2009 - Exercises III.

1. Consider the binary cyclic code C of length 7 with the generating polynomial $g(x)=x^{3}+x+1$.
a) Find the generating matrix G and the parity check matrix H.
b) Decide whether the code C is perfect or not.
c) Encode the message 1001.
2. Find a generator polynomial for the smallest binary cyclic code containing codewords 00101000 and 01001000.
3. Let $g(x)=g_{k} x^{k}+\cdots+g_{1} x+g_{0} \neq 0$ be a generator polynomial of some cyclic code C. Show that $g_{0} \neq 0$.
4. For $k \in\{0,1, \ldots, 5\}$ let n_{k} be the number of different cyclic codes over $G F(31)$ which have length 5 and dimension k. Find $n_{0}, n_{1}, \ldots, n_{5}$.
5. How many ternary cyclic codes of length 6 are there? Give the generator polynomial for each such code and one generator matrix for each dimension.
6. Which of the following codes are cyclic?
a) $\{000,111,222\} \subset \mathbb{F}_{3}^{3}$
b) $\{000,100,010,001\} \subset \mathbb{F}_{q}^{3}$
c) $\left\{x_{0} x_{1} \ldots x_{n-1} \in \mathbb{F}_{q}^{n} \mid \sum_{i=0}^{n-1} x_{i}=0\right\}$
d) $\left\{x_{0} x_{1} \ldots x_{n-1} \in \mathbb{F}_{8}^{n} \mid \sum_{i=0}^{n-1} x_{i}^{2}=0\right\}$
e) $\left\{x_{0} x_{1} \ldots x_{n-1} \in \mathbb{F}_{2}^{n} \mid \sum_{i=0}^{n-1}\left(x_{i}^{2}+x_{i}\right)=0\right\}$
7. Show that the dual code of a cyclic code is cyclic.
