IV054 Coding, Cryptography and Cryptographic Protocols **2011 - Exercises I.**

- 1. Consider the code $C = \{0000001, 1111001, 1100110, 0011110\}$. Determine the values h(C), s(C) and t(C) where s(C) is the number of errors C can detect and t(C) is the number of errors C can correct. Show that C is equivalent to a code which contains the word 0000000.
- 2. Find a binary (5, 3, 4)-code or show that such does not exist.
- 3. Find an upper bound U and a lower bound L for $A_2(9,3)$, such that $U \ge A_2(9,3) \ge L$ and $3L \ge U$.
- 4. Construct a quaternary Huffman code for characters A, B, C, D and E with relative frequencies given in the following table.

character	relative frequency
А	0.50
В	0.28
\mathbf{C}	0.10
D	0.06
\mathbf{E}	0.06

5. Determine d and M for q-ary code

$$C = \{x_1 \dots x_n \mid \sum_{i=1}^n x_i = 0 \pmod{q}\}$$

- 6. Suppose you want to use a binary channel with the following properties:
 - (a) With probability p_ℓ ≤ ¹/₂ the channel rotates a k-bit message being sent to the left (*ie.* a message m₁m₂...m_k goes to m₂m₃...m_km₁);
 - With probability $p_r = p_\ell$ the channel rotates a k-bit message being sent to the right (*ie.* a message $m_1m_2...m_k$ goes to $m_km_1m_2...m_{k-1}$);
 - With probability $1 p_{\ell} p_r$ a message is not changed.

Design a code with the minimal length that can transmit 8 distinct messages with the probability of erroneous decoding $p_e = 0$. Prove your result.

- (b) With probability p the channel reverts a k-bit message being sent (*ie.* a message $m_1m_2 \dots m_k$ goes to $m_km_{k-1} \dots m_2m_1$);
 - With probability 1 p a message is not changed.

What is the maximal number of distinct messages you can send with $p_e = 0$ using a 4-bit code? Prove your result.

- 7. Which of the following codes are possible Huffman codes?
 - (a) $C_1 = \{0, 00, 01\}$
 - (b) $C_2 = \{0, 10, 11\}$
 - (c) $C_3 = \{0, 10\}$
 - (d) $C_4 = \{1, 000, 001, 010, 0110\}$
- 8. Consider an ISBN number 00770x9877. Determine x and find out which book has this ISBN code.