IV054 Coding, Cryptography and Cryptographic Protocols 2009 – Exercises II.

- 1. Decide which of the following codes are linear.
 - a) binary code $C_1 = \{0000, 0011, 0110, 1001, 1010, 1100, 1111, 0101\}$
 - b) quaternary code $C_2 = \{000, 312, 220, 132\}$
 - c) ternary code $C_3 = \{0000, 0101, 1000, 1101\}$
- 2. Consider a binary [n, k]-code C with a parity check matrix

- a) Find n, k, h(C) and |C|.
- b) Find the standard form generator matrix for C.
- c) Prove that $C^{\perp} \subset C$.
- d) Find coset leaders and the corresponding syndromes.
- 3. Consider a binary linear code. Prove that either all of the codewords begin with 0 or exactly half of the codewords begin with 0.
- 4. Compare P_{corr} when sending 16 messages unencoded to encoding using a Hamming code \mathcal{H}_3 . Assume communication is over a binary symmetric channel with error probability p. Compare results for p = 0.01.
- 5. Let C be an [n, k, d] code over \mathbb{F}_q . Prove that
 - a) $A_0(C) + A_1(C) + \ldots + A_n(C) = q^k$.
 - b) $A_0(C) = 1$ and $A_1(C) = A_2(C) = \ldots = A_{d-1}(C) = 0$.
 - c) If C is a binary code containing the codeword 1 = 11...1, then $A_i(C) = A_{n-i}(C)$ for $0 \le i \le n$.
- 6. Let P_i be the set of all binary linear codes with weight equal to p_i , where p_i is the *i*th prime. Decide whether there exists a self-dual code $(C = C^{\perp})$ in P_i for all $i \in \mathbb{N}$.
- 7. Show that two vectors y_1 and y_2 are elements of the same coset if and only if

$$Hy_1^{\top} = Hy_2^{\top}.$$

- 8. a) How many cosets is contained in the Reed-Muller code R(1, m)? Explain your reasoning.
 - b) Determine the lower bound for the number of cosets that have a unique leader in R(1, m). Explain your reasoning.