2009 - Exercises VIII.

1. Consider the following elliptic curve $E: y^{2}=x^{3}+4 x+20(\bmod 29)$.
a) Calculate the number of points of E.
b) Show that the group generated by E is cyclic. Find all its generators.
c) Compute in detail $7 P$ where $P=(1,5)$.
2. Show that $(p-1)!+1$ is a multiple of p if and only if p is a prime.
3. Show that $\forall n \in \mathbb{N}$ it holds
a) $12 \mid n^{4}-n^{2}$
b) $133 \mid 11^{n+2}+12^{2 n+1}$
4. a) Use the first Pollard's rho method with $f(x)=x^{2}-1$ and $x_{0}=3$ to find a factor of $n=4559$.
b) Find a factor of $n=355$ using the elliptic curve $E: y^{2}=x^{3}-3 x+3$ and the point $P=(1,1)$.
5. Consider an elliptic curve version of the ElGamal digital signature scheme from the lecture. Show how one can recover the private key a if the same r is used to sign more than one message.
6. Bob uses an elliptic curve version of the ElGamal cryptosystem with public key $p=7, E: x^{3}+3 x+5(\bmod 7), P=(1,3)$ and $Q=(6,6)$.
a) Encrypt a message $m=(1,4)$ with $r=3$. Show computation steps.
b) Decrypt the ciphertext computed in a) with Bob's secret key $a=2$. Show computation steps.
7. To which group is the elliptic curve $E: y^{2}=x^{3}+2 x+1(\bmod 7)$ isomorphic to? Compute the addition table of E.
