IV054 Coding, Cryptography and Cryptographic Protocols

2008 - Exercises X.

- 1. Consider the group \mathbb{Z}_p^* such that p = 2q + 1 where p, q are primes. Let $g \in \mathbb{Z}_p^*$. Show that g is a quadratic residue modulo p if and only if $g^q \equiv 1 \pmod{p}$.
- 2. Consider the following 1-out-of-2 oblivious transfer scheme which uses the RSA cryptosystem.
 - (1) The sender has two secrets m_0 , m_1 . He generates RSA keys: n, e and d, and picks two random messages x_0 and x_1 . The sender transmits n, e, x_0 , and x_1 to the receiver.
 - (2) The receiver chooses a random message k, encrypts k with e, and adds x_b , $b \in \{0, 1\}$, to the encryption of k (modulo n). The receiver sends the result q to the sender.
 - (3) The sender computes k_0 to be the decryption of $q x_0$ and similarly k_1 to be the decryption of $q x_1$, and sends $r_0 = m_0 + k_0$ and $r_1 = m_1 + k_1$ to the receiver.

Show that the receiver can compute m_b , but cannot compute m_{1-b} and that the sender cannot learn b.

- 3. Consider the following coin flipping protocol:
 - (1) Bob generates a Blum integer n (*ie.* an integer n = pq, where $p \equiv q \equiv 3 \pmod{4}$ are distinct primes), a random $x \in \mathbb{N}$ with gcd(x, n) = 1, and computes $x_0 \equiv x^2 \pmod{n}$ and $x_1 \equiv x_0^2 \pmod{n}$. He sends n and x_1 to Alice.
 - (2) Alice guesses the parity of x and sends her guess to Bob.
 - (3) Bob sends x and x_0 to Alice.
 - (4) Alice checks that both $x_0 \equiv x^2 \pmod{n}$ and $x_1 \equiv x_0^2 \pmod{n}$. Therefore, Alice can determine if the guess is correct.

Show that Bob can cheat if n is not a Blum integer.

- 4. Alice needs to prove to Bob that she knows some secret quadratic non-residue $x \in \mathbb{Z}_n^*$. The parties decide to use for this the zero-knowledge protocol for quadratic residuosity (see lecture notes) with the modification that Bob accepts if and only if he would reject in the residuosity protocol.
 - (a) Write the modified protocol explicitly.
 - (b) Is it a zero-knowledge protocol? Justify your answer.
- 5. Given p = 31, q = 23 and y = 220 perform the coin flipping by telephone protocol (Protocol 2 from lecture). Show details.

- 6. Consider the following protocol for proving quadratic non-residuosity of x modulo n:
 - (1) Victor randomly chooses a number $r \in \mathbb{Z}_n^*$ and a bit b and sends to Peggy $y \equiv r^2 x^b \pmod{n}$.
 - (2) Peggy sends to Victor c = 0 if and only if there is z such that $z^2 \equiv y \pmod{n}$, otherwise she sends c = 1.
 - (3) Victor accepts if and only if c = b.
 - (a) Is this protocol an interactive proof system?
 - (b) Is it a zero-knowledge protocol?

Justify your answers.