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Loal Distributed Model Cheking of RegCTLTom�a�s Br�azdil 2Department of Computer SieneFaulty of Informatis, Masaryk University BrnoBrno, Czeh RepubliIvana �Cern�a 1;3Department of Computer SieneFaulty of Informatis, Masaryk University BrnoBrno, Czeh RepubliAbstratThe paper is devoted to the problem of extending the temporal logi CTL so thatit is more expressive and ompliated properties an be expressed more suintly.The spei�ation language RegCTL, an extension of CTL, is proposed. In RegCTLevery CTL temporal operator is augmented with a regular expression restritingthus moments when the validity is required. The resulting logi is more expressivethan previous extensions of CTL with regular expressions. RegCTL an be model-heked on-the-y and the model heking algorithm is well distributable.1 IntrodutionModel heking is a very suessful method for veri�ation of omplex reativesystems. A desired behavioural property of a reative system is spei�ed asa formula of temporal logi, while a formal desription of a system is usuallytransformed into a transition system (Kripke struture). Model heking al-gorithms verify that the system under study satis�es its expeted behaviouralspei�ations.A key issue in developing model heking algorithms is the hoie of a spei-�ation language in whih a desired behaviour is desribed. The most ommonspei�ation languages are temporal logis. Linear temporal logi formulas are1 This work has been partially supported by GACR grant No. 201/00/10232 Email: xbrazdil�fi.muni.z3 Email: erna�fi.muni.zThis is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



Br�azdil, �Cern�ainterpreted over linear sequenes, while in branhing temporal logis eah mo-ment in time may split into various possible futures. Among the linear timelogis the logi LTL an express preisely the star-free !-regular behaviours.Nevertheless there are natural linear \regular" behaviours whih annot beexpressed in this logi, as e.g. the behaviour stating that an atomi proposi-tion p is true in all even moments of time. Besides this, the spei�ation ofmany useful properties is umbersome for users. To widen its expressibilityseveral extensions were proposed. [11℄ suggested to use !-automata as tem-poral onnetives and [6℄ strengthens the until operator of LTL by indexing itwith regular programs of propositional dynami logi.In the branhing time framework a similar approah has been advoated in[5℄ using deterministi !-automata onnetives, in [2℄, [1℄ proposing the RCTLlogi and in [9℄ for alternation free �-alulus. We generalise the RCTL logiadopting the approah from [6℄ and augment the until operator with a regularexpression. The resulting logi RegCTL is more expressive than RCTL logi.RegCTL is in fat a natural extension of CTL. Intuitively, if the system isde�ned over a set AP of atomi propositions, then an in�nite behaviour of thesystem an be viewed as a word over the alphabet 2AP , and a set of allowedbehaviours an be desribed by a regular expression whose alphabet onsistsof Boolean formulas over AP . In RegCTL , every CTL temporal operator isaugmented with a regular expression restriting moments when the validity isrequired. Both CTL and RCTL temporal operators an be diretly formulatedin RegCTL .For model heking RegCTL logi we use an automata theoreti approahpresented in [8℄. It is based on a translation of RegCTL formula into hesi-tant/weak symmetri alternating tree automaton. The model heking prob-lem an be then redued to heking nonemptiness of 1-letter simple weakalternating word automaton. Employing methods from [4℄ we attain a dis-tributed loal model heking algorithm (i.e, it omputes the neessary partof a transition system on-the-y).On the ontrary to CTL, the size of the automaton orresponding to theformula an be exponential and therefore the model heking of RegCTL isin PSPACE. Nevertheless, we identify a large subset of RegCTL formulas(subsuming e.g. whole RCTL) for whih the model heking problem is in P(in fat it is quadrati with respet to the formula size and linear with respetto the size of Kripke struture).The model heking algorithm for RCTL from [2℄ is based on translatingRCTL formulas into CTL formulas and appropriate �nite automata, and usingCTL model heking algorithms. For a sublass of RCTL (allowing to expressreahability properties) we present an on-the-y algorithm. Thus our approahnot only inreases the expressibility of RCTL but also allows us to use an on-the-y algorithm for whole RCTL.The paper is organised as follows. We introdue the syntax and semantisof the RegCTL temporal logi in Setion 2, and ome up with an alternating2



Br�azdil, �Cern�aautomaton aepting models of a RegCTL formula in Setion 3. Sequentialmodel heking algorithm for this logi is proposed in Setion 4. The orre-sponding distributed model heking proedure is presented in Setion 5. Wegive our onlusions in Setion 6.2 The RegCTL logiIn this setion we de�ne the syntax and semantis of Regular CTL (RegCTL)logi, whih extends the CTL logi [3℄ with regular expressions.Given a �nite set X, let B(X) be the set of all Boolean formulas over X(i.e., boolean formulas built from elements in X using ^, _ and :), wherewe also allow the formulas true and false. If only onnetives ^ and _ areallowed, we talk about the set of positive Boolean formulas over X, B+(X).For a set S � X and a formula � 2 B(X), we say that S satis�es �, S j= �,if assigning true to elements of S and assigning false to elements in X n Smakes � true. The length kfk of formula f 2 B(X) is de�ned indutively:ktruek = kfalsek = kpk = 1 for p 2 X; kg _ hk = kg ^ hk = kgk+ khk + 1;k:gk = kgk+ 1.For a given set B(X) of boolean formulas, the set R of regular expressionsover B(X) is the least set ontaining B(X) and suh that if P;Q 2 R thenalso P + Q; PQ; P � 2 R. Let us denote the language de�ned by a regularexpression R over B(X) as L(R) (the alphabet of L(R) is an appropriate subsetof B(X)). The length kRk of regular expression R is de�ned indutively: ifR = f for some f 2 B(X), then kRk = kfk; otherwise kP + Qk = kPQk =kPk+ kQk+ 1; kP �k = kPk+ 1.2.1 Syntax of RegCTLLet AP be a set of atomi propositions. An RegCTL state formula is either:� true, false, p, :p for all p 2 AP ,� � _  or � ^  , where � and  are RegCTL state formulas,� A� or E�, where � is a RegCTL path formula.An RegCTL path formula is:� �UR or � ~UR , where � and  are RegCTL state formulas and R is aregular expression over B(AP ) suh that � 62 L(R).The losure l(�) of a RegCTL formula � is the set of all RegCTL statesubformulas inluding � but exluding true and false. Moreover, we de�nethe multiset reg o(�) representing all ourenes of regular expressions informula � . The length k�k of a RegCTL formula � is de�ned as jl(�)j +�R2reg o(�)kRk. 3



Br�azdil, �Cern�a2.2 Semantis of RegCTLThe semantis of RegCTL is de�ned with respet to omputation trees. A treeis a set T � N� suh that if x: 2 T where x 2 N� and  2 N , then also x 2 T ,and for all 0 � 0 < ; x:0 2 T . The elements of T are alled nodes, and theempty word � is the root of T . For every x 2 T , the nodes x:, where  2 Nare the suessors of x. The number of suessors of x is alled degree of xand is denoted by d(x). The node with no suessors is alled leaf . A path �in a tree T is a minimal set � � T ontaining some node as its root and suhthat for every x 2 �, either x is a leaf or there exists a unique  2 N suh thatx: 2 �. A tree ontaining a unique path starting in � is alled an (in)�niteword. Given an alphabet �, a �-labeled tree is a pair T = hT; Li where T isa tree and L : T �! � maps eah node of T to a letter in �. A omputationtree is a �-labeled tree T , where � = 2AP .The notation T ; x j= � indiates that a RegCTL state formula � holds atthe node x of the omputation tree T . Similarly, T ; � j=  indiates that aRegCTL path formula  holds along the path �. When T is lear from theontext, we write x j= � and � j=  . Also, T j= � if and only if T ; � j= �.For a �nite sequene of nodes x0; x1; : : : ; xn and a regular expression R overB(AP ) we write x0x1 : : : xn 2 L(R) i� there exists a word f0f1 : : : fn 2 L(R)suh that L(xi) j= fi for all 0 � i � n.The relation j= is indutively de�ned as follows:� x j= true and x 6j= false� x j= p for p 2 AP i� p 2 L(x)� x j= :p for p 2 AP i� p 62 L(x)� x j= � _  i� x j= � or x j=  � x j= � ^  i� x j= � and x j=  � x j= A i� for every path � = �0�1 � � � ; suh that �0 = x, we have � j=  � x j= E i� there exists a path � = �0�1 � � � ; suh that �0 = x and � j=  � � j= �UR i� there exists i � 0 and �0�1 � � ��i 2 L(R) suh that �j j= �for all 0 � j < i and �i j=  � � j= � ~UR i� for all i � 0 suh that �0�1 � � ��i 2 L(R) and the followingproperty holds: if �i 6j=  , then there exists 0 � j < i suh that �j j= �.Usual temporal operators an be expressed as follows: next operatorX� astrueU true�true�, until operator �U as �U true�true� , and release operator� ~U as � ~U true�true� .Let us onsider the RegCTL formula E(q ~U true�(true�true)�p) whih expressesthe fat that there exists a path where p holds at every even position and thisproperty an be released by q. This property an be expressed neither in CTLnor in RCTL.The RegCTL formula A(false ~Uw�b��a�(v��r+v��w�b��r)d) (see [2℄) illustrates theway how regular expressions an make the formulation of a property easier.4



Br�azdil, �Cern�aThe CTL formula expressing the same property is:AG(:(w ^ (EX(E[bU(a ^ (EX(((E[vU(r ^ :d℄)^(E[vU(w ^ (EX(E[bU(r ^ :d℄)))℄)))))℄))))3 Alternating tree automaton for RegCTL formulaThe model heking algorithm for RegCTL we are going to present is based ona translation of a RegCTL state formula to an automaton over in�nite treeswhih aepts models of the formula (in a similar way as for CTL [8℄).A symmetri �nite alternating automaton over in�nite trees is a tupleA = h�; Q; Æ; q0; F i, where � is an input alphabet, Q is a �nite set of states, Æ :Q�� �! B+(f3;2g�Q) is a transition funtion, q0 is an initial state. The setF spei�es an aeptane ondition. We de�ne the size kAk of an automatonA as jQj+ jF j+ kÆk where kÆk is the sum of the lengths of the nonidentiallyfalse formulas that appear as Æ(q; �) for some q 2 Q and � 2 �.A run hTr; ri of an alternating automaton A over a �-labelled tree hT; Liis a �r-labelled tree where �r = N� �Q and hTr; ri satis�es:� r(�) = (�; q0),� Let y 2 Tr with r(y) = (x; q) and Æ(q; L(x)) = �. Then there is a (possiblyempty) set S = f(0; q0); (1; q1); : : : ; (n; qn)g � f0; : : : ; d(x)� 1g �Q suhthat the following holds:(i) S satis�es �, where (3; p) , (0; p) _ : : : _ (d(x) � 1; p) and (2; p) ,(0; p) ^ : : : ^ (d(x)� 1; p) for p 2 Q,(ii) for all 0 � i � n, we have y:i 2 Tr and r(y:i) = (x:i; qi).We onsider an alternating word automata to be a speial ase of tree au-tomata with transition funtion Æ : Q� � �! B+(Q).Given a run hTr; ri and an in�nite path � in Tr, let inf(�) � Q be suh thatq 2 inf(�) i� there are in�nitely many y 2 � for whih r(y) 2 N� � fqg (i.e.,inf(�) is the set of states whih appear in�nitely often in �). A run hTr; riis aepting i� all of its in�nite paths satisfy the aeptane ondition. Wedenote L(A) the set of all omputation trees for whih there is an aeptingrun of A.Here we onsider two speial types of alternating tree automata, so alledhesitant automata (HAA) and weak automata (WAA), with speial restri-tions on the transition funtion and spei� aeptane onditions.In a hesitant automaton there exists a partition of Q into disjoint setsQ1; : : : ; Qm and a partial order � on the olletion of Qi's suh that for everyq 2 Qi and q0 2 Qj for whih q0 ours in Æ(q; �) we have Qj � Qi. In addition,eah set Qi is lassi�ed as either transient, existential or universal. The typeof Qi is determined by rules: 5



Br�azdil, �Cern�a� Qi is a transient set i� for all q 2 Qi and � 2 �, Æ(q; �) ontains no elementwith a state from Qi.� Qi is an existential set i� for all q 2 Qi and � 2 �, Æ(q; �) ontains onlydisjuntively related elements of the form (3; p) where p 2 Qi.� If Qi is an universal set for all q 2 Qi and � 2 �, Æ(q; �) ontains onlyonjuntively related elements of the form (2; p) where p 2 Qi.The aeptane ondition is a tuple hG;Bi, where G;B � Q. Every in�nitepath � in Tr gets trapped within some existential or universal set Qi. Thepath then satis�es an aeptane ondition hG;Bi i�� either Qi is an existential set and inf(�) \G 6= ;� or Qi is an universal set and inf(�) \ B = ;The depth of HAA is de�ned as a maximal length of a hain in the partialorder � on the olletion of Qi's.In a weak automaton there exists a partition of Q into Q1; : : : ; Qm withthe same partial order as in HAA. The aeptane ondition F is a subset ofQ suh that for every Qi, 1 � i � m, either Qi � F (Qi is an aepting set)or Qi \ F = ; (Qi is a rejeting set).Constrution of the automatonLet us �rst �x some notation. For eah RegCTL formula � the multisetreg o(�) = fR1; : : : ; Rng represents all ourenes of regular expressions inthe formula. For every regular expression Ri we have a �nite state automatonAi = (Qi;�i; Æi; q0i ; Fi), �i � B(AP ), whih aepts exatly L(Ri). We sup-pose all Qi's to be pairwise disjuntive. For states of these automata we usesymbols r; q (with indies, if neessary). Moreover, let for r 2 Qi and � 2 2APsymbol su(r; �) denote the set of states S�j=f Æi(r; f).Given a RegCTL formula � we onstrut the weak symmetri alternatingautomaton A� = (2AP ; Q; Æ; �; F ). The set of states of the automaton A� isQ = (Si=1;:::nQi) [ l(�). Its transition funtion Æ is for all � 2 2AP de�nedindutively as follows:(i) Æ(p; �) = true if p 2 � and Æ(p; �) = false if p 62 �.(ii) Æ(:p; �) = true if p 62 � and Æ(:p; �) = false if p 2 �.(iii) Æ(� _  ; �) = Æ(�; �) _ Æ( ; �).(iv) Æ(� ^  ; �) = Æ(�; �) ^ Æ( ; �).(v) Æ(E(�URi ); �) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Wq2su(r;�)(3; q) ^ Æ(�; �) if su(r; �) \ Fi = ;� Æ(r; �) = (Wq2su(r;�)(3; q) ^ Æ(�; �)) _ Æ( ; �) otherwise(vi) Æ(A(� ~URi ); �) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Vq2su(r;�)(2; q) _ Æ(�; �) if su(r; �) \ Fi = ;� Æ(r; �) = (Vq2su(r;�)(2; q) _ Æ(�; �)) ^ Æ( ; �) otherwise6



Br�azdil, �Cern�a
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((?>=<89:;/.-,()*+q1 bmm ?>=<89:;/.-,()*+q2 mmFig. 1. Finite state automaton A for the regular expression R; edges are labelledwith atomi propositions (i.e. formulas over AP ); q1 and q2 are aepting, q0 isinitial fbg // fbg // : : :fa; gg // fb; ; gg 33hhhhhhhh

++VVVVVVVV fg // fg // : : :Fig. 2. Computation tree; nodes are labelled with atomi propositions true in them.(vii) Æ(E(� ~URi ); �) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Vq2su(r;�)(3; q) _ Æ(�; �) if su(r; �) \ Fi = ;� Æ(r; �) = (Vq2su(r;�)(3; q) _ Æ(�; �)) ^ Æ( ; �) otherwise(viii) Æ(A(�URi ); �; k) = Æ(q0i ; �) and for r 2 Qi� Æ(r; �) = Wq2su(r;�)(2; q) ^ Æ(�; �) if su(r; �) \ Fi = ;� Æ(r; �) = (Wq2su(r;�)(2; q) ^ Æ(�; �)) _ Æ( ; �) otherwiseRemark 3.1 We de�ne an empty disjuntion to be false and empty onjun-tion to be true.The automaton A� is weak. The aeptane ondition is F = SQi forall Qi's suh that the regular expression Ri ours in a subformula of theform E(� ~URi ) or A(� ~URi ). The weakness partition over the set of statesis formed by singletons f g,  2 l(�), and by all sets Qi, 1 � i � n.The orretness of the given onstrution is guaranteed only for ases wherefor every regular expression Ri whih ours in a subformula of the formE(� ~URi ) or A(�URi ) the orresponding �nite automaton Ai is determin-isti. Here deterministi automaton is an automaton suh that for every itsstate r 2 Qi and � 2 2AP the ardinality of the set su(r; �) is at most one(in the sueeding text we always use this notion of determinism). To explainproblems aused by nondeterministi automata let us onsider the formula� � E(false ~URg), with R spei�ed on Fig.1, and the omputation tree fromFig.2.The automaton A� in state E(false ~URg) (� q0) reading fa; gg proeedsonjuntively to states q1 and q2 and to the node labelled fb; ; gg. Being instate q1 and reading fb; ; gg, A� remains in q1 and disjuntively proeeds tothe node labelled fg. Being in state q2 and reading fb; ; gg, A� remains in q2and disjuntively proeeds to the node labelled fbg. Both paths are �nite andaepting and thus A� aepts, but � is not true in the node labelled fa; gg.Remark 3.2 On the assumption of the determinism of relevant �nite au-7



Br�azdil, �Cern�atomata, the automaton A� is also hesitant. The hesitant partition is the sameas the weakness partition. The set Qi is existential i� the regular expressionRi ours in an subformula of the form E(�URi ) or E(� ~URi ). The set Qiis universal i� the regular expression Ri ours in an subformula of the formA(�URi ) or A(� ~URi ). Other sets are transient. The aeptane onditionfor automaton A� is F = hG;Bi where� G = SQi for all Qi suh that the regular expression Ri ours in an sub-formula of the form E(� ~URi ) and� B = SQi for all Qi suh that the regular expression Ri ours in an sub-formula of the form A(�URi ).In what follows we suppose that �nite automata for regular expressions Riwhih ours in subformulas of the form E(� ~URi ) or A(�URi ) are deter-ministi.Theorem 3.3 Let T = hT; Li be a omputation tree. Then the automatonA� aepts T if and only if T j= � .Proof. We �rst prove that A� is omplete. That is, given a omputation treeT , a formula ' 2 l(�) and a node x for whih T ; x j= ', then A� aepts thesubtree of the omputation tree T with root x starting in the state '. Thusin partiular, if T j= � then A� aepts T .To this end we use the following notation. For �nite automaton Ai, itsstates r; q and a node x 2 T we use q 2 Æi(r; x) as an abbreviation for q 2Æi(r; f) where f 2 B(AP ) and L(x) j= f . A omputation of Ai over x0 � � �xnis a sequene of states q0; : : : ; qn suh that q0 is an initial state and qj+1 2Æi(qj; xj) for 0 � j < n. If moreover the ondition Æi(qn; xn) \ Fi 6= ; is true,then the omputation is aepting.Let hTr; ri be a run of alternating automaton A� over a omputation treeT = hT; Li. We desribe a path in the run Tr as a sequene of its labels (i.e.,a sequene of tuples (x; q) where x 2 T and q 2 Q). Let (x0; q0) � � � be a �niteor in�nite path in Tr. We say that its pre�x pr is maximal in Q0 i� eitherpr = (x0; q0) � � � (xn; qn), q0; : : : ; qn 2 Q0 and q 62 Q0 for every suessor (q; x)of (qn; xn) in Tr, or pr = (x0; q0) � � � is in�nite and qj 2 Q0 for 0 � j. Theprojetion of a path � = (x0; q0) � � � is proj(�) = x0 � � � .We prove the ompleteness by indution on the struture of '. Cases' = p, ' = :p, ' = � _  , ' = � ^  are simple.� x0 j= E(�URi )There is a path x0 � � �xn in T suh that x0 � � �xn 2 L(Ri), xj j= � for0 � j < n and xn j=  . Let q0; : : : ; qn be an aepting omputation of Aiover x0 � � �xn.A� disjuntively hooses states qj and input nodes xj. In every nodexj automaton A� onjuntively proeeds as if it is in state �. BeauseÆi(qn; xn) \ Fi 6= ;, A� in state qn proeeds as if it is in state  .8



Br�azdil, �Cern�a� x0 j= A(� ~URi ).Let x0 � � � be a path in T . For every pre�x x0 � � �xn of x0 � � � holds: ifx0 � � �xn 2 L(Ri) then either xn j=  or there exists 0 � k < n suh thatxk j= �.A� reading node xj being in state q 2 Qi proeeds as follows: If xj j=� then it proeeds as if it is in state �. If Æi(q; xj) = ; then A� doesnot ontinue along this path. Otherwise it proeeds onjuntively to allstates from Æi(q; xj) and to all suessors of xj in T . If Æi(q; xj) \ Fi 6= ;then x0 � � �xj is in L(Ri) and xk 6j= � for 0 � k < j, thus the automatononjuntively proeeds as if it is in state  . If � does not hold along somepath, then the path is aepting due to the aeptane ondition.� x0 j= E(� ~URi )There is a path x0 � � � in T suh that for every its pre�x x0 � � �xn holds: ifx0 � � �xn 2 L(Ri) then either xn j=  or there exists 0 � k < n suh thatxk j= �.A� reading node xj and being in state q proeeds as follows: if xj j= � thenit proeeds as if it is in state �. If Æi(q; xj) = ; then A� does not ontinuealong this path. Otherwise it proeeds to xj+1 and to single suessor stateof q aording to Æi. If Æi(q; xj) \ Fi 6= ; then x0 � � �xj 2 L(Ri) and xk 6j= �for 0 � k < j and xj j=  , thus the automaton onjuntively proeeds as ifit is in state  . If � does not hold along x0 � � � , then the path is aeptingdue to the aeptane ondition.� x0 j= A(�URi )Let x0 � � � be a path in T . There exists 0 � n suh that x0 � � �xn 2 L(Ri),xn j=  and xj j= � for 0 � j < n.A� along the path x0 � � � follows the deterministi aepting omputationof Ai over x0 � � �xn and simultaneously proeeds as if it is in state �. ThenA� in some state q reading xn proeeds as if it is in state  .We now prove that A� is sound. That is, given an aepting run hTr; ri ofA� over a omputation tree T = hT; Li, we prove that for every y 2 Tr suhthat r(y) = (x; '), ' 2 l(�), we have T ; x j= '. Thus in partiular T ; � j= � .The proof proeeds by indution on the struture of '. Cases ' = p, ' = :p,' = �_ , ' = �^ are simple. In the next onstrution we make use of thefat that in A� we have several names for one state.� r(y) = (x0; E(�URi ))Let pr be a pre�x maximal inQi of a path in Tr starting with (x0; E(�URi )).Due to the aeptane onditions the pre�x pr = (x0; E(�URi )) � � � (xn; qn)is �nite. Then A� in state qn reading xn must proeed as if it is in state  assuring xn j=  and x0 � � �xn 2 L(Ri). Moreover, along this pre�x it mustonjuntively proeed as if it is in state � assuring xj j= � for 0 � j < n.� r(y) = (x0; A(� ~URi ))A� reads every path in T following all possible omputations of Ai overpartiular paths. Let us �x an arbitrary path x0 � � � in T and its arbitrary9



Br�azdil, �Cern�apre�x x0 � � �xn 2 L(Ri).Let Pr be the set of all pre�xes pr maximal in Qi of all paths in Trstarting with (x0; A(� ~URi )) and suh that proj(pr) is a pre�x of x0 � � � .Case 1 : There is a pre�x pr 2 Pr, pr = (x0; A(� ~URi )) � � � (xn; qn) � � � suhthat Æi(qn; xn) \ Fi 6= ; (the length of pr an be greater than n). Then A�being in state qn reading xn has to proeed as if it is in state  , assuringthus xn j=  .Case 2 : There is no suh pre�x. Let us onsider an aepting omputationof Ai over x0 � � �xn. Then there must be 0 � k < n suh that the automatonA� in state qk reading xk proeeds as if it is in state �, assuring thus xk j= �.The arguments hold true for any path x0 � � � in T and its pre�x x0 � � �xn 2L(Ri) and therefore x0 j= A(� ~URi ).� r(y) = (x0; E(� ~URi ))A� disjuntively hooses a path in T following states of the only possibleomputation of Ai. Let pr be a pre�x maximal in Qi of a path in Tr startingwith (x0; E(� ~URi )).Case 1 : If pr is in�nite (it is possible due to aeptane ondition) thenthank to the de�nition of Æ and determinism of Ai whenever a pre�x ofproj(pr) is in L(Ri) then A� proeeds as if it is in state  .Case 2 : Otherwise pr = (x0; E(� ~URi )) � � � (xn; qn). If Æi(qn; xn) = ;, thenno word with the pre�x x0 � � �xn is in L(Ri). If Æi(qn; xn) 6= ;, then A�proeeds in state qn reading xn as if it is in state �, assuring thus xn j= �.Note that whenever is a pre�x of x0 � � �xn in L(Ri) then A� proeeds as ifit is in state  (similar arguments as in Case 1).� r(y) = (x0; A(�URi ))A� reads every path in T following the only possible omputation of Ai.Let us �x an arbitrary path x0 � � � in T .Let pr = (x0; A(�URi )) � � � (xn; qn) be the pre�x maximal in Qi of thepath in Tr starting with (x0; A(�URi )) and suh that proj(pr) is a pre�xof x0 � � � . The pre�x pr is �nite due to the aeptane ondition. ThereforeA� in state qn reading xn must proeed as if it is in state  assuring xn j=  and x0 � � �xn 2 L(Ri). Moreover, along this pre�x it must onjuntivelyproeed as if it is in state �, assuring thus xj j= � for 0 � j < n. 24 Sequential RegCTL Model ChekingAt �rst we de�ne the Kripke struture as a tuple K = hAP;W;E;w0; Liwhere AP is a set of atomi propositions as de�ned above, W is a set ofstates, E � W �W is a transition relation that must be total (i.e., for everyw 2 W there exists w0 2 W suh that hw;w0i 2 E), w0 is an initial state, andL : W ! 2AP maps eah state to the set of atomi propositions true in thatstate. 10



Br�azdil, �Cern�aWe de�ne the size kKk of K as jW j + jEj. Every Kripke struture K =hAP;W;E;w0; Li an be viewed as a 2AP -labelled omputation tree TK =hTK; LKi obtained by unwinding K.The model heking problem is for given temporal logi formula � andKripke struture K to deide whether TK j= � . The model heking algorithmfor a given RegCTL state formula � and a Kripke struture K proeeds asfollows:(i) Construt the alternating automaton A� as de�ned above,(ii) Construt the produt automaton AK;� = K � A� whose language isnonempty i� TK j= � ,(iii) Chek nonemptiness of the produt automaton AK;� .The produt automaton AK;� is exatly de�ned as follows: Let A� =h2AP ; Q� ; Æ� ; q0; F� i and K = hAP;W;E;w0; Li. The produt of A� and Kis a 1-letter alternating word automaton AK;� = hfag;W � Q� ; Æ; hw0; q0i; F iwhere Æ and F are de�ned as follows:� Let q 2 Q� , w 2 W , su(w) = hw0; : : : ; wd(w)�1i and Æ� (q; L(w)) = �.Then Æ(hw; qi; a) = �0, where �0 is obtained from � by replaing eah (3; p)by hw0; pi _ : : : _ hwd(w)�1; pi and eah (2; p) by hw0; pi ^ : : : ^ hwd(w)�1; pi.� The aeptane ondition F respets the aeptane ondition F� of A� . IfA� is weak then F = W � F� . If A� is hesitant and F� = hG;Bi thenF = hW �G;W �Bi.The produt automaton is hesitant (weak) if A� is hesitant (weak).Theorem 4.1 [8℄ AK;� aepts a! i� TK j= � .ComplexityThe omplexity of the model heking algorithm depends on the type ofthe formula. As we have shown in the previous setion, the neessary ondi-tion for A� to be orret is the determinism of �nite automaton for the regularexpression ouring in a subformula of the form E(� ~UR ) or A(�UR ). Forthis reason we de�ne a deterministi fragment of RegCTL , det-RegCTL . Inthis fragment R ouring in A(�UR ) or E(� ~UR ) are restrited to regu-lar expressions whih have deterministi �nite automata with the number ofstates linear with respet to the size of R. For a det-RegCTL formula � itis guaranteed that the number of states of A� is linear in k�k. For a generalRegCTL formula the number of states an be 2O(k�k) due to the neessarydeterminization. In both ases the length of Æ� (q; �) is linear in k�k.The omplexity of the model heking algorithm problem is measured withrespet to the size of K and � . The key point is the size of the produtautomaton.The number of states of AK;� is jW j � jQ� j and the size of F is O(jW j � jQ� j).The length of Æ((w; p); a) is equal to the length of Æ� (p; L(w)) times the degree11



Br�azdil, �Cern�aof w. Summing up lengths of Æ((w; p); a) for �xed p and all states w 2 W givesus O(jEj � k�k). The total size of the transition funtion is O(jEj � k�k � jQ� j).Thus the total size of the produt automaton AK;� is O(kKk � k�k2) for adet-RegCTL formula � and O(kKk � 2O(k�k)) for a general RegCTL formula.The depth of AK;� is O(k�k). We note that AK;� an be omputed on-the-yin time linear with respet to its size.Theorem 4.2 [8℄ The 1-letter nonemptiness problem for hesitant alternatingword automata is deidable in linear running time.Theorem 4.3 [8℄ The 1-letter nonemptiness problem for hesitant alternatingword automata of size n and depth m is deidable in spae O(m:log2n).Applying these theorems we have that the model heking problem forRegCTL is in PSPACE. The model heking problem for det-RegCTL is inP (it an be done in time O(kKk:k�k2). As the model heking of CTL isP-omplete we have that model heking of det-RegCTL is P-omplete too.The main limiting fator of model heking algorithms in pratie is thehuge size of the Kripke struture. Therefore it is useful to onsider the pro-gram omplexity as the omplexity in terms of the size of the input Kripkestruture (assuming the size of the formula is �xed). It follows from The-orem 4.3 and its proof that the program omplexity of model heking ofRegCTL is in NLOGSPACE. As the program omplexity of model hekingCTL is NLOGSPACE-omplete [8℄ we have that RegCTL program omplexityof model heking is NLOGSPACE-omplete too.5 Distributed RegCTL Model ChekingThe distributed algorithm is based on a haraterisation of the model hekingproblem in terms of two-person games due to Stirling [10℄. This approahhas been used in [4℄ for model heking of alternation-free �-alulus andformulated as olouring of game graphs. As it is noted in [4℄, the proedurean also be understood as a parallel proedure for heking the emptiness of1-letter simple weak alternating word automata.The produt automaton AK;� we have onstruted in Setion 3 is a 1-letter weak alternating word automaton. We propose an algorithm for trans-lating it into a simple automaton. Our algorithm is a modi�ation of theone from [8℄ and is more appropriate for the use in the distributed on-the-y setting. Consequently we an apply the loal distributed model hekingalgorithms from [4℄ to the logi RegCTL .De�nition 5.1 A formula in B+(X) is simple if it is either atomi or hasthe form x � y, where � 2 f^;_g and x; y 2 X. An alternating automaton issimple if all its transitions are simple.Let AK;� = hfag;W � Q� ; Æ; hw0; q0i;W � F� i be the weak produt au-tomaton from Setion 4. Let W � Q1; : : : ;W � Qm be the weak partition of12



Br�azdil, �Cern�aits states suh that W � Q1 � : : : � W � Qm is an extension of the partialorder to a total order. Our aim is to translate AK;� to a simple automatonAsK;� = hfag; Qs; Æs; hw0; q0i; F si. We de�ne Qs indutively as follows:� For every q 2 W �Q� , we have q 2 Qs� For every q 2 W �Q� with Æ(q; a) = �1 � �2, we have �1; �2 2 Qs� For every �1 � �2 2 Qs, we have �1; �2 2 QsThus a state in Qs is either q 2 W �Q� or a strit subformula of a transitionin Æ. The transition funtion Æs is:� Æs(q; a) = Æ(q; a) for q 2 W �Q�� Æs(�1 � �2; a) = �1 � �2We laim that the new automaton is weak as well. The partition of Qs intoQs1; : : : ; Qsm is as follows. A state q 2 Qs is in Qsi i� either q 2 W � Qi orq = � and i = maxfj j r ours in � and r 2 W � Qjg. The new aeptaneondition is F s = SQsi where W �Qi � W � F� . The weakness of AsK;� anbe easily seen from the de�nition of the partition. The fat L(AK;�) 6= ; i�L(AsK;�) 6= ; an be argumented in the same way as in [8℄.We note that the simple version of the produt automaton an be omputedon-the-y from the formula and the Kripke struture. The size of the simpleprodut automaton is asymptotially the same as the size of the original one.The important fat is that the partition of the states of the simple automatonan be omputed on-the-y as well using only the knowledge of the partitionof A� .All in all, we have transformed the model heking problem of RegCTLinto the emptiness problem of 1-letter simple weak alternating word automata.These automata are in a straightforward manner (as noted in [4℄) related togames and therefore we an use distributed algorithms from [4℄ for hekingthe emptiness of this kind of automata.6 ConlusionsWe studied an extension of branhing time logi CTL with regular expressions.The resulting logi RegCTL is more expressive as the previous extension ofCTL with regular expressions. The model heking problem for RegCTL is inPSPACE, but a large family of RegCTL formulas (inluding e.g. whole RCTL)an be heked in P. Moreover, the adopted automata-theoreti approah tomodel heking of RegCTL leads to an e�etive distribution.The exat omplexity of RegCTL model heking remains an open ques-tion. Another interesting question would be whether RegCTL formulas anbe more suint than their CTL ounterparts.
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