2009 - Exercises I.

1. a) Construct a Huffman code for letters A, B, C, D and E with frequencies of use given in the following table.

letter	frequency
A	40%
B	30%
C	20%
D	5%
E	5%

b) Find the average word length.
2. a) Consider the ISBN number 0486x00973. Determine x. Which book has this ISBN code?
b) Consider the code $C=\left\{x \in \mathbb{Z}_{10}^{9} \mid \sum_{i=1}^{9} i x_{i}=0(\bmod 10)\right\}$. Show that this version of the ISBN code is not able to detect transposition errors.
3. Find the minimal distance of the code $C=\{10001,11010,01101,00110\}$. Decode the strings $11110,01101,10111,00111$ using the nearest neighbour decoding strategy.
4. Consider a binary symmetric channel.
a) Show that the nearest neigbour decoding strategy and the maximal likelihood decoding strategy are the same.
b) Why there is an assumption that probability of error $p<\frac{1}{2}$?
5. A (v, b, k, r, λ) block design D is a partition of v elements $e_{1}, e_{2}, \ldots, e_{v}$ into b sets (blocks) $s_{1}, s_{2}, \ldots, s_{b}$, each of cardinality k, such that each of the objects appears exactly in r blocks and each pair of them appears exactly in λ blocks. An incidence matrix of a (v, b, k, r, λ) block design is a $v \times b$ binary matrix M such that for any $(i, j) \in\{1,2, \ldots, v\} \times\{1,2, \ldots, b\} m_{i, j}=1$ if $v_{i} \in s_{j}$ and $m_{i, j}=0$ otherwise.
Let D be a (v, b, k, r, λ) block design. Consider a code C whose codewords are rows of the incidence matrix of D :
a) Show that each codeword of C has the same weight.
b) Find the minimal distance of C.
c) How many errors is C able to correct and detect?
6. Show that the following codes are perfect:
a) $\operatorname{codes} C=\mathbb{F}_{q}^{n}$;
b) codes consisting of exactly one codeword;
c) binary repetition codes of odd length;
d) binary codes of odd length consisting of a vector c and the vector c^{\prime} with 0 s and 1 s interchanged.

