1. Let $p=541, q=2$ and $x=101$. Decrypt the following ElGamal ciphers $c_{1}=(54,300)$ and $c_{2}=(54,301)$.
2. Consider the Generalized Rabin cryptosystem with $p=31, q=59$ and $B=15$. Suppose we want to transmit the message $m=20$. Show in detail encryption and decryption steps.
3. Let p, q be distinct primes such that $p \equiv q \equiv 3(\bmod 4)$. Consider the following encryption scheme for encryption of 1-bit messages.
Public key is a number $n=p q$ and private key is a pair (p, q). Message m is encrypted by computing $c=(-1)^{m} r^{2}(\bmod n)$ where $r \in\{1, \ldots, n-1\}$ is randomly chosen and $\operatorname{gcd}(r, n)=1$. After receiving the cryptotext the receiver determines whether it is a quadratic residue or not and decrypts.
a) Show correctness of this encryption scheme.
b) Show that given a public key n and cryptotexts c_{1}, c_{2} that were computed using n and encrypt messages m_{1}, m_{2} it is possible to efficiently compute a cryptotext c^{\prime} that encrypts a message $m^{\prime}=m_{1} \oplus m_{2}$ without knowing neither m_{1} nor m_{2}.
c) Show that given a public key n and a cryptotext c that encrypts a message m it is possible to efficiently generate a random cryptotext c^{*} which encrypts m too (again, without knowing m).
4. a) Find all solutions of the congruence $x^{2} \equiv 2(\bmod 1081)$. Use the Chinese Remainder Theorem.
b) Find all solutions of the congruence $x^{10} \equiv 1(\bmod 101)$. Use the fact that 2 is a generator of the group $\left(\mathbb{Z}_{101}^{*}, \cdot\right)$.
5. $r \in Z_{n}^{*}$ is called a quadratic residue modulo n if there is $s \in Z_{n}^{*}$ such that $s^{2} \equiv r(\bmod n)$. Show that the set Q of all quadratic residues modulo n is a subgroup of the group $\left(\mathbb{Z}_{n}^{*}, \cdot\right)$.
6. Consider the uniform distribution of birthdays in a 365 -day year and a group of 50 people. What is the probability that two people in the group have a birthday on the same day?
From the original group 23 people have been chosen. What is the probability of two of them having a birthday on the same day?
