
SOFSEM’01, Milovy, Czech Republic - final version

How to Employ Reverse Sear
h in DistributedSingle Sour
e Shortest Paths?Lubo�s Brim, Ivana �Cern�a, Pavel Kr�
�al, and Radek Pel�anekDepartment of Computer S
ien
e, Fa
ulty of Informati
sMasaryk University Brno, Cze
h Republi
fbrim,
erna,xkr
al,xpelanekg�fi.muni.
zAbstra
t. A distributed algorithm for the single sour
e shortest pathproblem for dire
ted graphs with arbitrary edge lengths is proposed.The new algorithm is based on relaxations and uses reverse sear
h forinspe
ting edges and thus avoids using any additional data stru
tures.At the same time the algorithm uses a novel way to re
ognize a rea
hablenegative-length 
y
le in the graph whi
h fa
ilitates the s
alability of thealgorithm.1 Introdu
tionThe single sour
e shortest paths problem is a key 
omponent of many appli-
ations and lots of e�e
tive sequential algorithms are proposed for its solution(for an ex
ellent survey see [3℄). However, in many appli
ations graphs are toomassive to �t 
ompletely inside the 
omputer's internal memory. The resultinginput/output 
ommuni
ation between fast internal memory and slower externalmemory (su
h as disks) 
an be a major performan
e bottlene
k.In parti
ular, in LTL model 
he
king appli
ation (see Se
tion 6) the graph istypi
ally extremely large. In order to optimize the spa
e 
omplexity of the 
om-putation the graph is generated on-the-
y. Su

essors of a vertex are determineddynami
ally and 
onsequently there is no need to store any information aboutedges permanently. Therefore neither the te
hniques used in external memoryalgorithms (we do not know any properties of the examined graph in advan
e)nor the parallel algorithms based on adja
en
y matrix graph representation areappli
able.The approa
h we have been looking upon is to in
rease the 
omputationalpower (espe
ially the amount of randomly a

essed memory) by building a pow-erful parallel 
omputer as a network of 
heap workstations with disjoint memorywhi
h 
ommuni
ate via message passing.With respe
t to the intended appli
ation even in the distributed environmentthe spa
e requirements are the main limiting fa
tors. Therefore we have beenlooking for a distributed algorithm 
ompatible with other spa
e-saving te
h-niques (e.g. on-the-
y te
hnique or partial order te
hnique). Our distributed? This work has been partially supported by the Grant Agen
y of Cze
h Republi
grant No. 201/00/1023.



SOFSEM’01, Milovy, Czech Republic - final version

algorithm is therefore based on the relaxation of graph's edges [5℄. Distributedrelaxation-based algorithms are known only for spe
ial settings of single sour
eshortest paths problem. For general digraphs with non-negative edge lengthsparallel algorithms are presented in [6, 7, 9℄. For spe
ial 
ases of graphs, like pla-nar digraphs [10℄, graphs with separator de
omposition [4℄ or graphs with smalltree-width [2℄, more eÆ
ient algorithms are known. Yet none of these algorithmsis appli
able to general digraphs with potential negative length 
y
le.The most notable features of our proposed distributed algorithm are reversesear
h and walk to root approa
hes. The reverse sear
h method is known to bean ex
eedingly spa
e eÆ
ient te
hnique [1, 8℄. Data stru
tures of the proposedalgorithm 
an be naturally used by the reverse sear
h and it is possible to redu
ethe memory requirements whi
h would be otherwise indu
ed by stru
tures usedfor traversing graph (su
h as a queue or a sta
k). This 
ould save up to one thirdof memory whi
h is pra
ti
ally signi�
ant.Walk to root is a strategy how to dete
t the presen
e of a negative length
y
le in the input graph. The 
y
le is looked for in the graph of parent pointersmaintained by the method. The parent graph 
y
les, however, 
an appear anddisappear. The aim is to dete
t a 
y
le as soon as possible and at the sametime not to in
rease the time 
omplexity of underlying relaxation algorithmsigni�
antly. To that end we introdu
e a solution whi
h allows to amortize thetime 
omplexity of 
y
le dete
tion over the 
omplexity of relaxation.2 Problem De�nition and General MethodLet (G; s; l) be a given triple, where G = (V;E) is a dire
ted graph, l : E ! R isa length fun
tion mapping edges to real-valued lengths and s 2 V is the sour
evertex. We denote n =j V j and m =j E j. The length l(p) of the path p is thesum of the lengths of its 
onstituent edges. We de�ne the shortest path lengthfrom s to v byÆ(s; v) = �minfl(p) j p is a path from s to vg if there is su
h a path1 otherwiseA shortest path from vertex s to vertex v is then de�ned as any path p withlength l(p) = Æ(s; v). If the graph G 
ontains no negative length 
y
les (negative
y
les) rea
hable from sour
e vertex s, then for all v 2 V the shortest path lengthremains well-de�ned and the graph is 
alled feasible. The single sour
e shortestpaths (SSSP) problem is to determine whether the given graph is feasible and ifso to 
ompute Æ(s; v) for all v 2 V . For purposes of our algorithm we supposethat some linear ordering on verti
es is given.The general method for solving the SSSP problem is the relaxation method[3, 5℄. For every vertex v the method maintains its distan
e label d(v) and parentvertex p(v). The subgraph Gp of G indu
ed by edges (p(v); v) for all v su
h thatp(v) 6= nil is 
alled the parent graph. The method starts by setting d(s) = 0 andp(s) = nil. At every step the method sele
ts an edge (v; u) and relaxes it whi
h



SOFSEM’01, Milovy, Czech Republic - final version

means that if d(u) > d(v) + l(v; u) then it sets d(u) to d(v) + l(v; u) and setsp(u) to v.If no d(v) 
an be improved by any relaxation then d(v) = Æ(s; v) for allv 2 V and Gp determines the shortest paths. Di�erent strategies for sele
ting anedge to be relaxed lead to di�erent algorithms. For graphs where negative 
y
les
ould exist the relaxation method must be modi�ed to re
ognize the unfeasibilityof the graph. As in the 
ase of relaxation various strategies are used to dete
tnegative 
y
les [3℄. However, not all of them are suitable for our purposes {they are either un
ompetitive (as for example time-out strategy) or they are notsuitable for distribution (su
h as the admissible graph sear
h whi
h uses hardlyparallelizable DFS or level-based strategy whi
h employs global data stru
tures).For our version of distributed SSSP we have used the walk to root strategy.The sequential walk to root strategy 
an be des
ribed as follows. Suppose therelaxation operation applies to an edge (v; u) (i.e. d(u) > d(v) + l(v; u)) and theparent graph Gp is a
y
li
. This operation 
reates a 
y
le in Gp if and only if u isan an
estor of v in the 
urrent parent graph. This 
an be dete
ted by followingthe parent pointers from v to s. If the vertex u lies on this path then there is anegative 
y
le; otherwise the relaxation operation does not 
reate a 
y
le.The walk to root method gives immediate 
y
le dete
tion and 
an be easily
ombined with the relaxation method. However, sin
e the path to the root 
anbe long, it in
reases the 
ost of applying the relaxation operation to an edgeto O(n). We 
an use amortization to pay the 
ost of 
he
king Gp for 
y
les.Sin
e the 
ost of su
h a sear
h is O(n), the sear
h is performed only after theunderlying shortest paths algorithm performs 
(n) work. The running time isthus in
reased only by a 
onstant fa
tor. However, to preserve the 
orre
tnessthe behavior of walk to root has to be signi�
antly modi�ed. The amortizationis used in the distributed algorithm and is des
ribed in detail in Se
tion 5.3 Reverse Sear
hReverse sear
h is originally a te
hnique for generating large sets of dis
rete ob-je
ts [1, 8℄. Reverse sear
h 
an be viewed as a depth-�rst graph traversal thatrequires neither sta
k nor node marks to be stored expli
itly { all ne
essary infor-mation 
an be re
omputed. Su
h re
omputations are naturally time-
onsuming,but when traversing extremely large graphs, the a
tual problem is not the timebut the memory requirements.In its basi
 form the reverse sear
h 
an be viewed as the traversal of a span-ning tree, 
alled the reverse sear
h tree. We are given a lo
al sear
h fun
tion fand an optimum vertex v�. For every vertex v, repeated appli
ation of f has togenerate a path from v to v�. The set of these paths de�nes the reverse sear
htree with the root v�. A reverse sear
h is initiated at v� and only edges of thereverse sear
h tree are traversed.In the 
ontext of the SSSP problem we want to traverse the graph G. Theparent graph Gp 
orresponds to the reverse sear
h tree. The optimum vertexv� 
orresponds to the sour
e vertex s and the lo
al sear
h fun
tion f to the



SOFSEM’01, Milovy, Czech Republic - final version

parent fun
tion p. The 
orresponden
e is not exa
t sin
e p(v) 
an 
hange duringthe 
omputation whereas original sear
h fun
tion is �xed. Consequently someverti
es 
an be visited more than on
e. This is in fa
t the desired behavior forour appli
ation. Moreover, if there is a negative 
y
le in the graph G then a
y
le in Gp will o

ur and Gp will not be a spanning tree. In su
h a situationwe are not interested in the shortest distan
es and the way in whi
h the graphis traversed is not important anymore. We just need to dete
t su
h a situationand this is delegated to the 
y
le dete
tion strategy.pro
 Reverse sear
h (s)p(s) := ?;v := s;while v 6= ? doDo something (v);u := Get su

essor (v ;NULL);while u does not exist dolast := v ; v := p(v);u := Get su

essor (v ; last);odv := u;odend
pro
 Call re
ursively (v)Do something (v);for ea
h edge (v ;w) 2 E doif p(w) = v thenCall re
ursively (w)�odendFig. 1. Demonstration of the reverse sear
hFig. 1 demonstrates the use of the reverse sear
h within our algorithm.Both pro
edures Call re
ursively(v) and Reverse sear
h(v) traverse the subtreeof v in the same manner and perform some operation on its 
hildren. ButCall re
ursively uses a sta
k whereas Reverse sear
h uses the parent edges forthe traversal. The fun
tion Get su

essor(v, w) returns the �rst su

essor u of vwhi
h is greater than w with respe
t to the ordering on the verti
es and p(u) = v.If no su
h su

essor exists an appropriate announ
ement is returned.4 Sequential SSSP Algorithm with Reverse Sear
hWe present the sequential algorithm (Fig. 2) and prove its 
orre
tness and 
om-plexity �rst. This algorithm forms the base of the distributed algorithm presentedin the subsequent se
tion.The Tra
e pro
edure visits verti
es in the graph (we say that a vertex isvisited if it is the value of the variable v). The pro
edure terminates either whena negative 
y
le is dete
ted or when the traversal of the graph is 
ompleted.The RGS fun
tion 
ombines the relaxation of an edge as introdu
ed in Se
-tion 2 and the Get su

essor fun
tion from Se
tion 3. It �nds the next vertex uwhose label 
an be improved. The 
hange of p(u) 
an 
reate a 
y
le in Gp andtherefore the WTR pro
edure is started to dete
t this possibility. If the 
hangeis safe the values d(u) and p(u) are updated and u is returned.In what follows the 
orre
tness of the algorithm is stated. Due to the spa
elimits the proofs are only sket
hed.



SOFSEM’01, Milovy, Czech Republic - final version

1 pro
 Tra
e (s)2 p(s) := ?; v := s;3 while v 6= ? do4 u := RGS (v ;NULL);5 while u does not exist do6 last := v ; v := p(v);7 u := RGS (v ; last); od8 v := u; od9 end1 pro
 RGS (v ; last)fRelax and Get Su

essorg2 u := su

essor of v greater than last ;3 while d(u) � d(v) + l(u; v) do4 u := next su

essor of v ; od5 if u exists then6 WTR (v ;u);7 d(u) := d(v) + l(u; v); p(u) := v ;8 return u;9 else return u does not exist; �10 end1 pro
 WTR (at ; looking for)fWalk To Rootg2 while at 6= s and at 6= looking for do at := p(at); od3 if at = looking for then negative 
y
le dete
ted �4 end Fig. 2. Pseudo-
ode of the sequential algorithmLemma 1. Let G 
ontains no negative 
y
le rea
hable from the sour
e vertex s.Then Gp forms a rooted tree with root s and d(v) � Æ(s; v) for all v 2 V at anytime during the 
omputation. Moreover, on
e d(v) = Æ(s; v) it never 
hanges.Proof: The proof is prin
ipally the same as for other relaxation methods [5℄.Lemma 2. After every 
hange of the value d(v) the algorithm visits the vertex v.Proof: Follows dire
tly from the algorithm.Lemma 3. Let G 
ontains no negative 
y
le rea
hable from the sour
e vertex s.Every time a vertex w is visited the sequen
e S of the assignments on line 6 ofthe pro
edure Tra
e will eventually be exe
uted for this vertex. Until this happensp(w) is not 
hanged.Proof: The value p(w) 
annot be 
hanged be
ause G has no negative 
y
le anddue to Lemma 1 the parent graph Gp does not have any 
y
le. Let h(w) denotesthe depth of w in Gp. We prove the lemma by ba
kward indu
tion (from n to0) with respe
t to h(w). For the basis we have h(w) = n, w has no 
hild andtherefore RGS(w,NULL) returns u does not exist and the sequen
e S is exe
utedimmediately. For the indu
tive step we assume that the lemma holds for ea
h vsu
h that h(v) � k and let h(w) = k � 1, fa1; a2; : : : ; arg = fu j (w; u) 2 Eg.Sin
e h(ai) = k for all i 2 f1; : : : ; rg, we 
an use the indu
tion hypothesis forea
h ai and show that the value of the variable u in RGS is equal to ai exa
tlyon
e. Therefore RGS returns u does not exist for w after a �nite number of stepsand the sequen
e S is exe
uted.



SOFSEM’01, Milovy, Czech Republic - final version

Theorem 1 (Corre
tness of the sequential algorithm). If G has no neg-ative 
y
le rea
hable from the sour
e s then the sequential algorithm terminateswith d(v) = Æ(s; v) for all v 2 V and Gp forms a shortest-paths tree rooted at s.If G has a negative 
y
le, its existen
e is reported.Proof: Let us at �rst suppose that there is no negative 
y
le. Lemma 3 appliedto the sour
e vertex s gives the termination of the algorithm. Let v 2 V and< v0; v1; : : : ; vk >; s = v0; v = vk is a shortest path from s to v. We show thatd(vi) = Æ(s; vi) for all i 2 f0; : : : kg by indu
tion on i and therefore d(v) = Æ(s; v).For the basis d(v0) = d(s) = Æ(s; s) = 0 by Lemma 1. From the indu
tionhypothesis we have d(vi) = Æ(s; vi). The value d(vi) was set to Æ(s; vi) at somemoment during the 
omputation. From Lemma 2 vertex vi is visited afterwardsand the edge (vi; vi+1) is relaxed. Due to Lemma 1, d(vi+1) � Æ(s; vi+1) =Æ(s; vi)+l(vi; vi+1) = d(vi)+l(vi; vi+1) is true before the relaxation and therefored(vi+1) = d(vi) + l(vi; vi+1) = Æ(s; vi) + l(vi; vi+1) = Æ(s; vi+1) holds after therelaxation. By Lemma 1 this equality is maintained afterwards.For all verti
es v; u with v = p(u) we have d(u) = d(v) + l(v; u). This followsdire
tly from line 7 of the RGS pro
edure. After the termination d(v) = Æ(s; v)and therefore Gp forms a shortest paths tree.On the other side, if there is a negative 
y
le in G, then the relaxation pro
essalone would run forever and would 
reate a 
y
le in Gp. The 
y
le is dete
tedbe
ause before any 
hange of p(v) WTR tests whether this 
hange does not
reate a 
y
le in Gp.Let us suppose that edges have integer lengths and let C = maxfj l(u; v) j :(u; v) 2 Eg.Theorem 2. The worst time 
omplexity of the sequential algorithm is O(Cn4).Proof: Ea
h shortest path 
onsists of at most n � 1 edges and �C(n � 1) �Æ(s; v) � C(n � 1) holds for all v 2 V . Ea
h vertex v is visited only after d(v)is lowered. Therefore ea
h vertex is visited at most O(Cn) times. Ea
h visit
onsists of updating at most n su

essors and an update 
an take O(n) time(due to the walk to root). Together we have O(Cn3) bound for total visitingtime of ea
h vertex and O(Cn4) bound for the algorithm.We stress that the use of the walk to root in this algorithm is not unavoidableand the algorithm 
an be easily modi�ed to dete
t a 
y
le without the walk toroot and run in O(Cn3) time. The walk to root has been used to make thepresentation of the distributed algorithm (where the walk to root is essential)
learer.5 Distributed AlgorithmFor the distributed algorithm we suppose that the set of verti
es is divided intodisjoint subsets. The distribution is determined by the fun
tion owner whi
hassigns every vertex v to a pro
essor i. Pro
essor i is responsible for the subgrafdetermined by the owned subset of verti
es. Good partition of verti
es among



SOFSEM’01, Milovy, Czech Republic - final version

pro
essors is important be
ause it has dire
t impa
t on 
ommuni
ation 
om-plexity and thus on run-time of the program. We do not dis
uss it here be
auseit is itself quite a diÆ
ult problem and depends on the 
on
rete appli
ation.The main idea of the distributed algorithm (Fig. 3) 
an be summarized asfollows. The 
omputation is initialized by the pro
essor whi
h owns the sour
evertex by 
alling Tra
e(s;?) and is expanded to other pro
essors as soon as thetraversal visits the \border" verti
es. Ea
h pro
essor visits verti
es basi
ally inthe same manner as the sequential algorithm does.While relaxation 
an be performed in parallel, the realization of walk to rootrequires more 
areful treatment. Even if adding the edge initiating the walk toroot does not 
reate a 
y
le in the parent graph, the parent graph 
an 
ontain a
y
le on the way to root 
reated in the meantime by some other pro
essor. Thewalk to root we used in the sequential algorithm would stay in this 
y
le forever.Amortization of walk brings similar problems. We propose a modi�
ation of thewalk to root whi
h solves both problems.Ea
h pro
essor maintains a 
ounter of started WTR pro
edures. The WTRpro
edure marks ea
h node through whi
h it pro
eeds by the name of the vertexwhere the walk has been started (origin) and by the 
urrent value of the pro
essor
ounter (stamp). When the walk rea
hes a vertex that is already marked withthe same origin and stamp a negative 
y
le is dete
ted and the 
omputationis terminated. In distributed environment it is possible to start more than onewalk 
on
urrently and it may happen that the walk rea
hes a vertex that isalready marked by some other mark. In that 
ase we use the ordering on verti
esto de
ide whether to �nish the walk or to overwrite the previous mark and
ontinue. In the 
ase that the walk has been �nished (i.e. it has rea
hed theroot or a vertex marked by higher origin, line 9 of WTR) we need to remove itsmarks. This is done by the REM (REmove Marks) pro
edure whi
h follows thepath in the parent graph starting from the origin in the same manner as WTRdoes. The values p(v) of marked verti
es are not 
hanged (line 6 of RGS ) andtherefore the REM pro
edure 
an �nd and remove the marks. However, due topossible overwriting of walks, it is possible that the REM pro
edure does notremove all marks. Note that these marks will be removed by some other REMpro
edure eventually. The 
orre
tness of 
y
le dete
tion is guaranteed as for the
y
le dete
tion the equality of both the origin and stamp is required.The modi�
ations of walk to root enfor
es the Tra
e pro
edure to stop whenit rea
hes a marked vertex and to wait till the vertex be
omes unmarked. More-over, walk to root is not 
alled during ea
h relaxation step (WTR amortization
ondition be
omes true every n-th time it is 
alled).Whenever a pro
essor has to pro
ess a vertex (during traversing or walk toroot) it 
he
ks whether the vertex belongs to its own subgraph. If the vertex islo
al, the pro
essor 
ontinues lo
ally otherwise a message is sent to the ownerof the vertex. The algorithm periodi
ally 
he
ks in
oming messages (line 4 ofTra
e). When a request to update parameters of a vertex u arrives, the pro
essor
ompares the 
urrent value d(u) with the re
eived one. If the re
eived valueis lower than the 
urrent one then the request is pla
ed into the lo
al queue.



SOFSEM’01, Milovy, Czech Republic - final version

1 pro
 Main2 while not �nished do3 req := pop(queue);4 if req.length = d(req.vertex) then Tra
e (req.vertex; req.father); �5 od6 end1 pro
 Tra
e (v; father)2 p(v) := father ;3 while v 6= father do4 Handle messages;5 u := RGS(v;NULL);6 while u does not exist do7 last := v; v := p(v);8 u := RGS(v; last); od9 v := u;10 od11 end1 pro
 RGS (v ; last) fRelax and Get Su

essorg2 u := su

essor of v greater than last;3 while u exists do4 if u is lo
al then5 if d(u) > d(v) + l(u; v) then6 if mark(u) then wait; �7 p(u) := v;8 d(u) := d(v) + l(u; v);9 if WTR amortization then WTR([u; stamp℄; u); in
(stamp); �10 return u;12 �13 else send message(owner(u); \update u; v; d(u) + l(u; v)");14 �15 u := next su

essor of v ;16 od17 return u does not exist;18 end1 pro
 WTR ([origin; stamp℄;at) fWalk To Rootg2 done := false;3 while :done do4 if at is lo
al5 then6 if mark(at) = [origin; stamp℄!7 send message(Manager ; \negative 
y
le found");8 terminate9 (at = sour
e) _ (mark(at) > [origin; stamp℄)!10 if origin is lo
al11 then REM ([origin; stamp℄; origin)12 else send message(owner(origin);13 \start REM ([origin; stamp℄; origin))" �14 done := true;15 (mark(at) = nil) _ (mark(at) < [origin; stamp℄)!16 mark(at) := [origin; stamp℄;17 at := p(at)18 �19 else send message(owner(at); \start WTR([origin; stamp℄; at)");20 done := true21 �22 od23 end Fig. 3. Pseudo-
ode of the distributed algorithm



SOFSEM’01, Milovy, Czech Republic - final version

Anytime the traversal ends the next request from the queue is popped and anew traversal is started.Another type of message is a request to 
ontinue in the walk to root (resp. inremoving marks), whi
h is immediately satis�ed by exe
uting the WTR (resp.REM ) pro
edure.The distributed algorithm terminates when all lo
al queues of all pro
essorsare empty and there are no pending messages or when a negative 
y
le is de-te
ted. A manager pro
ess is used to dete
t the termination and to �nish thealgorithm by sending a termination signal to all pro
essors.Theorem 3 (Corre
tness and 
omplexity of the distributed algorithm).If G has no negative 
y
le rea
hable from the sour
e s then the distributed algo-rithm terminates with d(v) = Æ(s; v) for all v 2 V and Gp forms a shortest-pathstree rooted at s. If G has a negative 
y
le, its existen
e is reported.The worst time 
omplexity of the algorithm is O(Cn3).Proof: The proof of the 
orre
tness of the distributed algorithm is te
hni
allymore involved and due to the spa
e limits is presented in the full version of thepaper only. The basi
 ideas are the same as for the sequential 
ase, espe
ially inthe 
ase when G has no negative 
y
le. Proof of the 
orre
tness of the distributedwalk to root strategy is based on the ordering on walks and on the fa
t that ifG 
ontains a rea
hable negative 
y
le then after a �nite number of relaxationsteps Gp always has a 
y
le.Complexity is O(Cn3) due to the amortization of the walk to root.6 ExperimentsWe have implemented the distributed algorithm. The experiments have beenperformed on a 
luster of seven workstations inter
onne
ted with a fast 100MbpsEthernet using Message Passing Interfa
e (MPI) library.We have performed a series of pra
ti
al experiments on parti
ular types ofgraphs that represent the LTL model 
he
king problem. The LTL model 
he
kingproblem is de�ned as follows. Given a �nite system and a LTL formula de
idewhether the given system satis�es the formula. This problem 
an be redu
ed tothe problem of �nding an a

epting 
y
les in a dire
ted graph [11℄ and has alinear sequential 
omplexity. In pra
ti
e however, the resulting graph is usuallyvery large and the linear algorithm is based on depth-�rst sear
h, whi
h makesit hard to distribute. We have redu
ed the model 
he
king problem to the SSSPproblem with edge lengths 0, -1. Instead of looking for a

epting 
y
les we dete
tnegative 
y
les.The experimental results 
learly 
on�rm that for LTL model 
he
king ouralgorithm is able to verify systems that were beyond the s
ope of the sequentialmodel 
he
king algorithm.Part of our experimental results is summarized in the table below. The tableshows how the number of 
omputers in
uen
es the 
omputation time. Time isgiven in minutes, 'M' means that the 
omputation failed due to low memory.



SOFSEM’01, Milovy, Czech Republic - final version

Number of ComputersNo. of Verti
es 1 2 3 4 5 6 794578 0:38 0:35 0:26 0:21 0:18 0:17 0:15608185 5:13 4:19 3:04 2:26 2:03 1:49 1:35777488 M 6:50 4:09 3:12 2:45 2:37 2:05736400 M M M 6:19 4:52 4:39 4:257 Con
lusionsWe have proposed a distributed algorithm for the single sour
e shortest pathsproblem for arbitrary dire
ted graphs whi
h 
an 
ontain negative length 
y-
les. The algorithm employs reverse sear
h and uses one data stru
ture for twopurposes | 
omputing the shortest paths and traversing the graph. A novel dis-tributed variant of the walk to root negative 
y
le dete
tion strategy is engaged.The algorithm is thus spa
e-eÆ
ient and s
alable.Be
ause of the wide variety of relaxation and 
y
le dete
tion strategies thereis plenty of spa
e for future resear
h. Although not all strategies are suitable fordistributed solution, there are surely other possibilities besides the one proposedin this paper.Referen
es1. D. Avis and K. Fukuda. Reverse sear
h for enumeration. Dis
rete Appl. Math.,65:21{46, 1996.2. S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of smalltreewidth. In Automata, Languages and Programming, pages 244{255, 1995.3. B. V. Cherkassky and A. V. Goldberg. Negative-
y
le dete
tion algorithms. Math-emati
al Programming, Springer-Verlag, 85:277{311, 1999.4. E. Cohen. EÆ
ient parallel shortest-paths in digraphs with a separator de
ompo-sition. Journal of Algorithms, 21(2):331{357, 1996.5. T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introdu
tion to Algorithms.MIT, 1990.6. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra'sshortest path algorithm. In Pro
. 23rd MFCS'98, Le
ture Notes in ComputerS
ien
e, volume 1450, pages 722{731. Springer-Verlag, 1998.7. U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In 6thInternational EURO-PAR Conferen
e. LNCS, 2000.8. J. Nievergelt. Exhaustive sear
h, 
ombinatorial optimization and enumeration:Exploring the potential of raw 
omputing power. In SOFSEM 2000, number 1963in LNCS, pages 18{35. Springer, 2000.9. K. Ramarao and S. Venkatesan. On �nding and updating shortest paths distribu-tively. Journal of Algorithms, 13:235{257, 1992.10. J. Tra� and C.D. Zaroliagis. A simple parallel algorithm for the single-sour
eshortest path problem on planar digraphs. In Parallel algorithms for irregularlystru
tured problems, volume 1117 of LNCS, pages 183{194. Springer, 1996.11. M. Y. Vardi and P. Wolper. An automata-theoreti
 approa
h to automati
 programveri�
ation (preliminary report). In 1st Symp. on Logi
 in Computer S
ien
e,LICS'86, pages 332{344. Computer So
iety Press, 1986.


