PDMC 2005 Short Presentation

DI1IVINE

The Distributed Verification Environment

J. Barnat, L. Brim !, I. Cerna 2, P. Simecek

Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

This paper presents basic concepts and current state of a general distributed verifi-
cation environment (DIVINE). The environment is meant to support developers of
distributed enumerative model checking algorithms, to enable unified and credible
comparison of these algorithms, and to make the distributed verification available
for public use.

1 Introduction

In recent years, extensive research has been conducted in parallel and dis-
tributed model checking with the aim to push forward the frontiers of still
tractable systems. Many parallel and distributed algorithms have been devel-
oped and experimentally evaluated, mostly on a restricted set of verification
problems. Few of them have been incorporated into existing verification tools.
However, the tools are still far from the standards met by sequential tools and
in most cases their availibility to public is limited.

Another important aspect related to parallel and distributed model check-
ing algorithms is that their performance analysis as published in original pa-
pers cannot serve for their credible comparison. This is primarily due to the
fact that the hardware, input models, and other circumstances differ from
case to case making thus reported results incomparable. Most algorithms
were implemented as research prototypes using various data structures and
different optimization techniques and they simply cannot be executed on the
same input data. In addition, it is impossible to assure the same conditions
when redoing the experiments. Thus, in order to produce a fair comparison,
nothing remains but to re-implement all algorithms on a common base and

I Research supported by the Academy of Sciences of Czech Republic grant No.
1ET408050503
2 Research supported by the Grant Agency of Czech Republic grant No. 201/03/0509

BARNAT, BRIM, CERNA AND SIMECEK

re-examine their behavior on a common set of inputs and under the same
circumstances.

In 2002 our group at the Faculty of informatics started the DIVINE project
with the aim to develop a distributed LTL model checking verification tool
and at the same time to provide a platform for development and compari-
son of distributed enumerative model checking algorithms. The main goals
of DIVINE — Distributed Verification Environment can be summarized as
follows:

(i) To use the environment as a platform for further development and experi-
mental evaluation of enumerative parallel and distributed model checking
algorithms.

(ii) To enable credibly evaluate existing enumerative algorithms with regard
to their performance and characteristics under controlled conditions pro-
viding useful insight into their strengths and weaknesses and leading thus
to a more informed way of how to choose the appropriate algorithm for
given verification task.

(iii) To create a ready-to-use distributed LTL model checker as well as pro-
viding hardware to run on.

In this short presentation we aim to announce the DIVINE project to
the PDMC community, report on basic concepts and ideas used in DIVINE,
describe its architecture and give the current status of work.

2 DiVinE Project

The DIVINE project splits into two main parts: DIVINE TOOLSET and
D1VINE LIBRARY. These parts address potential DIVINE users at two dif-
ferent levels: at the level of a tool user (DIVINE TOOLSET) and at the level
of a tool developer (DIVINE LIBRARY). The overall structure of DIVINE is
depicted in Figure 1.

2.1 DIVINE TOOLSET

The DIVINE TOOLSET is made of a set of various model checking algorithms
(tools) that are accessed uniformly via a graphical user interface. An insepa-
rable part of DIVINE TOOLSET is a large collection of verification problems
and case studies, i.e. a collection of models and corresponding properties to be
verified. Native DIVINE specification language allows user to specify model
as network of finite state machines with guarded transitions communicating
via shared memory (shared variables) and buffered communication channels.
This formalism has shown to be accepted by the community, which was proven
by successful specification languages of model checking tools such as SPIN or

UPPAAL.

BARNAT, BRIM, CERNA AND SIMECEK

User
S % ________ 1 __________________________________

DiVinE DiVinE Grafical Interface

Tool
Set
Tooll Tool2 Tool3

DiVinE Mode|+Property Output - Log Files
Library

|State Gen. I:I Algorithm [

Storage | Network | |HW Monitor

Reporter

Cluster
s o 22 2
=
ma a g 4

Fig. 1. DIVINE architecture

2.2 DIVINE LIBRARY

DiVINE LIBRARY is expected to be used by researchers who intend to de-
sign, implement and experimentally evaluate a distributed model checking
algorithm. The library is designed to provide potential programmer with a
plethora of functions that are typically needed when an implementation of
such an algorithm should be done. Therefore, the programmer may focus
on the main part of the algorithm and need not waste time implementing
uninteresting, but necessary functions.

As can be seen from Figure 1, DIVINE LIBRARY is divided into several
more or less independent modules:

State Generator is a module that provides functions needed for state space
generation. These include primarily functions to compute the initial state of
the system and to obtain immediate successors of a given state. In the case
of LTL model checking, the module is also responsible for computing asyn-
chronous product of system and property Biichi automata, so it also provides
function to identify accepting states of the synchronous product automaton.
This module also provides programmer with an interface to access the struc-
ture of the model. It implements functions for evaluating expressions, com-
puting transitions of a single finite automaton, etc.

Storage module is responsible for storing states to the local memory. It
provides functions for inserting states to a set of visited states, querying states
in the set, and removing states from the set. In addition, the module is
capable of storing additional constant-sized piece of information, the so called
appendix, to every state stored in the set. The module is able to provide a
reference to a stored state, so the algorithm can manipulate states and access
their appendixes using relatively small state references.

The purpose of HW Monitor and Reporter modules is to continuously

3

BARNAT, BRIM, CERNA AND SIMECEK

monitor running algorithm and provide the algorithm with the feedback on
hardware utilization as well as to produce logs describing the behavior of the
algorithm during time of its execution. The standard POSIX signal mechanism
is used to scan and log measured quantities every second.

Network module is the core module of the DIVINE LIBRARY project. This
module provides basic routines for communication in the distributed setting
such as send and receive primitives. In addition to the necessary basic net-
work primitives, the module also implements mechanism for message buffering,
functions for sending and receiving urgent messages, functions for partition-
ing state space, etc. As for high-level primitives, the module mainly provides
functions for synchronization. In particular, the module supports

(1) barrier synchronization, which is implemented by a function that, if called
on a computer, postpones computation on the computer until all other
computers call the same function (this synchronization was adopted from
MPT standard).

(ii) termination detection, which is implemented by a probe function return-
ing true if all messages that were sent were also received and processed,
and all participating computers are idle, and returning false otherwise.
The termination detection can be repeatedly used for synchronization of
participating computers during the computation as well as for collecting
global information such as the global number of states visited, global
number of sent messages, etc.

Other modules that are not depicted in Figure 1 include functions sup-
porting partial order reduction, time profiling, counterexample generation,
and property automaton decomposition.

3 Current State

The DIVINE project is being implemented in C++ employing MPI standard for
network communication. Currently, all basic functions of DIVINE LIBRARY
are implemented, hence, the current version of the library can be used to
produce a fully working distributed model checking algorithm. Although the
library misses parts such as load balancing module, or support for sent state
caching, it is ready for public use [10].

As for DIVINE TOOLSET, we have already implemented and tested dis-
tributed state space generation algorithm as well as several distributed LTL
model checking algorithms [2,3,1,7]. Currently, we are able to run these al-
gortihms on models specified in native DIVINE languge, which allows us to
fairly compare implemented algorithms in many details. We are also able to
perform guided simulation of a model specified in DIVINE language and check
model for unreachable code.

Both DIVINE LiBRARY and DIVINE TOOLSET have been successfully
tested with mpich, LAM/MPI, and GridMPI/YAMPII implementations of the

4

BARNAT, BRIM, CERNA AND SIMECEK

MPI standard. The DIVINE project is distributed freely under GPL.

4 Future Work

In the future, we would like to improve both design and implementation of the
library, develop appropriate user unterface, improve existing model checking
algorithms as well as implement new ones [8,9,7]. Our first goal now is to
complete and release first stable version of the library and tool set. Note, that
alpha versions are already available at [10].

Among others, our future goals include load balancing support, sent state
caching mechanism, or generalization of the interface of state generator mod-
ule, which should not be according to our vision so strictly binded to DIVINE
native specification language. We would also like to continue with building
the database of models.

In order to support verification engeneers who get used to specify models
in ProMeLa, we have also started the DIVSPIN project in cooperation with
the Research Groups at RWTH Aachen and TU Miinchen. The goals of the
project are to extend DIVINE with support of ProMeLa specification language
allowing thus tools in DIVINE TOOLSET to verify SPIN models, and to build
web-accessed distributed platform for distributed verification.

References

[1] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL
Model-Checking. In 18th IEEE International Conference on Automated
Software Engineering (ASE’03), pages 106-115. IEEE Computer Society, Oct.
2003.

[2] J. Barnat, L. Brim, and J. St¥ibrna. Distributed LTL Model-Checking in
SPIN. In Matthew B. Dwyer, editor, Proceedings of the 8th International SPIN
Workshop on Model Checking of Software (SPIN’01), volume 2057 of LNCS,
pages 200-216. Springer-Verlag, 2001.

(3] J. Barnat, L. Brim, and I. Cerni. Property Driven Distribution of Nested
DFS. 1In Proceedinfs of the 3rd International Workshop on Verification and
Computational Logic (VCL’02 — held at the PLI 2002 Symposium,), pages 1-10.
University of Southampton, UK, Technical Report DSSE-TR-2002-5 in DSSE,
2002.

[4] G. Behrmann, T. S. Hune, and F. W. Vaandrager. Distributed timed model
checking — how the search order matters. In E. A. Emerson and A. P. Sistla,
editors, Proceedings of the 12th International Conference on Computer Aided
Verification, volume 1855 of Lecture Notes in Computer Science, pages 216-231.
Springer-Verlag, 2000.

[5] A. Bell and B. R. Haverkort. Sequential and distributed model checking
of petri net specifications. In Lubos§ Brim and Orna Grumberg, editors,

5

BARNAT, BRIM, CERNA AND SIMECEK

1st International Workshop on Parallel and Distributed Model-Checking
(PDMC’02), volume 68.4 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 2002.

[6] B. Bollig, M. Leucker, and M. Weber. Parallel model checking for the
alternation free p-calculus. In Tiziana Margaria and Wang Yi, editors,
Proceedings of the 7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’01), volume 2031 of LNCS,
pages 543-558. Springer-Verlag, 2001.

(7] L. Brim, I. Cernd, P. Moravec, and J. Simsa. Accepting predecessors are
better than back edges in distributed 1t] model-checking. In Formal Methods in
Computer-Aided Design (FMCAD 2004), Austin, Tezxas, Proceedings, volume
3312 of Lecture Notes in Computer Science, pages 352-366. Springer, 2004.

[8] L. Brim, I. Cern4, P. Krédl, and R. Pelanek. Distributed LTT model checking
based on negative cycle detection. In Ramesh Hariharan, Madhavan Mukund,
and V. Vinay, editors, Proceedings of Foundations of Software Technology and
Theoretical Computer Science (FST-TCS’01), volume 2245 of LNCS, pages
96-107. Springer-Verlag, 2001.

[9] 1. Cerna and R. Pelianek. Distributed explicit fair cycle detection. In
Thomas Ball and Sriram K. Rajamani, editors, Model Checking Software, 10th
International SPIN Workshop, volume 2648 of LNCS, pages 49-73. Springer-
Verlag, 2003.

[10] DiVinE - Distributed Verification Environment. http://anna.fi.muni.cz/divine.

[11] H. Garavel, R. Mateescu, and LM Smarandache. Parallel State Space
Construction for Model-Checking. In Matthew B. Dwyer, editor, Proceedings
of the 8th International SPIN Workshop on Model Checking of Software
(SPIN’01), volume 2057 of LNCS, pages 200-216. Springer-Verlag, 2001.

[12] O. Grumberg, T. Heyman, and A. Schuster. Distributed symbolic model
checking for p-calculus. In Gérard Berry, Hubert Comon, and Alain Finkel,
editors, Proceedings of the 13th Conference on Computer-Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computertech Science, pages 350
362. Springer-Verlag, July 2001.

[13] Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with
SPIN. In Proceedings of the 5th International SPIN Workshop, volume 1680 of
Lecture Notes in Computer Science, pages 22-39. Springer, 1999.

[14] U.Stern and D. L. Dill. Parallelizing the murep verifier. In O. Grumberg, editor,
Proceedings of Computer Aided Verification (CAV ’97), volume 1254 of LNCS,
pages 256-267, Berlin, Germany, 1997. Springer.

