## 2009 - Exercises II.

1. Decide which of the following codes are linear.
a) binary code $C_{1}=\{0000,0011,0110,1001,1010,1100,1111,0101\}$
b) quaternary code $C_{2}=\{000,312,220,132\}$
c) ternary code $C_{3}=\{0000,0101,1000,1101\}$
2. Consider a binary $[n, k]$-code $C$ with a parity check matrix

$$
\mathbf{H}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

a) Find $n, k, h(C)$ and $|C|$.
b) Find the standard form generator matrix for $C$.
c) Prove that $C^{\perp} \subset C$.
d) Find coset leaders and the corresponding syndromes.
3. Consider a binary linear code. Prove that either all of the codewords begin with 0 or exactly half of the codewords begin with 0 .
4. Compare $P_{\text {corr }}$ when sending 16 messages unencoded to encoding using a Hamming code $\mathcal{H}_{3}$. Assume communication is over a binary symmetric channel with error probability $p$. Compare results for $p=0.01$.
5. Let $C$ be an $[n, k, d]$ code over $\mathbb{F}_{q}$. Prove that
a) $A_{0}(C)+A_{1}(C)+\ldots+A_{n}(C)=q^{k}$.
b) $A_{0}(C)=1$ and $A_{1}(C)=A_{2}(C)=\ldots=A_{d-1}(C)=0$.
c) If $C$ is a binary code containing the codeword $1=11 \ldots 1$, then $A_{i}(C)=$ $A_{n-i}(C)$ for $0 \leq i \leq n$.
6. Let $P_{i}$ be the set of all binary linear codes with weight equal to $p_{i}$, where $p_{i}$ is the $i$ th prime. Decide whether there exists a self-dual code $\left(C=C^{\perp}\right)$ in $P_{i}$ for all $i \in \mathbb{N}$.
7. Show that two vectors $y_{1}$ and $y_{2}$ are elements of the same coset if and only if

$$
H y_{1}^{\top}=H y_{2}^{\top} .
$$

8. a) How many cosets is contained in the Reed-Muller code $R(1, m)$ ? Explain your reasoning.
b) Determine the lower bound for the number of cosets that have a unique leader in $\mathrm{R}(1, \mathrm{~m})$. Explain your reasoning.
