IV054 Coding, Cryptography and Cryptographic Protocols 2009 – Exercises V.

- 1. Let (n, e) be a public key for the RSA cryptosystem. An integer $m \in \{1, 2, ..., n-1\}$ is called a fixed point if $m^e = m \pmod{n}$. Show that if m is a fixed point then n - m is also a fixed point.
- 2. Let n = pq where p, q are large primes. Show that there is an integer e > 1 such that gcd(e, (p-1)(q-1)) = 1 and for any integer m it holds that $m^e = m \pmod{n}$, *ie.* each m is a fixed point.
- 3. Let n = 54105049. Suppose that Eve was able to determine the value $\varphi(n) = 54090036$. How can Eve determine the prime factors of n.
- 4. Let n = pq where p, q are large primes. Consider a file system with n files F_1, F_2, \ldots, F_n . Let e_1, e_2, \ldots, e_n be integers such that $gcd(e_i, e_j) = 1$ and $gcd(e_i, (p-1)(q-1)) = 1$ for any $i \neq j$. These integers are made public. For each i the file F_i is encrypted somehow and the decryption key is $k_i = r^{\frac{1}{e_i}} \pmod{n}$ where r is an integer. Let $S \subseteq \{1, \ldots, n\}$ and $b = \prod_{i \in S} e_i$. Suppose that Alice is given $k_A = r^{\frac{1}{b}} \pmod{n}$ and she knows the set S. Show that she can decrypt any file F_i such that $i \in S$.
- 5. Alice and Bob want to establish a common secret key using the Diffie-Hellman key establishment protocol with p = 1511 and q = 97. Alice has chosen x = 126, Bob y = 534. Compute X, Y and a shared key K.
- 6. Bob sets up the Knapsack cryptosystem with X = (2, 5, 8, 17, 35, 70), m = 191, u = 34 so that Alice can send him messages.
 - a) Determine Bob's public key X'.
 - b) Encode messages 101010 and 100010.
 - c) Decode in detail cryptotexts $c_1 = 370$ and $c_2 = 383$.
- 7. Alice and Bob share a secret large prime s. They are using the RSA cryptosystem and the following scheme for encrypting a secret message $m = m_1 m_2 \dots m_k$ where m_i are alphabetic characters. Each character m_i is represented as a digit, eg. 'a' = 0, 'b' = 1, ..., 'z' = 25. Encryption proceeds as follows.

$$c_1 = s \oplus e(m_1),$$
$$c_{i+1} = c_i \oplus e(m_{i+1}),$$

where 0 < i < k.

Is the proposed scheme secure?

8. Consider the RSA scheme with n = 1073 and e = 949. You know the following plaintext-ciphertext pairs:

$$e(157) = 12, \ e(2) = 533, \ e(933) = 970$$

Without factoring or brute-force attack decrypt the ciphertext c = 893. Explain your reasoning. (Hint: One of the exercises above.)