How to Employ Reverse Search in Distributed
Single Source Shortest Paths*

Lubo§ Brim, Ivana Cernd, Pavel Krédl, and Radek Peldnek

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic
{brim,cerna,xkrcal,xpelanek}@fi.muni.cz

Abstract. A distributed algorithm for the single source shortest path
problem for directed graphs with arbitrary edge lengths is proposed.
The new algorithm is based on relaxations and uses reverse search for
inspecting edges and thus avoids using any additional data structures.
At the same time the algorithm uses a novel way to recognize a reachable
negative-length cycle in the graph which facilitates the scalability of the
algorithm.

1 Introduction

The single source shortest paths problem is a key component of many appli-
cations and lots of effective sequential algorithms are proposed for its solution
(for an excellent survey see [3]). However, in many applications graphs are too
massive to fit completely inside the computer’s internal memory. The resulting
input /output communication between fast internal memory and slower external
memory (such as disks) can be a major performance bottleneck.

In particular, in LTL model checking application (see Section 6) the graph is
typically extremely large. In order to optimize the space complexity of the com-
putation the graph is generated on-the-fly. Successors of a vertex are determined
dynamically and consequently there is no need to store any information about
edges permanently. Therefore neither the techniques used in external memory
algorithms (we do not know any properties of the examined graph in advance)
nor the parallel algorithms based on adjacency matrix graph representation are
applicable.

The approach we have been looking upon is to increase the computational
power (especially the amount of randomly accessed memory) by building a pow-
erful parallel computer as a network of cheap workstations with disjoint memory
which communicate via message passing.

With respect to the intended application even in the distributed environment
the space requirements are the main limiting factors. Therefore we have been
looking for a distributed algorithm compatible with other space-saving tech-
niques (e.g. on-the-fly technique or partial order technique). Our distributed

* This work has been partially supported by the Grant Agency of Czech Republic
grant No. 201/00/1023.



algorithm is therefore based on the relaxation of graph’s edges [5]. Distributed
relaxation-based algorithms are known only for special settings of single source
shortest paths problem. For general digraphs with non-negative edge lengths
parallel algorithms are presented in [6, 7, 9]. For special cases of graphs, like pla-
nar digraphs [10], graphs with separator decomposition [4] or graphs with small
tree-width [2], more efficient algorithms are known. Yet none of these algorithms
is applicable to general digraphs with potential negative length cycle.

The most notable features of our proposed distributed algorithm are reverse
search and walk to root approaches. The reverse search method is known to be
an exceedingly space efficient technique [1,8]. Data structures of the proposed
algorithm can be naturally used by the reverse search and it is possible to reduce
the memory requirements which would be otherwise induced by structures used
for traversing graph (such as a queue or a stack). This could save up to one third
of memory which is practically significant.

Walk to root is a strategy how to detect the presence of a negative length
cycle in the input graph. The cycle is looked for in the graph of parent pointers
maintained by the method. The parent graph cycles, however, can appear and
disappear. The aim is to detect a cycle as soon as possible and at the same
time not to increase the time complexity of underlying relaxation algorithm
significantly. To that end we introduce a solution which allows to amortize the
time complexity of cycle detection over the complexity of relaxation.

2 Problem Definition and General Method

Let (G, s,1) be a given triple, where G = (V, E) is a directed graph, | : E — R is
a length function mapping edges to real-valued lengths and s € V' is the source
vertex. We denote n =| V | and m =| E |. The length I(p) of the path p is the
sum of the lengths of its constituent edges. We define the shortest path length
from s to v by

5(s,v) = min{l(p) | p is a path from s to v} if there is such a path
T oo otherwise

A shortest path from vertex s to vertex v is then defined as any path p with
length I(p) = §(s,v). If the graph G contains no negative length cycles (negative
cycles) reachable from source vertex s, then for all v € V' the shortest path length
remains well-defined and the graph is called feasible. The single source shortest
paths (SSSP) problem is to determine whether the given graph is feasible and if
so to compute d(s,v) for all v € V. For purposes of our algorithm we suppose
that some linear ordering on vertices is given.

The general method for solving the SSSP problem is the relazation method
[3, 5]. For every vertex v the method maintains its distance label d(v) and parent
vertex p(v). The subgraph G), of G induced by edges (p(v),v) for all v such that
p(v) # nil is called the parent graph. The method starts by setting d(s) = 0 and
p(s) = nil. At every step the method selects an edge (v,u) and relazes it which



means that if d(u) > d(v) + (v, u) then it sets d(u) to d(v) + I(v,u) and sets
p(u) to v.

If no d(v) can be improved by any relaxation then d(v) = d(s,v) for all
v € V and G, determines the shortest paths. Different strategies for selecting an
edge to be relaxed lead to different algorithms. For graphs where negative cycles
could exist the relaxation method must be modified to recognize the unfeasibility
of the graph. As in the case of relaxation various strategies are used to detect
negative cycles [3]. However, not all of them are suitable for our purposes —
they are either uncompetitive (as for example time-out strategy) or they are not
suitable for distribution (such as the admissible graph search which uses hardly
parallelizable DFS or level-based strategy which employs global data structures).
For our version of distributed SSSP we have used the walk to root strategy.

The sequential walk to root strategy can be described as follows. Suppose the
relaxation operation applies to an edge (v,u) (i.e. d(u) > d(v) +1(v,u)) and the
parent graph G}, is acyclic. This operation creates a cycle in G, if and only if u is
an ancestor of v in the current parent graph. This can be detected by following
the parent pointers from v to s. If the vertex u lies on this path then there is a
negative cycle; otherwise the relaxation operation does not create a cycle.

The walk to root method gives immediate cycle detection and can be easily
combined with the relaxation method. However, since the path to the root can
be long, it increases the cost of applying the relaxation operation to an edge
to O(n). We can use amortization to pay the cost of checking G, for cycles.
Since the cost of such a search is O(n), the search is performed only after the
underlying shortest paths algorithm performs {2(n) work. The running time is
thus increased only by a constant factor. However, to preserve the correctness
the behavior of walk to root has to be significantly modified. The amortization
is used in the distributed algorithm and is described in detail in Section 5.

3 Reverse Search

Reverse search is originally a technique for generating large sets of discrete ob-
jects [1,8]. Reverse search can be viewed as a depth-first graph traversal that
requires neither stack nor node marks to be stored explicitly — all necessary infor-
mation can be recomputed. Such recomputations are naturally time-consuming,
but when traversing extremely large graphs, the actual problem is not the time
but the memory requirements.

In its basic form the reverse search can be viewed as the traversal of a span-
ning tree, called the reverse search tree. We are given a local search function f
and an optimum vertex v*. For every vertex v, repeated application of f has to
generate a path from v to v*. The set of these paths defines the reverse search
tree with the root v*. A reverse search is initiated at v* and only edges of the
reverse search tree are traversed.

In the context of the SSSP problem we want to traverse the graph G. The
parent graph G, corresponds to the reverse search tree. The optimum vertex
v* corresponds to the source vertex s and the local search function f to the



parent function p. The correspondence is not exact since p(v) can change during
the computation whereas original search function is fixed. Consequently some
vertices can be visited more than once. This is in fact the desired behavior for
our application. Moreover, if there is a negative cycle in the graph G then a
cycle in G, will occur and G, will not be a spanning tree. In such a situation
we are not interested in the shortest distances and the way in which the graph
is traversed is not important anymore. We just need to detect such a situation
and this is delegated to the cycle detection strategy.

proc Reverse_search (s) proc Call_recursively (v)
p(s) == L; Do_something (v);
vi= s for each edge (v,w) € E do
while v # 1 do if p(w) = v then
Do_something (v); Call_recursively (w)
u := Get_successor (v, NULL); fi
while u does not exist do od
last := v; v := p(v); end
u := Get_successor (v, last);
od
v = U
od
end

Fig. 1. Demonstration of the reverse search

Fig. 1 demonstrates the use of the reverse search within our algorithm.
Both procedures Call_recursively(v) and Reverse_search(v) traverse the subtree
of v in the same manner and perform some operation on its children. But
Call_recursively uses a stack whereas Reverse_search uses the parent edges for
the traversal. The function Get_successor(v, w) returns the first successor u of v
which is greater than w with respect to the ordering on the vertices and p(u) = v.
If no such successor exists an appropriate announcement is returned.

4 Sequential SSSP Algorithm with Reverse Search

We present the sequential algorithm (Fig. 2) and prove its correctness and com-
plexity first. This algorithm forms the base of the distributed algorithm presented
in the subsequent section.

The Trace procedure visits vertices in the graph (we say that a vertex is
visited if it is the value of the variable v). The procedure terminates either when
a negative cycle is detected or when the traversal of the graph is completed.

The RGS function combines the relaxation of an edge as introduced in Sec-
tion 2 and the Get_successor function from Section 3. It finds the next vertex u
whose label can be improved. The change of p(u) can create a cycle in G and
therefore the WTR procedure is started to detect this possibility. If the change
is safe the values d(u) and p(u) are updated and w is returned.

In what follows the correctness of the algorithm is stated. Due to the space
limits the proofs are only sketched.



proc Trace (s)
p(s) == 1; v:=g
while v# 1L do
u := RGS (v, NULL);
while u does not exist do
last := v; v := p(v);
u := RGS (v, last); od
v:= u; od

© 0D A W~

end

proc RGS (v, last){Relax and Get Successor}
u := successor of v greater than last;
while d(u) < d(v)+ l(u,v) do
u := next successor of v; od
if u exists then
WTR (v, u);
d(u) == d(v) + Uu,v); p(u) = v;
return u;
else return u does not exist; fi

[SINSESIEN SN R VOISR

~

end

proc WTR (at, looking_for){Walk To Root}
while at # s and at # looking_for do at := p(at); od
if at = looking_for then negative cycle detected fi
end

B ~

Fig. 2. Pseudo-code of the sequential algorithm

Lemma 1. Let G contains no negative cycle reachable from the source vertez s.
Then G, forms a rooted tree with root s and d(v) > §(s,v) for allv € V at any
time during the computation. Moreover, once d(v) = 0(s,v) it never changes.

Proof: The proof is principally the same as for other relaxation methods [5].
Lemma 2. After every change of the value d(v) the algorithm visits the vertex v.
Proof: Follows directly from the algorithm.

Lemma 3. Let G contains no negative cycle reachable from the source vertez s.
Every time a vertex w is visited the sequence S of the assignments on line 6 of
the procedure Trace will eventually be executed for this vertex. Until this happens
p(w) is not changed.

Proof: The value p(w) cannot be changed because G has no negative cycle and
due to Lemma 1 the parent graph G, does not have any cycle. Let h(w) denotes
the depth of w in G. We prove the lemma by backward induction (from n to
0) with respect to h(w). For the basis we have h(w) = n, w has no child and
therefore RGS(w,NULL) returns u does not exist and the sequence S is executed
immediately. For the inductive step we assume that the lemma holds for each v
such that h(v) > k and let h(w) = k-1, {a1,a2,...,a,} = {u | (w,u) € E}.
Since h(a;) = k for all i € {1,...,r}, we can use the induction hypothesis for
each a; and show that the value of the variable u in RGS is equal to a; exactly
once. Therefore RGS returns u does not exist for w after a finite number of steps
and the sequence S is executed. [ |



Theorem 1 (Correctness of the sequential algorithm). If G has no neg-
ative cycle reachable from the source s then the sequential algorithm terminates
with d(v) = (s, v) for allv € V and G, forms a shortest-paths tree rooted at s.
If G has a negative cycle, its existence is reported.

Proof: Let us at first suppose that there is no negative cycle. Lemma 3 applied
to the source vertex s gives the termination of the algorithm. Let v € V and
< Vg, V1, ...,V >,8 = Vg, U = vy is a shortest path from s to v. We show that
d(v;) = d(s,v;) for alli € {0,...k} by induction on i and therefore d(v) = d(s,v).
For the basis d(vg) = d(s) = §(s,s) = 0 by Lemma 1. From the induction
hypothesis we have d(v;) = (s, v;). The value d(v;) was set to d(s,v;) at some
moment during the computation. From Lemma 2 vertex v; is visited afterwards
and the edge (v;,v;y1) is relaxed. Due to Lemma 1, d(viy1) > 0(s,vi41) =
0(s,v3)+1(vi,vig1) = d(v;)+1(vi, vi11) is true before the relaxation and therefore
d(’l)i+1) = d(’l)l) + l(’l)l',’UH_l) = 5(8,1%) + l(’l)l',’l)l'+1) = 5(S,UZ'+1) holds after the
relaxation. By Lemma 1 this equality is maintained afterwards.

For all vertices v, u with v = p(u) we have d(u) = d(v) + l(v, u). This follows
directly from line 7 of the RGS procedure. After the termination d(v) = (s, v)
and therefore G, forms a shortest paths tree.

On the other side, if there is a negative cycle in G, then the relaxation process
alone would run forever and would create a cycle in G),. The cycle is detected
because before any change of p(v) WTR tests whether this change does not
create a cycle in Gy, [ |

Let us suppose that edges have integer lengths and let C' = max{| I(u,v) | :
(u,v) € E}.

Theorem 2. The worst time complexity of the sequential algorithm is O(Cn*).

Proof: Each shortest path consists of at most n — 1 edges and —C(n — 1) <
d(s,v) < C(n —1) holds for all v € V. Each vertex v is visited only after d(v)
is lowered. Therefore each vertex is visited at most O(Cn) times. Each visit
consists of updating at most n successors and an update can take O(n) time
(due to the walk to root). Together we have O(Cn?) bound for total visiting
time of each vertex and O(Cn*) bound for the algorithm. n

We stress that the use of the walk to root in this algorithm is not unavoidable
and the algorithm can be easily modified to detect a cycle without the walk to
root and run in O(Cn?) time. The walk to root has been used to make the
presentation of the distributed algorithm (where the walk to root is essential)
clearer.

5 Distributed Algorithm

For the distributed algorithm we suppose that the set of vertices is divided into
disjoint subsets. The distribution is determined by the function owmner which
assigns every vertex v to a processor i. Processor i is responsible for the subgraf
determined by the owned subset of vertices. Good partition of vertices among



processors is important because it has direct impact on communication com-
plexity and thus on run-time of the program. We do not discuss it here because
it is itself quite a difficult problem and depends on the concrete application.

The main idea of the distributed algorithm (Fig. 3) can be summarized as
follows. The computation is initialized by the processor which owns the source
vertex by calling Trace(s, L) and is expanded to other processors as soon as the
traversal visits the “border” vertices. Each processor visits vertices basically in
the same manner as the sequential algorithm does.

While relaxation can be performed in parallel, the realization of walk to root
requires more careful treatment. Even if adding the edge initiating the walk to
root does not create a cycle in the parent graph, the parent graph can contain a
cycle on the way to root created in the meantime by some other processor. The
walk to root we used in the sequential algorithm would stay in this cycle forever.
Amortization of walk brings similar problems. We propose a modification of the
walk to root which solves both problems.

Each processor maintains a counter of started WTR procedures. The WTR
procedure marks each node through which it proceeds by the name of the vertex
where the walk has been started (origin) and by the current value of the processor
counter (stamp). When the walk reaches a vertex that is already marked with
the same origin and stamp a negative cycle is detected and the computation
is terminated. In distributed environment it is possible to start more than one
walk concurrently and it may happen that the walk reaches a vertex that is
already marked by some other mark. In that case we use the ordering on vertices
to decide whether to finish the walk or to overwrite the previous mark and
continue. In the case that the walk has been finished (i.e. it has reached the
root or a vertex marked by higher origin, line 9 of WTR) we need to remove its
marks. This is done by the REM (REmove Marks) procedure which follows the
path in the parent graph starting from the origin in the same manner as WTR
does. The values p(v) of marked vertices are not changed (line 6 of RGS) and
therefore the REM procedure can find and remove the marks. However, due to
possible overwriting of walks, it is possible that the REM procedure does not
remove all marks. Note that these marks will be removed by some other REM
procedure eventually. The correctness of cycle detection is guaranteed as for the
cycle detection the equality of both the origin and stamp is required.

The modifications of walk to root enforces the Trace procedure to stop when
it reaches a marked vertex and to wait till the vertex becomes unmarked. More-
over, walk to root is not called during each relaxation step ( WTR_amortization
condition becomes true every n-th time it is called).

Whenever a processor has to process a vertex (during traversing or walk to
root) it checks whether the vertex belongs to its own subgraph. If the vertex is
local, the processor continues locally otherwise a message is sent to the owner
of the vertex. The algorithm periodically checks incoming messages (line 4 of
Trace). When a request to update parameters of a vertex u arrives, the processor
compares the current value d(u) with the received one. If the received value
is lower than the current one then the request is placed into the local queue.



SOFSEM’ 01, Milovy, Czech Republic - final version

1 proc Main

2  while not finished do

3 req := pop(queue);

4 if req.length = d(req.vertex) then Trace (req.vertex, req.father); fi
5 od

6 end

1 proc Trace (v, father)

2 p(v) := father;

3  while v # father do

4 Handle_messages;

5 w:= RGS(v, NULL);

6 while u does not exist do
7 last := v; v := p(v);
8 u := RGS(v, last); od
9

0

1

v = g
1 od
11 end
1 proc RGS (v, last) {Relax and Get Successor}
2 u := successor of v greater than last;
3  while u exists do
4 if u is local then
5 if d(u) > d(v) + I(u,v) then
6 if mark(u) then wait; fi
7 p(u) == v;
8 d(u) == d(v) + lu, v);
9 if WTR_amortization then WTR([u, stamp], u); inc(stamp); fi
10 return wu;
12 fi
18 else send_message(owner(u), “update u, v, d(u) + l(u,v)”);
14 fi
15 u := next successor of v;
16 od
17  return u does not exist;
18 end
1 proc WTR ([origin, stamp], at) {Walk To Root}
2 done := false;
3  while —~done do
4 if at is local
5 then
6 if mark(at) = [origin, stamp] —
7 send_message( Manager, “negative cycle found”);
8 terminate
9 [ (at = source) V (mark(at) > [origin, stamp]) —
10 if origin is local
11 then REM ([origin, stamp], origin)
12 else send_message(owner(origin),
13 “start REM ([origin, stamp], origin))” fi
14 done := true;
15 [ (mark(at) = nil) V (mark(at) < [origin, stamp]) —
16 mark(at) := [origin, stamp];
17 at := p(at)
18 fi
19 else send_message(owner(at), “start WTR([origin, stamp], at)”);
20 done := true
21 f
22  od
23 end

Fig. 3. Pseudo-code of the distributed algorithm



Anytime the traversal ends the next request from the queue is popped and a
new traversal is started.

Another type of message is a request to continue in the walk to root (resp. in
removing marks), which is immediately satisfied by executing the WTR (resp.
REM) procedure.

The distributed algorithm terminates when all local queues of all processors
are empty and there are no pending messages or when a negative cycle is de-
tected. A manager process is used to detect the termination and to finish the
algorithm by sending a termination signal to all processors.

Theorem 3 (Correctness and complexity of the distributed algorithm).
If G has no negative cycle reachable from the source s then the distributed algo-
rithm terminates with d(v) = 6(s,v) for allv € V and G, forms a shortest-paths
tree rooted at s. If G has a negative cycle, its existence is reported.

The worst time complexity of the algorithm is O(Cn?).

Proof: The proof of the correctness of the distributed algorithm is technically
more involved and due to the space limits is presented in the full version of the
paper only. The basic ideas are the same as for the sequential case, especially in
the case when GG has no negative cycle. Proof of the correctness of the distributed
walk to root strategy is based on the ordering on walks and on the fact that if
G contains a reachable negative cycle then after a finite number of relaxation
steps G, always has a cycle.

Complexity is O(Cn?) due to the amortization of the walk to root. ]

6 Experiments

We have implemented the distributed algorithm. The experiments have been
performed on a cluster of seven workstations interconnected with a fast 100Mbps
Ethernet using Message Passing Interface (MPI) library.

We have performed a series of practical experiments on particular types of
graphs that represent the LTL model checking problem. The LTL model checking
problem is defined as follows. Given a finite system and a LTL formula decide
whether the given system satisfies the formula. This problem can be reduced to
the problem of finding an accepting cycles in a directed graph [11] and has a
linear sequential complexity. In practice however, the resulting graph is usually
very large and the linear algorithm is based on depth-first search, which makes
it hard to distribute. We have reduced the model checking problem to the SSSP
problem with edge lengths 0, -1. Instead of looking for accepting cycles we detect
negative cycles.

The experimental results clearly confirm that for LTL model checking our
algorithm is able to verify systems that were beyond the scope of the sequential
model checking algorithm.

Part of our experimental results is summarized in the table below. The table
shows how the number of computers influences the computation time. Time is
given in minutes, ‘M’ means that the computation failed due to low memory.



Number of Computers
No. of Vertices 1 2 3 4 5 6 7
94578 0:38 0:35 0:26 0:21 0:18 0:17 0:15
608185 5:13  4:19  3:04 2:26 2:03 1:49 1:35
777488 M 6:50  4:09 3:12 245  2:37  2:05
736400 M M M 6:19 4:52 4:39  4:25

7 Conclusions

We have proposed a distributed algorithm for the single source shortest paths
problem for arbitrary directed graphs which can contain negative length cy-
cles. The algorithm employs reverse search and uses one data structure for two
purposes — computing the shortest paths and traversing the graph. A novel dis-
tributed variant of the walk to root negative cycle detection strategy is engaged.
The algorithm is thus space-efficient and scalable.

Because of the wide variety of relaxation and cycle detection strategies there
is plenty of space for future research. Although not all strategies are suitable for
distributed solution, there are surely other possibilities besides the one proposed
in this paper.

References

1. D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math.,
65:21-46, 1996.

2. S. Chaudhuri and C. D. Zaroliagis. Shortest path queries in digraphs of small
treewidth. In Automata, Languages and Programming, pages 244-255, 1995.

3. B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. Math-
ematical Programming, Springer- Verlag, 85:277-311, 1999.

4. E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decompo-
sition. Journal of Algorithms, 21(2):331-357, 1996.

5. T. H. Cormen, Ch. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT, 1990.

6. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s
shortest path algorithm. In Proc. 28rd MFCS’98, Lecture Notes in Computer
Science, volume 1450, pages 722-731. Springer-Verlag, 1998.

7. U. Meyer and P. Sanders. Parallel shortest path for arbitrary graphs. In 6th
International EURO-PAR Conference. LNCS, 2000.

8. J. Nievergelt. Exhaustive search, combinatorial optimization and enumeration:
Exploring the potential of raw computing power. In SOFSEM 2000, number 1963
in LNCS, pages 18-35. Springer, 2000.

9. K. Ramarao and S. Venkatesan. On finding and updating shortest paths distribu-
tively. Journal of Algorithms, 13:235-257, 1992.

10. J. Traff and C.D. Zaroliagis. A simple parallel algorithm for the single-source
shortest path problem on planar digraphs. In Parallel algorithms for irregularly
structured problems, volume 1117 of LNCS, pages 183-194. Springer, 1996.

11. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In 1st Symp. on Logic in Computer Science,
LICS’86, pages 332-344. Computer Society Press, 1986.



