1. Let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a one-way function. Find a one-way function f^{\prime} for which the Lamport signature scheme does not have the following property. For any message m and a valid signature s for m, it is infeasible to find a pair $\left(m^{\prime}, s^{\prime}\right) \neq(m, s)$ such that s^{\prime} is a valid signature for m^{\prime}.
2. Use the Ong-Schnorr-Shamir subliminal channel scheme with $n=5617$ and $k=111$ to verify and decrypt the message $\left(w^{\prime}, S_{1}, S_{2}\right)=(1234,3058,4806)$.
3. Consider the following signature scheme. Let q be a large prime, g a generator of the group \mathbb{Z}_{q}^{*} and h a proper (publicly known) hash function. Alice's private key is an integer $x \in\{1,2, \ldots, q-1\}$ and her public key is $y=g^{x}(\bmod q)$. Alice signs a message m by computing $g^{z}(\bmod q)$ where $z=\frac{x}{h(m)}(\bmod q)$ (we require that $h(m) \neq 0(\bmod q)$).
Alice's signature s is accepted if $s^{h(m)}=y(\bmod q)$. Decide whether the described signature scheme is correct and secure. Explain your reasoning.
4. Alice is using the DSA scheme for signing her messages. She has the following public key: $p=3583, q=199$ and $r=1614$. Alice has sent a message $m=46$ with signature (102, 0). Malicious Eve has intercepted the message and she wants to change the message to $m^{\prime}=50$ so that Bob will not find it. Find a valid signature for $m^{\prime}=50$ (do not use brute force attack) and verify it. Explain your answer.
5. Suppose that there is a web service which offers its users on-line computation of discrete logarithms for any cyclic group and its generator. Alice needs to compute a discrete logarithm of $a \in G$ in basis $g \in G$ where G is a cyclic group. She would like to use the web service but she does not want to give it any information about a. Decide whether there is a way for Alice to achieve her goal.
6. Let us consider the Chaum's blind signature RSA scheme with $n=p q, p=71$, $q=83, e=31$. Only Bob knows d and he uses it to sign documents. Alice wants him to sign message $m=2431$ without him knowing m. Compute in detail a signature for m with $k=128$.
7. Consider the DSA signature algorithm with public key p, q, r and a secret key x. Suppose a lazy signer has precomputed one pair (k, a), satisfying $a=\left(r^{k}\right.$ $\bmod p) \bmod q$, and uses the same pair for each signature. Show how to recover his secret key.
