
Pattern Equations and Equations withStuttering?Ivana �erná1, Ond°ej Klíma2, and Ji°í Srba11 Faculty of Informatics MU, Botanická 68a, 602 00 Brno, Czech Republic,{cerna,srba}@fi.muni.cz2 Faculty of Science MU, Dept. of Mathematics, Janá£kovo nám. 2a, 662 95 Brno,Czech Republic, klima@math.muni.czAbstract. Word equation in a special form X = A, where X is a se-quence of variables and A is a sequence of constants, is considered. Theproblem whether X = A has a solution over a free monoid (Pattern-Equation problem) is shown to be NP�complete. It is also shown thatdisjunction of a special type equation systems and conjunction of thegeneral ones can be eliminated. Finally, the case of stuttering equationswhere the word identity is read modulo x2 = x is mentioned.1 IntroductionIn computer science many natural problems lead to solving equations. It is themain topic in several �elds such as logic programming and automated theoremproving where especially uni�cation plays a very important role. A number ofproblems also exploit semantic uni�cation, which is in fact solving word equa-tions in some variety. A very famous result by Makanin (see [?]) shows that thequestion whether an equation over a free monoid has a solution is decidable. Itcan be even generalized in the way that existential �rst-order theory of equationsover free monoid is decidable. Moreover adding regular constraints on the vari-ables (i.e. predicates of the form x 2 L where L is a regular language) preservesdecidability [?].In this paper we consider a very practical issue of a certain subclass of equa-tions which we call pattern equations. Many problems such as pattern matchingand speech recognition/synthesis lead to this kind of equations where we con-sider on the lefthand side just variables and on the righthand side only constants.This work has been mostly inspired by the papers [?] and [?] where the basicapproach � syllable-based speech synthesis � is in assigning prosody attributes toa given text and segmentation into syllable segments. This problem can be mod-elled by pattern equations over free monoid resp. idempotent semigroup and istrivially decidable. However, we could ask whether a polynomial algorithm existsto �nd a solution. Unfortunately, this problem appears intractable (supposing? The paper is supported by the Grant Agency of the Czech Republic, grant No.201/97/0456 and by grant FRV� 409/1999



P6=NP) since we prove that it is NP�complete. One of the ways how to solve theproblem is to use heuristic algorithms. They are the current �eld of interest inspeech synthesis. Another approach that could be used for solving the problemis Concurrent Constraint Programming. For the background see [?].We may also ask whether for a system of pattern equations (connected byconjunction resp. disjunction) exists a single equation preserving satis�abilityand/or solutions. In the positive case a question of the transformation complexityarises. If the transformation can be done e�ectively (e.g. in linear time as itis shown in Section ??), we can concentrate on �nding heuristics just for asingle pattern equation where the situation could be easier to manage. Theelimination of conjunction resp. disjunction is generally possible [?]. What weshow is that we can �nd an equation preserving solutions of the system (andthus also satis�ability) which is again of our special type, i.e. it is a patternequation. We demonstrate that for conjunction no extention of the constant andvariable alphabet is necessary and the length growths polynomially where thedegree of the polynomial depends on the number of equations. For the practicalpurposes it is much more convenient to add some new symbols into the alphabetand thus achieve just a linear space extention, which is also manifested in ourpaper. Similar results are formulated for disjunction.We also examine the solvability of the equations in the variety of idempo-tent semigroups (bands) which we call stuttering equations. Their name comesfrom practical motivations. For example in the speech recognition the speakersometimes stutters some words and we would like to eliminate this e�ect andenable the correct variables assignation even in the case of stuttering. Thereforewe allow to eliminate multiple occurrences of the same constant into only oneoccurrence, which can be modelled by the identity x2 = x.Local �niteness of free bands yields decidability of the satis�ability problemeven in the general case and we give an exponential upper bound on the length ofany solution up to band identities. A polynomial time decision procedure for theword problem in idempotent semigroups is straightforward and can be found inthe full version of this paper [?]. Consequently, the satis�ability problem of stut-tering equations belongs to NEXPTIME. The complexity issues for stutteringpattern equations are also discussed.2 Basic de�nitionsLet C be a �nite set of constants and V be a �nite set of variables such thatC\V = ;. A word equation L = R is a pair (L;R) 2 (C[V )��(C[V )�. A systemof word equations is a �nite set of equations of the form fL1 = R1; : : : ; Ln = Rngfor n > 0. A solution of such a system is a homomorphism � : (C [ V )� ! C�which behaves as an identity on the letters from C and equates all the equationsof the system, i.e. �(Li) = �(Ri) for all 1 � i � n. Such a homomorphism is thenfully established by a mapping � : V ! C�. A solution is called non-singular,if �(x) 6= � for all x 2 V . Otherwise we will call it singular. We say that theproblem for word equations is satis�able whenever it has a solution.



Makanin in [?] shows that the satis�ability problem for word equations isdecidable. This problem is easily seen to be semidecidable. The decidability isestablished by giving an upper border on the length of the minimal solution. Thedecidability was later solved in more general setting by Schulz (see [?]) wherefor each �(x) is given a regular constraint that must be satis�ed.2.1 NotationIn what follows we will use an uniform notation. The set C = fa; b; c; : : :gdenotes the alphabet of constants and V = fx; y; z; : : :g stands for variables(unknowns) with the assumption that C \ V = ;. We will use the same symbol� for the mapping � : V ! C� and its unique extention to the homomorphism� : (C [ V )� ! C�. Sometimes we write �x instead of �(x). The symbol for theempty word is written as � and the length of a word w is denoted as jw j.2.2 Pattern equationsIn this paper we focus on a special kind of word equations which we call patternequations.De�nition 1. A pattern equation system is the set fX1 = A1; : : : ; Xn = Angwhere Xi 2 V � and Ai 2 C� for all 1 � i � n. The solution (both singular andnon-singular) of the pattern equation system is de�ned as in the general case.Two natural decidability problems (Pattern-Equation and Non-Singular-Pattern-Equation problem) appear in this context. Given a pattern equationsystem fX1 = A1; : : : ; Xn = Ang as an instance of the Pattern-Equationproblem, the task is to decide whether this system has a solution. If we require thesolution to be non-singular we call it the Non-Singular-Pattern-Equationproblem. We give an example of a pattern equation system and demonstrate itssolutions.Example 1. Let us have the following system where C = fa; bg, V = fx; y; zgand the pattern equations are fxyxy = abbabb; yzy = bbbabbbg: A singularsolution exists �(x) = abb; �(y) = �; �(z) = bbbabbb; however, there is alsoa non-singular solution �(x) = a; �(y) = bb; �(z) = bab: There is no reasonfor having just one solution, which is demonstrated also by our example since
(x) = ab; 
(y) = b; 
(z) = bbabb is another non-singular solution.3 NP�completeness of the Pattern-Equation problemIn this section we show that the Pattern-Equation problem is NP�complete.First observe that the problem is in NP since any solution is linearly boundedin length w.r.t. the pattern equation system. On the other hand to prove thatPattern-Equation problem is NP�hard we reduce theTripartite-Matchingproblem to it. This proof has been independently done in more general settingalso by Robson and Diekert [?] using the reduction from 3-SAT.



Suppose we have three sets B, G and H (boys, girls and homes) each con-taining exactly n elements for a natural number n. Let T � B � G � H . TheTripartite-Matching problem is to �nd a subset S � T of n elements suchthat fb 2 B j 9g 2 G; 9h 2 H : (b; g; h) 2 Sg = B, fg 2 G j 9b 2 B; 9h 2 H :(b; g; h) 2 Sg = G and fh 2 H j 9b 2 B; 9g 2 G : (b; g; h) 2 Sg = H . Thatis: each boy is matched to a di�erent girl and they have their own home. TheTripartite-Matching problem is known to be NP�complete (see e.g. [?]) andwe show a polynomial reduction from it to the Pattern-Equation problem.Theorem 1. The Pattern-Equation problem is NP�complete.Proof. Suppose we have T � B � G � H an instance of the Tripartite-Matching problem where B = fb1; : : : ; bng, G = fg1; : : : ; gng and H =fh1; : : : ; hng. We will �nd an instance of Pattern-Equation problem whichis satis�able if and only if the Tripartite-Matching problem has a solution.Let us suppose that T = fT1; : : : ; Tkg and we introduce a new variable ti foreach Ti where 1 � i � k. Let us de�ne�B � ^ni=1 _ ftj j 9g 2 G; 9h 2 H : (bi; g; h) = Tjg;�G � ^ni=1 _ ftj j 9b 2 B; 9h 2 H : (b; gi; h) = Tjg;�H � ^ni=1 _ ftj j 9b 2 B; 9g 2 G : (b; g; hi) = Tjg:Let us consider the formula � � �B^�G^�H :We can see that the Tripartite-Matching problem has a solution if and only if there exists a valuation thatsatis�es the formula � such that it assigns value true to the exactly one variablein each clause. Observe that � is of the form � � C1 ^C2 ^ : : :^C3n and assumethat there is an empty clause in the conjunction (the formula is not satis�able).Then we assign it the pattern equation system fx = a; x = bg (this systemcertainly does not have any solution). In the other case we may suppose thatCi � ti;1 _ ti;2 _ : : : _ ti;ji ;where 1 � ji for all 1 � i � 3n. Then we assign it the following pattern equationsystem P : f t1;1 : : : t1;j1 = a,t2;1 : : : t2;j2 = a,... ... ...t3n;1 : : : t3n;j3n = a }The situation when the variable ti;j is true corresponds to �(ti;j) = a and if ti;jis false it corresponds to �(ti;j) = �. It is straightforward that � has a valuationthat assigns value true to the exactly one variable in each clause if and only ifP is satis�able. utUsing a similar proof technique (where the value true is represented by �(ti;j) =aa and false by �(ti;j) = a) we can also easily see the validity of the followingtheorem.



Theorem 2. Non-Singular-Pattern-Equation problem is NP�complete.Remark 1. Observe that for the NP�completeness it is su�cient to �x the con-stant alphabet just to one letter.4 Elimination of conjunction and disjunctionIn general case we may construct for an arbitrary system of word equations a sin-gle equation preserving solutions. For example Diekert in [?] used the followingconstruction: the system fL1 = R1; : : : ; Ln = Rng and the equationL1a : : : LnaL1b : : : Lnb = R1a : : :RnaR1b : : : Rnbwhere a; b are distinct constants, have the same set of solutions. However, thisconstruction is useless for the pattern equations. We show the way how to elim-inate conjunction of pattern equations in the following theorem.Theorem 3. The set of solutions of a pattern equation system fX = A; Y = Bgis identical with the set of solutions of the pattern equation XnY m = AnBmwhere n=maxfjA j; jB jg+ 3 and m = n+ 1.Proof. It is evident that each solution of the system fX = A; Y = Bg isalso a solution of XnY m = AnBm. We need the following lemma to prove theopposite.Lemma 1 ([?]). Let A;B 2 C�, d = gcd(jA j; jB j). If two powers Ap and Bqof A and B have a common pre�x of length at least equal to jA j + jB j � d,then A and B are powers of the same word.Let � be a solution of the equation XnY m = AnBm. We will show thatj �(X) j=jA j. In such a case �(X) = A, �(Y ) = B and � is a solution of thesystem.First suppose j �(X) j>jA j. Then An and �(X)n have a common pre�x oflength n�jA j and for jA j> 0 we getn jA j= 2 jA j +(n� 2) jA j� 2 jA j +n+ 1n (n� 3) �2 jA j +mn jB j=jA j +n jA j +m jB jn �jA j + j�(X) j :By Lemma ?? we know that A = Dk and �(X) = Di where k; i 2 IN, k < i,D 2 C� and D is primitive (it means that if D = Ep then p = 1). If jA j= 0 thentrivially k = 0 and D is a primitive root of �(X). Hence D(i�k)n�(Y )m = Bmand by the Lemma ?? (common pre�x of length (i � k)n jD j� n jD j=jD j+(n � 1) jD j�jD j + jB j) we have that B and D must be the powers of thesame word. Since D is primitive we may write B = Dl where l 2 IN0. Finally�(Y ) = Dj again by Lemma ??.



If j�(X) j<jA j we have j�(Y ) j>jB j and we can similarly deduce the sameequalities �(X) = Di, �(Y ) = Dj , A = Dk, B = Dl.Now we solve an equation ni+mj = nk+ml in non-negative integer numbers.The proof is complete if we show that this equation has only one solution, namelyi = k, j = l. We recall that k; l < n;m and m = n + 1. If i; j are such thatni+mj = nk +ml then i � k (mod m) and if i < k +m then i = k and j = l.Suppose i � k+m. This implies that ni+mj � ni � nk+nm > nk+ml, whichis a contradiction. utRemark 2. The above construction is unfortunately quadratic in space. One canask whether n and m in the Theorem ?? need to be greater than j A j andjB j? The answer is positive and no improvements can be done. If we want totransform the system fx = ck; y = clg into a single equation (w.l.o.g. supposethat the equation is of the form xnym = cp) then in the case l > n we havep = nk +ml = n(k +m) +m(l � n) and an � de�ned by �(x) = ck+m, �(y) =cl�n is a solution of the equation xnym = cp whereas � is not a solution offx = ck; y = clg.Remark 3. It is easy to see that the proof of the Theorem ?? is correct for anarbitrary n greater than maxfjA j; jB jg+ 3 and m = n+ 1.The Remark ?? shows that the construction in Theorem ?? can not be improvedand moreover every construction preserving the alphabet of variables and con-stants requires a quadratic space extention. For a system of n equations whereeach one is bounded by the maximal length k we can repeatedly use the Theo-rem ?? pairwise and thus achieve the O(kn) bound for the size of the resultedequation. On the other side the problem of conjunction elimination can be solvedeasily with extention of the sets C and V . This is much more suitable for prac-tical purposes since the following construction is linear in space w.r.t. inputedpattern equation system.Lemma 2. Let c 62 C be a new constant and z 62 V be a new variable. Then thepattern equation system fX = A; Y = Bg over C, V and the pattern equationz(zXzY )2 = c(cAcB)2 (1)over C [ fcg, V [ fzg are equivalent on the set V .Proof. For every solution � of the system fX = A; Y = Bg we can easilyconstruct a solution �0 of the equation (??) such that �0jV = � and �0(z) = c.Now let � be a solution of the equation (??), i.e.�z(�z�X�z�Y )2 = c(cAcB)2:If j�z j> 1 then �z has the pre�x c2 and on the lefthand side of the equality wehave at least ten occurrences of c, however, on the righthand side of the equalityonly �ve. If �z = � then (�X�Y )2 = c(cAcB)2 and the word on the lefthandside of the equality has even length while the word on the righthand side ofthe equality has odd length. For that reasons �(z) = c, hence �(X) = A and�(Y ) = B. This means that �jV is a solution of fX = A; Y = Bg. ut



Remark 4. If we want to �nd a single equation equivalent to the pattern equa-tion system fX1 = A1; : : : ; Xn = Ang we can repeatedly eliminate it pairwise.However, this construction exceeds the linear growth in size. The eliminationcan be done much better byz(zX1zX2z : : : zXn)2 = c(cA1cA2c : : : cAn)2and the proof is similar to the previous one.For disjunction we cannot expect theorems analogical to those we have givenfor conjunction. For example the disjunction pattern equation system fx =c; x = c2g cannot be replaced by a single equation over fcg, fxg.De�nition 2. We say that a homomorphism � is a solution of the disjunctionpattern equation system fX1 = A1; : : : ; Xn = Ang if and only if �(Xi) = Aifor some i, 1 � i � n.Lemma 3. Let c 62 C be a new constant and z1; z2; z3 62 V be new variables.Then the disjunction pattern equation system fX = A; X = Bg over C, V andthe pattern equation z1X10z21z102 z23 = cA10c2B10(cA10c2)2 (2)over C [ fcg, V [ fz1; z2; z3g are equivalent on the set V .Proof. It is easy to see that if �(X) = A then �0 de�ned as �0jV = �, �0(z1) = c,�0(z2) = B and �0(z3) = cA10c2 is a solution of the equation (??). If �(X) = Bthen �0(z1) = cA10c2, �0(z2) = �0(z3) = � is also a solution.Let � be a solution of the equation (??), i.e.�z1�10X �2z1�10z2�2z3 = cA10c2B10(cA10c2)2:The number of occurrences of c on the righthand side of the equation impliesthat �(X) and �(z2) do not contain any c. Moreover if we denote p (resp. q)the number of occurrences of c in �(z1) (resp. �(z3)) we get 3p+ 2q = 9. Thisimplies that p = 1 or p = 3. The �rst case constrains �(z1) = c and so �(X) = Aand the second one gives �(z1) = cA10c2, hence �(X) = B. utCorollary 1. For an arbitrary �nite set S = f�i : V ! C�j1 � i � ng there is apattern equation over some C 0, V 0 such that the set of all its solutions restrictedto V is identical with the given set S.Proof. First, for every �i we construct an equationXi = Ai with a single solution�i by using repeatedly the Theorem ??. Moreover, in this construction we canuse an universal n and m by Remark ?? and thus achieve the same lefthandsides X1 = X2 = : : : = Xn. This yields a disjunction pattern equation systemfX = A1; : : : ; X = Ang which is equivalent to some single pattern equation byrepeatedly using the Lemma ??. utNote that in the case of non-singular solutions we may substitute in theLemma ?? the equation (??) with zXzY z = cAcBc and in the Lemma ?? theequation (??) with z1z2z1X2z1z3z1 = c3A2cB2c3. It is easy to verify that all thetheorems in this section are then also valid for the case of non-singular solutions.



5 Stuttering equationsIt is sometimes interesting to consider the equations not only over a free monoidbut for example in bands. Band is a semigroup where the identity x2 = x is sat-is�ed. In our context it means that the equalities hold up to multiple occurrencesof certain substrings, which we call stuttering.Let us de�ne a binary relation ! � C� � C� such that uvw ! uvvw foru; v; w 2 C� and let � be its symmetric and transitive closure, i.e. � := (![ !�1)�. Then the identity u = w holds in a free band if and only if u � v(completeness of equational logic). Suppose we have a stuttering equation systemfL1 = R1; : : : ; Ln = Rng. A solution of such a system is a homomorphism� : (C [ V )� ! C� which behaves as an identity on the letters from C andequates all the equations of the system, i.e. �(Li) � �(Ri) for all 1 � i � n. Wecall the system a stuttering pattern equation system if the equations are of theform fX1 = A1; : : : ; Xn = Ang.The solvability problem for a single stuttering pattern equation X = A istrivial since it si always solvable: �(x) = A for all x 2 V . On the other handthe system is not always solvable: e.g. fx = a; x = bg has no solution. Thisimmediately gives that conjunction of stuttering pattern equations cannot beeliminated. In what follows we will exploit the fact that the word problem inbands is decidable (see [?] and its generalization [?]), which is mentioned in thenext lemma. Let w 2 C�. We de�ne c(w) � the set of all letters that occur in w,0(w) � the longest pre�x of w in card(c(w))� 1 letters, 1(w) � the longest su�xof w in card(c(w)) � 1 letters.Lemma 4 ([?]). Let u; v 2 C�. Then u � v if and only if c(u) = c(v), 0(u) �0(v) and 1(u) � 1(v).We introduce the size of the solution � as size(�) := maxx2V j �(x) j. Givena stuttering equation system it is decidable whether the system is satis�ablebecause of the local �niteness of free idempotent semigroups. Following theoremjust gives a precise exponential upper bound on the size of the minimal solution.We write � � � whenever �(x) � �(x) for all x 2 V .Theorem 4. Let fL1 = R1; : : : ; Ln = Rng be a general stuttering equationsystem where card(C) � 2. If the system is satis�able then there exists a solution� such that size(�) � 2card(C) + 2card(C)�2 � 2.Proof. Suppose the system is satis�able, i.e. there is a solution �. We know thatany �, � � �, is also a solution. We will �nd such an � which is small enough.The proof will be done by induction on k where k = card(C).k=2: The longest minimal word over a two-letter alphabet is of the length 3.Induction Step: Suppose the IH holds for k and we show its validity for k+1.For each w := �(x), x 2 V , we will �nd some w0 such that w0 � w and jw0 j�2k+1+2k�1� 2. We know that w � 0(w)a1a21(w) where fa1g = c(w)� c(0(w))and fa2g = c(w) � c(1(w)) � see Lemma ??. Since 0(w) and 1(w) are in kletters, the IH can be applied and we can �nd some u; v of length less or equal
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