1. Let (n, e) be a public key for the RSA cryptosystem.

An integer $m \in\{1,2, \ldots, n-1\}$ is called a fixed point if $m^{e}=m(\bmod n)$.
Show that if m is a fixed point then $n-m$ is also a fixed point.
2. Let $n=p q$ where p, q are large primes. Show that there is an integer $e>1$ such that $\operatorname{gcd}(e,(p-1)(q-1))=1$ and for any integer m it holds that $m^{e}=$ $m(\bmod n), i e$. each m is a fixed point.
3. Let $n=54105049$. Suppose that Eve was able to determine the value $\varphi(n)=$ 54090036. How can Eve determine the prime factors of n.
4. Let $n=p q$ where p, q are large primes. Consider a file system with n files $F_{1}, F_{2}, \ldots, F_{n}$. Let $e_{1}, e_{2}, \ldots, e_{n}$ be integers such that $\operatorname{gcd}\left(e_{i}, e_{j}\right)=1$ and $\operatorname{gcd}\left(e_{i},(p-1)(q-1)\right)=1$ for any $i \neq j$. These integers are made public.
For each i the file F_{i} is encrypted somehow and the decryption key is $k_{i}=$ $r^{\frac{1}{e_{i}}}(\bmod n)$ where r is an integer. Let $S \subseteq\{1, \ldots, n\}$ and $b=\prod_{i \in S} e_{i}$. Suppose that Alice is given $k_{A}=r^{\frac{1}{b}}(\bmod n)$ and she knows the set S. Show that she can decrypt any file F_{i} such that $i \in S$.
5. Alice and Bob want to establish a common secret key using the Diffie-Hellman key establishment protocol with $p=1511$ and $q=97$. Alice has chosen $x=126$, Bob $y=534$. Compute X, Y and a shared key K.
6. Bob sets up the Knapsack cryptosystem with $X=(2,5,8,17,35,70), m=191$, $u=34$ so that Alice can send him messages.
a) Determine Bob's public key X^{\prime}.
b) Encode messages 101010 and 100010 .
c) Decode in detail cryptotexts $c_{1}=370$ and $c_{2}=383$.
7. Alice and Bob share a secret large prime s. They are using the RSA cryptosystem and the following scheme for encrypting a secret message $m=m_{1} m_{2} \ldots m_{k}$ where m_{i} are alphabetic characters. Each character m_{i} is represented as a digit, eg. 'a' $=0,{ }^{\prime} b '=1, \ldots,{ }^{\prime} z^{\prime}=25$. Encryption proceeds as follows.

$$
\begin{aligned}
c_{1} & =s \oplus e\left(m_{1}\right), \\
c_{i+1} & =c_{i} \oplus e\left(m_{i+1}\right),
\end{aligned}
$$

where $0<i<k$.
Is the proposed scheme secure?
8. Consider the RSA scheme with $n=1073$ and $e=949$. You know the following plaintext-ciphertext pairs:

$$
e(157)=12, \quad e(2)=533, \quad e(933)=970
$$

Without factoring or brute-force attack decrypt the ciphertext $c=893$. Explain your reasoning. (Hint: One of the exercises above.)

