algorithm and answer the following questions.
 - (a) In classical Shank's algorithm with modulus p, both parameters i, j run in interval $0 \le i, j < \lfloor \sqrt{p-1} \rfloor = m$. Why?
 - (b) What is the bound for its elliptic curve counterpart an elliptic curve $E \pmod{p}$ with the number of points N > p + 1?
 - (c) Using the designed algorithm solve (7,9) = x(2,7) for the elliptic curve $E: x^3 + x + 6 \pmod{11}$ and show the computed table.
- 7. (Bonus) Let \mathbb{F}_{2^m} be a finite field with characteristic 2 and a generator g. Let $a, b \in \mathbb{F}_{2^m}$ satisfy $b \neq 0$. The field is described using the irreducible polynomial $x^3 + x + 1$. An elliptic curve over such field consists of the set of solutions (x, y) for $x, y \in \mathbb{F}_{2^m}$ to the equation $y^2 + xy = x^3 + ax^2 + b$. Let m = 3 and $E: y^2 + xy = x^3 + g^2x^2 + g^6$ be an elliptic curve over this field.
 - (a) Define negatives for elliptic curves over \mathbb{F}_{2^m} in general and find $-(g^3, g^6)$ in E.
 - (b) Define addition of two points with different x-coordinates for elliptic curves over \mathbb{F}_{2^m} in general and find $(g^2, g^6) + (g^5, g^5)$ in E.
 - (c) Define doubling of a point for elliptic curves over \mathbb{F}_{2^m} in general and find $2 \cdot (g^3, g^4)$ in E.