
Randomization Helps in LTL Model Cheking?Lubo�s Brim, Ivana �Cern�a, and Martin Ne�esalDepartment of Computer Siene, Faulty of InformatisMasaryk University Brno, Czeh Republifbrim,erna,xneesalg�fi.muni.zAbstrat. We present and analyze a new probabilisti method for au-tomata based LTL model heking of non-probabilisti systems with in-tention to redue memory requirements. The main idea of our approahis to use randomness to deide whih of the needed information (vis-ited states) should be stored during a omputation and whih ould beomitted. We propose two strategies of probabilisti storing of states. Thealgorithm never errs, i.e. it always delivers orret results. On the otherhand the omputation time an inrease. The method has been embed-ded into the SPIN model heker and a series of experiments has beenperformed. The results on�rm that randomization an help to inreasethe appliability of model hekers in pratie.1 IntrodutionModel heking is one of the major reent suess stories of theoretial omputersiene. Model hekers are tools whih take a desription of a system and a prop-erty and automatially hek whether the system satis�es the property. Thereare now many di�erent varieties of model hekers inluding model hekers forreal-time systems and probabilisti systems.Pratial appliation of model heking in the hardware veri�ation beame aroutine. Many ompanies in the hardware industry use model hekers to ensurethe quality of their produts. With the debugging potential a�orded by modelheking, design of hardware omponents an be made muh more reliable andmoreover model heking is seen to aelerate the design proess, signi�antlydereasing the time to market. However, the situation in software model hekingis ompletely di�erent. Software is muh more ompliated system due to itssize and dynami nature. To ahieve similar bene�ts as in hardware veri�ation,additional methods and tehniques need to be explored.One of the very suessful tehniques is randomization. The term \proba-bilisti model heking" (or \probabilisti veri�ation") refers to a wide range oftehniques. There are two ways in whih probability features in this area. The�rst approah onerns applying model heking to systems whih inherentlyinlude probabilisti information [11, 4, 1, 2℄. The seond approah onerns sys-tems whih are non-probabilisti, but of size whih makes exhaustive heking? This work has been partially supported by the Grant Ageny of Czeh Republigrants No. 201/00/1023 and 201/00/0400.



impratial or infeasible [9, 5℄. The aim is to use randomization to make modelheking more eÆient, albeit at a ost of establishing satisfation with highprobability, possibly with a one-sided error, rather than ertainty, or at a ostof other resoures. While the topi of veri�ation of probabilisti systems hasbeen intensively studied, there are only a few attempts to use randomization inveri�ation of non-probabilisti systems.In the paper we fous on automata based LTL model heking of non-proba-bilisti systems. Our aim is to attak the state-explosion problem (the numberof reahable states grows exponentially in the number of onurrent omponentsand is the main limitation in pratial appliations of model hekers). Varioustehniques and heuristis reduing the random aess memory required havebeen proposed. One possible solution (alled on-the-y model heking) is togenerate only the part of the state graph required to validate or disprove thegiven property. On-the-y algorithms generate the state spae in a depth-�rstmanner and keep only trak of reahed states to avoid doing unneessary work.Another solution makes use of the fat that one of the reasons of the state explo-sion problem is the generation of all interleavings of independent transitions indi�erent onurrent omponents. Partial order redution tehniques were intro-dued to ensure that many of these unneessary interleavings are not exploredduring state generation.If we have some knowledge about the struture of the state graph in advane(before starting the atual veri�ation), we an apply even more eÆient heuris-tis. As in general it is not the ase we suggest to use a probabilisti methodwhih an be viewed as a probability distribution on a set of deterministi teh-niques. We explore two probabilisti approahes to ahieve signi�ant spaeredution in the depth �rst searh based model heking of non-probabilistisystems.The ore of the �rst approah is to use randomness to deide whih of theneeded information (visited states) should be stored during a omputation andwhih ould be omitted. Consequently, the time omplexity of the omputationan inrease. The seond method simply implements the idea of randomizingthe branhing struture. Both methods are of Las Vegas type, i.e. they alwaysdeliver the orret answer. In the paper we fous on the �rst method and reporton the seond one briey. We stress that both methods are ompatible (anbe used simultaneously) with on-the-y and partial order redution tehniques.We have implemented both methods and the experiments gave surprisingly verygood results in ompetition with non-probabilisti approahes.The paper is organized as follows. We �rst review some bakground on modelheking using automata, de�ne the orresponding graph-theoreti problem, andbriey disuss possible soures for applying randomization. Then we propose theprobabilisti redution algorithm and report experimental results ahieved. Weonlude with the desription of the seond method and with some �nal remarks.



2 Problem SettingWe onsider the following veri�ation problem. A �nite state transition graph(also alled a Kripke struture) is used to represent the behavior of a givensystem and a linear temporal logi (LTL) formula is used to express the desiredproperty of the system. The basi idea of automata-based LTL model hekingis to assoiate with eah LTL formula a B�uhi automaton that aepts exatlyall the omputations that satisfy the formula. If we onsider a Kripke strutureto be a B�uhi automaton as well, then the model heking an be desribed asa language ontainment problem and onsequently as a non-emptiness problemof (interseting) B�uhi automata. A B�uhi automaton aepts some word i�there exists an aepting state reahable from the initial state and from itself.Hene, we an sum up the model heking problem we onsider as the followinggraph-theoreti problem.Non-emptiness problem of B�uhi automata.Given a direted graph G = (V;E), start state (vertex) s 2 V , a set of aeptingstates F � V , determine whether there is a member of F whih is reahable froms and belongs to a nontrivial strongly onneted omponent of G.The diret approah to solve the problem is to deompose the graph intonontrivial strongly onneted omponents (SCCs), whih an be done in timelinear in the size of the graph using the Tarjan's algorithm [10℄. However, on-struting SCCs is not memory eÆient sine the states in the SCCs must beexpliitly stored during the proedure. Couroubetis et al. [3℄ have proposed anelegant way to avoid the expliit omputation of SCCs. The idea is to use a nesteddepth-�rst searh to �nd aepting states that are reahable from themselves (toompute aepting path). The pseudo-ode of the NestedDFS algorithm is givenin Fig. 1. Only two bits need to be added to eah state to separate the statesstored in VisitedStates during the �rst and the seond (nested) DFS. The ex-treme spae eÆieny of the NestedDFS algorithm is ahieved to the detrimentof time. The time might double when all the states are reahable in both searhesand there are no aepting yles. However, in appliations to real systems thespae is atually more ritial resoure. This makes the nested depth-�rst searhthe main algorithm used in many veri�ation tools whih support the automatabased approah to model heking of LTL formulas (e.g. SPIN).The spae requirements of the NestedDFS algorithm are determined by theneessity of storing VisitedStates in randomly aessed memory. Several im-plementations of NestedDFS use di�erent data strutures to represent the setVisitedStates. The basi one is a hash table [6℄. Another implementation [12℄makes use of symboli representation of VisitedStates via Ordered Binary Dei-sion Diagrams (OBDD).Hash ompation is used in [14℄, where the possible hash-ollisions are notre-solved. The algorithm an thus detet a state as visited even if it is not.Consequently, not all reahable states are explored during the searh, and anerror might go undeteted.



pro DFS(s)add fs; 0g to VisitedStates;foreah suessor t of s doif ft; 0g not in VisitedStates then DFS(t) �od;if aepting(s) then seed := s; NDFS(s) �endpro NDFS(s)add fs; 1g to VisitedStates;foreah suessor t of s doif ft; 1g not in VisitedStatesthen NDFS(t)else if t = seed then \report yle" � �odend Fig. 1. Algorithm NestedDFSAnother tehnique whih has been investigated to redue the amount of ran-domly aessed memory is state-spae ahing [5℄. The idea is based on theobservation that when doing a depth-�rst searh of a graph, storing only thestates that are on the searh stak is suÆient to guarantee that the searhterminates. While this an produe a very substantial saving in the use of ran-domly aessed memory, it usually has a disastrous impat on the run time ofthe searh. Indeed, eah state will be visited as many times as there are simplepaths reahing it. An improvement on this idea is to store not only the statesthat are on the searh stak, but also a bounded number of other states (as manyas will �t into the hosen \state-spae ahe"). If the state-spae ahe is fullwhen a new state needs to be stored, random replaement of a state that is noturrently on the searh stak is used.The advantage of state-spae ahing is that the amount of memory that isused an be redued with a limited impat on the time required for the searh.Indeed, if the ahe is large enough to ontain the whole state spae, there isno hange in the required time. If the size of the ahe is redued below thislimit, the time required for the searh will only inrease gradually. Experimentalresults, however, show that below a threshold that is usually between 1/2 and 1/3of the size of the state spae, the run time explodes, unless additional tehniquesare used to restrit the number of distint paths that an reah a given state [5℄.The behavior of state-spae ahing is quite the opposite of that of the hash-ing tehnique. Indeed, state-spae ahing guarantees a orret result, but at theost of a potentially large inrease in the time needed for the state-spae searh.On the other hand, hashing never inreases the required run time, but an fail to



explore the whole state spae. A ombination of state spae ahing and hashinghas been proposed and investigated in [9℄.In this paper we propose a new tehnique to attak the state-explosion prob-lem using a simple probabilisti method. Atually, the tehnique has been stronglymotivated by our intention to improve the performane of the model hekerSPIN, and the tehnique has been embedded into SPIN for testing purposes.The proposed method allows to solve the emptiness problem of B�uhi au-tomata (i.e. omplete LTL model heking and not only reahability) and itnever errs. It an be briey desribed in the following way. The algorithm isbased on the nested depth-�rst searh as desribed in Fig. 1. Eah time thealgorithm baktraks through a state it employs a proper redution strategy todeide whether the state will be kept in the VisitedStates table or whether it willbe removed. We propose two redution strategies, the dynami and the statione. While the �rst one takes on the frequeny of visiting the state, the seondone allows to eliminate delayed storing of the state and thus dereases the num-ber of visits of individual states. We speify properties of systems determiningwhih strategy suits better for a given veri�ation problem.3 Algorithm with Probabilisti Redution StrategyThe reason to store the states in the table of visited states during nested depth-�rst searh is to speed up the veri�ation by preventing the multipliation ofwork when states are re-visited. A state that is visited only one need not bestored at all, while storing a state whih will be visited many times an result ina signi�ant speed-up. The standard nested depth-�rst searh algorithm storesall visited states. On the other side, the optimal strategy for storing stateswould take into aount the number of times a state will be eventually visited{ a visitation fator. As it is generally impossible to ompute this parameter inadvane, we will use probabilisti method to solve the problem.The pseudo-ode of the modi�ed nested depth-�rst-searh algorithm withredution strategy, NestedDFSReSt, is given in Fig. 2. Whenever the DFS pro-edure explores a new state, the state is temporally saved in the VisitedStatestable (with parameter 0). Whenever DFS baktraks trough a state, a test Re-dutionStrategy is performed and if the test evaluates to true the state is removedfrom the VisitedStates table. We will onsider two basi probabilisti strategiesof removing states. The �rst one dynamially deides on removing a state eahtime the state is baktraked through, while the seond heuristi deides ran-domly in advane (before the veri�ation is started) whih states will be storedpermanently.As in the ase of DFS, the NDFS proedure also needs the list of statesit has visited to be eÆient. Therefore every exploring of a new state resultsin its saving to the VisitedStates table (with parameter 1). Whenever NDFSbaktraks trough a state it respets the RedutionStrategy test performed onthis state by the DFS proedure and if neessary removes the state from thetable.



pro DFS(s)add fs; 0g to VisitedStates;foreah suessor t of s doif ft; 0g not in VisitedStates then DFS(t) �od;if aepting(s) then seed := s; NDFS(s) �;if RedutionStrategy(s) then delete fs; �g from VisitedStates �endpro NDFS(s)if aepting(s) and fs; 0g not in VisitedStates then exit �; (�)add fs; 1g to VisitedStates;foreah suessor t of s doif ft; 1g not in VisitedStatesthen NDFS(t)else if t = seed then \report yle" � �od;if fs; 0g not in VisitedStates then delete fs; 1g from VisitedStates �end Fig. 2. Algorithm NestedDFSReStRemoving states from the VisitedStates table has diret impat on the timeomplexity of the algorithm as re-visiting a state removed from the table invokesa new searh from this state.The orretness of the NestedDFSReSt algorithm follows from the orretnessof the NestedDFS algorithm [3℄. The additional key arguments it depends on aresummarized in the following two lemmas.Lemma 1. During the whole omputation the sequene of states with whih theDFS proedure is alled (DFSstak) forms a path in the graph G. The same istrue for the NDFS proedure and NDFSstak.Proof: The (N)DFS proedure is always alled with the argument t whih is asuessor of the urrent state s.Lemma 2. Suppose that during the whole omputation both the DFSstak andthe NDFSstak are subsets of VisitedStates, then the NestedDFSReSt algorithmterminates.Proof: From the inlusion follows that the (N)DFSstak always forms a simplepath. The number of simple paths in G is �nite and eah one is explored at mostone.Theorem 1. The algorithm NestedDFSReSt is orret.



Proof: Whenever the (N)DFS proedure explores a new state, the state is tem-porally saved in the VisitedStates table. Therefore (N)DFSstak � VisitedStatesis invariantly true and NestedDFSReSt always terminates due to the Lemma 2.If NestedDFSReSt reports \yle" then due to the Lemma 1 there is a reahableyle ontaining an aepting state. Conversely, suppose there is a reahable y-le ontaining an aepting state in G. Deleting states from VisitedStates tableannot ause leaving out any all of (N)DFS(t) whih would have been performedby NestedDFS algorithm. Moreover, the situation in whih the ondition of theif test on the very �rst line (denoted by �) in NDFS is true is equivalent tothe situation when fs; 1g is in VisitedStates in NestedDFS algorithm. ThereforeNestedDFSReSt searhes trough all the paths NestedDFS does and thus reports\yle" when NestedDFS does. �Notie that the test on the �rst line (�) of NDFS prevents re-searhing ofan aepting state and thus speeds-up signi�antly the overall time omplexity.This fat was on�rmed also by experimental results.The proof of the Theorem 1 is based on the fat that the NestedDFSReStalgorithm searhes through all the paths the NestedDFS one does. Due to thisfat our algorithm is ompatible with additional tehniques used for state spaeredutions, espeially with partial order redution tehniques used in SPIN.3.1 Dynami Redution StrategyThe pseudo-ode implementing the dynami redution strategy is as follows:funt RedutionStrategy-Dynami(s) : booleanp := random[0; 1℄;if p � Pdelthen RedutionStrategy-Dynami := trueelse RedutionStrategy-Dynami := false �endPdel is a �xed parameter determining the probability of deleting a statefrom VisitedStates table. Eah time the DFS baktraks through a state s thestate is deleted with the probability Pdel and is kept stored with the probabilityPsto = 1� Pdel. One a state is kept stored in the table by the DFS proedure,it is never removed. The probability that a state will be eventually stored thusdepends on the number k of its visits during the omputation and is equal toProb(s is eventually stored) = 1 � P kdel. This means that a state with highervisitation fator k has also higher probability to be stored permanently. Theprobability that the state s will be re-visited more than i times is equal toProb(s is i times deleted) = P idel.The dynami redution strategy would lead to a non-trivial redution ofrandomly aessed memory if there is a non-trivial subset of the state spaethat will never be permanently stored. The expeted memory redution an beexpressed as P �(size of the state spae), where P is the probability that a state



will never be permanently stored. If k is the average visitation fator then P anbe estimated as P kdel. Therefore, we would like to have the highest possible valueof the probability that a state will never be permanently stored.On the other hand, not saving a frequently visited state inreases the timeomplexity of the whole omputation. Therefore, we are interested in the ex-peted number of visits after whih the state is stored permanently. Consider anelementary event fs is permanently stored during its i-th visitg. ThenProb(fs is permanently stored during its i-th visitg) = P i�1del Psto:Let H be a random variable over the above mentioned elementary events de�nedas H(fs is permanently stored during its i-th visitg) = i:We have that the expeted value of H isE(H) = 1Xi=1 iP i�1del Psto = Psto 1Xi=1 iP i�1del = Psto 1Xj=1 1Xi=j P i�1del == Psto 1Xj=1 P j�1del1� Pdel = Psto1� Pdel 1Xj=0 P jdel = Psto1� Pdel P 0del1� Pdel == Psto(1� Pdel)2 = PstoP 2sto = 1PstoIt an be seen that the expeted value of the random variable H depends on theprobability Psto and indiates that value Psto should be high.We an onlude that in systems with a high visitation fator we annot ex-pet reasonable spae savings without enormous inrease of the time omplexity.3.2 Stati Redution StrategyThe seond strategy tries to eliminate the main disadvantage of the dynami re-dution strategy, namely the delayed storage of a state. If a state will eventuallybe permanently stored, why not to store it immediately during the �rst visit.When deiding whih states are to be stored we should prefer states with highvisitation fator. As we annot ompute this fator in advane we use probabilis-ti deision. All states are in advane and randomly divided into two groups:states whih will be stored and those whih will never be stored (representedas R). Hene, eah state is permanently stored during its �rst visit or never.The ratio between stored and non-stored states is seleted with the intention toahieve as highest redution in state spae as possible.The pseudo-ode implementing the stati redution strategy is as follows:funt RedutionStrategy-Stati(s) : booleanif s 2 Rthen RedutionStrategy-Stati := trueelse RedutionStrategy-Stati := false �end



The disadvantage of the stati redution strategy is its insensibility to thevisitation fator.4 ExperimentsTo be able to ompare experimentally our probabilisti algorithm with the non-probabilisti one, we have embedded the algorithm into SPIN model heker.We have performed a series of tests on several types of standard parametrized(salable) veri�ation problems. Here we report on two of them only:Peterson Peterson's algorithm solves the mutual exlusion problem. We haveonsidered the algorithm for parameter N = 3 determining the number ofproesses. The property to be veri�ed was �(nrit < 2) (no more than oneproess is in ritial setion).Philosophers Dining Philosophers is a model of a problem of sharing of re-soures by several proesses. We have onsidered the algorithm for N = 4and N = 6. The property to be veri�ed was ��(EatingAny = 1) (abseneof deadlok).The other problems we have onsidered were e.g. the Leader Eletion problem,Mobile proesses. In all these experiments we have obtained similar results.As our algorithm is ompatible with partial order redution tehniques usedin SPIN we have ompiled all problems with partial order redutions.For eah veri�ation problem we �rst give two most important harateris-tis of the omputation performed by SPIN heker: States (the number of statessaved in the VisitedStates table) and Transitions (the number of performed tran-sitions). The number of transition is proportional to the overall time omplexityof the omputation. The size of the VisitedStates table in SPIN's omputationis nondereasing. One a state is stored in the table it is never removed. On theother hand in the NestedDFSReSt algorithm every visited state is temporallystored in the table and only when it is baktraked through the (random) dei-sion about its permanent storing is made. Therefore for our algorithm we needanother harateristi, namely the highest size of the Visited States table, PeakStates. The parameter States delares the number of states stored in the tableat the end of omputation. The remaining two parameters, State Saving andTransition Overhead, ompare performane of the deterministi algorithm andthe probabilisti ones. Computations of probabilisti algorithms were repeated10 times, presented values are the average ones.Peterson's AlgorithmResults of experiments are summarized in the Table 1. The best results withDynami Strategy were ahieved for storing probability 0.5 where saving in thesize of stored state spae was 33% while inrease in the time was negligible, andfor probability 0.1 with 52% spae saving and multipliation fator 4 of time.To get deeper inside we mention that the omputation without the redution



States Peak Saving Transitions OverheadSPIN 17068 17068 0% 32077 1.00Dynami StrategyPsto = 0:50 10998 11421 33% 46074 1.44Psto = 0:10 6724 8263 52% 136344 4.25Psto = 0:01 5559 7407 57% 1110526 34.62Stati StrategyPsto = 0:75 12807 12812 25% 38761 1.21Psto = 0:50 8568 9661 43% 63662 1.98Psto = 0:40 6852 8417 51% 390737 12.18Table 1. Summary of Experimental Results for Petersonstrategy took about 1.5 seond in this ase. Yet another inrease in the deletingprobability results in substantial grow of time but does not improve spae savingfator signi�antly. States Peak Saving Transitions OverheadSPIN 3727 3727 0% 18286 1.00Dynami StrategyPsto = 0:50 3047 3178 15% 33475 1.83Psto = 0:10 2482 2686 28% 139263 7.62Psto = 0:01 2316 2531 32% 1287156 70.39Stati StrategyPsto = 0:75 2788 2961 21% 49112 2.69Psto = 0:60 2221 2577 31% 232973 12.74Psto = 0:50 1875 2340 37% 3285607 179.68Table 2. Summary of Experimental Results for Philosophers with N = 4Experiments with Stati Strategy reveal that we an ahieve 43% spae savingfor the prie of double time omplexity. 51% spae saving is attained with worsetime multipliation fator (12 in omparison to 4) than in the ase of DynamiStrategy. The di�erene between storing probability and real spae savings (i.e.for storing probability 0.4 we would expet 60% saving instead of measured 51%)has two reasons. Firstly, as we do not know whih states of the state spae areatually reahable in the veri�ed system we have to divide the whole state spaein advane. Seondly, the division determines states whih are permanently savedbut the VisitedStates table ontains also temporally saved states and its size anbe temporally greater (parameter Peak States). State spae saving is omputedvia omparing the number of saved states by non-probabilisti omputation andthe peak value of probabilisti omputation.



Dining PhilosophersResults of experiments are summarized in the Table 2 for N = 4 and in theTable 3 for N = 6. In both ases the results are omparable. Dynami Strategyagain gives the best results for storing probability between 0.5 and 0.1 . Any fur-ther derease in the storing probability below 0.1 results in signi�ant inreaseof time omplexity. In the ase of Stati Strategy reasonable results were ob-tained for storing probability 0.75 and further dereasing of probability leads tounreasonable time overhead and thus prevents from higher spae savings.States Peak Saving Transitions OverheadSPIN 191641 191641 0% 1144950 1.00Dynami StrategyPsto = 0:50 160426 165461 14% 2152384 1.88Psto = 0:10 136081 145214 24% 9400300 8.21Psto = 0:01 131306 140758 27% 91533400 79.90Stati StrategyPsto = 0:75 143661 155920 19% 6702840 5.85Psto = 0:65 124377 143691 25% 116103466 101.40Table 3. Summary of Experimental Results for Philosophers with N = 6Generally, the results for Philosophers are worse than those for Peterson'salgorithm and are remarkably inuened by the visitation fator. While in thePeterson's algorithm the average number of state visits in SPIN's omputationis 32077/17068 = 1.8, in Philosophers it is 4.9 (N = 4) and 6 (N = 6). Experi-mental observations are thus in aordane with dedued theoretial results.5 Random Nested DFSBesides the algorithm with probabilisti redution strategy we have also exploredthe potential of randomizing the branhing points in nested depth �rst searh.Veri�ation tools typially build the state spae from the syntatial desriptionof the problem. E.g. in SPIN the foreah suessor t of s do in the depth �rstsearh is implemented as for i = 1 to n yle. This means that the searh order is�xed by the input PROMELA program desribing the system. If the veri�ationfails due to spae limitations it is reommended to re-write the program tore-order the guarded ommands in onditionals and loops. However, the usertypially has no information on what would be a good re-arrangement. Hene,the situation is very suitable for a randomized approah.We have implemented the foreah suessor t of s do in the depth �rstsearh as a random seletion of the suessors ordering and performed a series ofomparisons with the standard SPIN tool on similar set of problems as we didbefore. Even though the method is trivial, the results we obtained were quite



surprising. For instane for the Philosophers (with an error) the results arepartially summarized in the Table 4.SPIN Random NDFSN States Trans Memory Runs Suess States Trans Memory11 288922 1449200 56.9 MB 10 10 100421 505150 26.412 205.0 MB 10 3 68355 346824 19.914 2.8 GB 50 5 46128 250266 16.216 38.5 GB 50 5 46288 245406 17.820 6.7 TB 50 2 38282 213639 18.2Table 4. Summary of Experimental Results for Random Nested DFSFor the value of the parameter N greater than 11 the SPIN model hekerwas not able to omplete the omputation. We therefore give estimated values forthe memory requirements obtained by extrapolation from �nished omputations.The randomized algorithm was repeatedly performed (Runs) and the numberof suessful runs (disovering the error before memory overow) is reported(Suess). The experiments indiate that even a small number of repetitions andramatially inrease the power of the tool.We have also onsidered some arti�ial veri�ation examples, whih demon-strate the potential of the method in some extreme ases. Consider the followingveri�ation problem de�ned by the program1 pro ExIF2 MainCounter := 0; StepCounter := 0;3 while StepCounter < 1000 do4 if5 true ! MainCounter :=MainCounter + 16 true ! MainCounter :=MainCounter + 27 �;8 StepCounter := StepCounter + 1 od9 endand the LTL formula �(MainCounter < 2000�Di� )The parameter Di� determines the ratio of runs of the program that satisfyand violate the formula. More preisely, the probability that MainCounter =2000�Di� isProb(MainCounter = 2000�Di� ) = �1000Di� ��12�1000We have performed experiments for various values of Di�. The results are sum-marized in the Table 5. The experiments have on�rmed that the atual memory



savings stritly depend on the value of the parameter Di�, that is on the proba-bility of a faulty run, and have ranged from 20% up to 90%. We stress that afterre-ordering of guarded ommands in the ExIF program (swapping lines 5 and 6)SPIN �nds the ounterexample immediately. Re-writing the program helps inthis ase. The next example shows that in some situations even re-writing theprogram does not help.Di� ViolProb Algorithm States Transitions %400 1:3642:10�10 RandNestedDFS 37999 55810 10.4%SPIN 363202 543502 100.0%200 8:2249:10�96 RandNestedDFS 368766 551537 57.3%SPIN 643602 964002 100.0%100 6:7017:10�162 RandNestedDFS 647855 969977 79.6%SPIN 813802 1219250 100.0%Table 5. Summary of Experimental Results for ExIFLet us onsider the LTL formula�((StepCounter < 1000)_ (MainCounter 6= 1500)):The formula expresses the property that at the end of every omputation (i.e.when StepCounter = 1000) the value of MainCounter is not 1500. It is easy tosee that the ExIF program does not ful�l this property. The erroneous omputa-tions are those where both guards are seleted equally. For every re-ordering ofthe guards SPIN has to searh the signi�ant part of the state spae to disovera ounterexample. On the other hand, the RandNestedDFS algorithm suessesvery quikly as it selets both guards with the same probability. The same e�ethas been observed in other tests as well. E.g. in the Leader eletion problem, forevery permutation of all guards SPIN has searhed approximately the same num-ber of states while RandNestedDFS has needed to searh through signi�antlysmaller part of the state spae.6 ConlusionsWhile veri�ation of probabilisti systems seems to be ready to move to theindustrial pratie, the use of probabilisti methods in model heking of non-probabilisti systems is at its beginning. The use of probabilisti methods in theexpliit state enumeration tehniques to redue the memory required by hashingis an exellent example of the potential of probabilisti methods. Our intentionwas to investigate other possibilities how randomization ould help in modelheking.We have proposed a new probabilisti veri�ation method whih ould reduethe amount of random aess memory neessary to store the information about



the system. The redution rate depends on the veri�ed system, namely on theaverage number of state visits. Our experiments have on�rmed that the methodould ahieve a non-trivial redution within reasonable time overhead.Another important issue for further study is to examine possibilities of om-bining our probabilisti redution strategy algorithm with other tehniques toredue memory usage. We also plan to perform additional experiments to give amore omprehensive view of the performane of our tehnique and of its sala-bility.7 AknowledgementWe would like to thank Ji�r�� Barnat for introduing us to the mysteries of theSPIN model heker and for his advie and eÆient help with inorporating ouralgorithms into SPIN.Referenes1. C. Baier and M. Kwiatkowska. Model Cheking for a Probabilisti Branhing TimeLogi with Fairness. DISTCOMP: Distributed Computing, 11, 1998.2. A. Biano and L. De Alfaro. Model Cheking of Probabilisti and NondeterministiSystems. In P. S. Thiagarajan, editor, Foundations of Software Tehnology andTheoretial Computer Siene (FSTTCS), volume 1026 of LNCS, pages 499{513.Springer-Verlag, 1995.3. C. Couroubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-EÆientAlgorithms for the Veri�ation of Temporal Properties. Formal Methods in SystemDesign, 1:275{288, 1992.4. C. Couroubetis and M. Yannakakis. The Complexity of Probabilisti Veri�ation.Journal of the ACM, 42(4):857{907, July 1995.5. P. Godefroid, G. J. Holzmann, and D. Pirottin. State-Spae Cahing Revis-ited. Formal Methods in System Design: An International Journal, 7(3):227{241,November 1995.6. G. J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in SystemDesign: An International Journal, 13(3):289{307, Nov. 1998.7. G.J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First Searh.In The SPIN Veri�ation System, pages 23{32. Amerian Mathematial Soiety,1996. Pro. of the Seond SPIN Workshop.8. M. Narasimha, R. Cleaveland, and P. Iyer. Probabilisti Temporal Logis viathe Modal Mu-Calulus. In W. Thomas, editor, Proeedings of the Seond Interna-tional Conferene on Foundations of Software Siene and Computation Strutures(FoSSaCS), volume 1578 of LNCS, pages 288{305. Springer-Verlag, 1999.9. U. Stern and D.L. Dill. Combining State Spae Cahing and Hash Compation. InB. Straube and J. Shoenherr, editors, 4. GI/ITG/GME Workshop zur Methodendes Entwurfs und der Veri�kation Digitaler Systeme, pages 81{90. Shaker Verlag,Aahen, 1996.10. R. Tarjan. Depth First Searh and Linear Graph Algorithms. SIAM journal onomputing, pages 146{160, Januar 1972.



11. M. Vardi. Probabilisti Linear-Time Model Cheking: An Overview of theAutomata-Theoreti Approah. In J.-P. Katoen, editor, International AMASTWorkshop on Formal Methods for Real-Time and Probabilisti Systems (ARTS),volume 1601 of LNCS, pages 265{276. Springer-Verlag, 1999.12. W. Visser. Using OBDD Enodings for Spae EÆient State Storage during On-the-yModel Cheking. Proeedings of the 1st SPINWorkshop, Montreal, Canada,1995.13. A. K. Wisspeintner, F. Huber, and J. Philipps. Model Cheking and RandomCompetition { A Study Using the Model Cheking Framework MIC. 10. GI/ITGFahgespr�ah "Formale Beshreibungstehniken f�ur verteilte Systeme", pages 91{100, June 2000.14. P. Wolper and D. Leroy. Reliable Hashing Without Collision Detetion. In C. Cour-oubetis, editor, Pro. 5th International Computer Aided Veri�ation Conferene(CAV'93), volume 697 of LNCS, pages 59{70. Springer-Verlag, 1993.


