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Model heking theory is devoted to the development of ef�ient algorithmsfor the automati veri�ation of properties of reative systems. A very suess-ful approah to verifying properties expressed as linear temporal logi (LTL)formulas makes use of automata over in�nite words. Here the problem of veri-fying a property redues to the problemwhether a given automaton reognisesa non-empty language (so alled non-emptiness hek). The omplexity of thenon-emptiness hek depends on the type of the automaton. Bloem, Ravi, andSomenzi [1℄ have studied two speialised types of automata, alled weak andterminal, for whih the non-emptiness hek an be performed more ef�ientlythan in the general ase.Our ontribution Our aim is to lassify temporal properties spei�able by lin-ear temporal logi formulas with respet to the omplexity of their veri�a-tion. To this end we provide a lassi�ation of temporal properties through twonew views. First, we haraterise properties in terms of automata over in�nitewords (!-automata)with Bühi, o-Bühi, and Streett aeptane ondition andin terms of weak and terminal automata.Weak and terminal automata are usedin the veri�ation proess and are heked for non-emptiness.For the seond haraterisation we introdue a new hierarhy (alled Until-Release hierarhy) of LTL formulas based on alternation depth of temporal op-erators Until and Release. We provide a relationship between the Until-Releasehierarhy and the hierarhy by Manna and Pnueli [18℄.Our new lassi�ation provides us with an exat relationship between thetype of a formula and the type of an automaton, whih is heked for non-emptiness in the model heking proess of the formula.In the seond part of the paper we enquire into partiular automata andanalyse the omplexity of their non-emptiness hek in onnetion with bothexpliit and impliit representation of automata. This gives us an exat rela-tionship between types of properties and the omplexity of their veri�ation.Finally, we disuss the possibility of exat determination of the type of a for-mula.Due to spae limitations omplete proofs (and some formal de�nitions) areomitted and an be found in the full version of the paper [3℄.Related work The previous work on veri�ation, whih takes into aount alassi�ation of properties, is partly devoted to the proof-based approah toveri�ation [4℄. Papers on speialised model heking algorithms either overonly part of the hierarhy or have a heuristi nature. Vardi and Kupferman [15℄study the model heking of safety properties. Shneider [19℄ is onerned witha translation of persistene properties into weak automata. Bloem and Somenzistudy heuristis for the translation of a formula into weak (terminal) automa-ton [21℄ and suggest speialised algorithms for the non-emptiness problem [1℄.Our work overs all types of properties and brings out the orrespondene be-tween the type and the omplexity of non-emptiness hek.



2 Hierarhy of Temporal PropertiesThe hierarhy studied by Manna and Pnueli [18℄ lassi�es properties into sixlasses: guarantee, safety, obligation, persistene, reurrene, and reativity proper-ties.De�nition 1 (Language-theoreti view [18℄).Let P � �! be a property over �.� P is a safety property if there exists a language of �nite words L � �� suh thatfor every w 2 P all �nite pre�xes of w belong to L.� P is a guarantee property if there exists a language of �nite words L � �� suhthat for every w 2 P there exists a �nite pre�x of w whih belongs to L.� P is an obligation property if P an be expressed as a positive boolean ombinationof safety and guarantee properties.� P is a reurrene property if there exists a language of �nite words L � �� suhthat for every w 2 P in�nitely many pre�xes of w belong to L.� P is a persistene property if there exists a language of �nite words L � �� suhthat for every w 2 P all but �nitely many pre�xes of w belong to L.� P is a reativity property if P an be expressed as a positive boolean ombinationof reurrene and persistene properties.In what follows, the abbreviation �-property stands for a property of oneof the six above mentioned types. Inlusions, whih relate the orrespondinglasses into a hierarhy, are depited in Fig. 1. Classes whih are higher upstritly ontain lasses whih are lower down.2.1 Automata ViewManna and Pnueli [18℄ have de�ned the hierarhy of properties in terms ofdeterministi Streett prediate automata. Automata for onsidered lasses ofproperties differ in restritions on their transition funtions and aeptane on-ditions. In this setion we provide a new haraterisation of the hierarhy interms of deterministi !-automata whih uses only restritions on aeptaneonditions (the transition funtion is always the same). We �nd this harateri-sation more uniform and believe that it provides better insight into the hierar-hy. On top of that we study other widely used types of !-automata and showthat eah of them exatly orresponds to one lass in the hierarhy.An !-automaton is a tuple A = h�;Q; q0; Æ; �i, where � is a �nite alphabet,Q is a �nite set of states, q0 2 Q is an initial state, Æ is a transition funtion, and� is an aeptane ondition. The transition funtion determines four types ofautomata: deterministi, nondeterministi, universal, and alternating. A nondeter-ministi automaton has a transition funtion of the type Æ : Q � � ! 2Q. Arun � of suh an automaton on an in�nite word w = w(0)w(1) : : : over � is asequene of states � = r0; r1; : : : suh that r0 = q0 and ri+1 2 Æ(ri; w(i)) foreah i � 0. A nondeterministi automaton aepts a word w if there exists anaepting run (see below) on w. Universal automata are de�ned in the same



way, the only differene is that the universal automaton aepts a word w if allruns on w are aepting. Deterministi automata are suh that jÆ(q; a)j = 1 forall q 2 Q; a 2 � (there is a unique run on eah word). Alternating automataform a generalisation of nondeterministi and universal automata.
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o-Bühi
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Table 1. The expressivity � eah of 24 possible inter-ombinations of the transition fun-tion and aeptane ondition orresponds to one of the six hierarhy lassesOurreneBühi o-Bühi Streett Bühi o-Bühi StreettDeterministi reurrene persistene reativity guarantee safety obligationNondeterministi reativity persistene reativity persistene safety persisteneUniversal reurrene reativity reativity guarantee reurrene reurreneAlternating reativity reativity reativity persistene reurrene reativityspei�able by automata if there is an !-automaton A whih aepts a word w ifand only if w 2 P .Theorem 1. Let P be a property spei�able by automata. Then P is a guarantee, safety,obligation, persistene, reurrene, or reativity property if and only if it is spei�ableby a deterministi ourrene Bühi, ourrene o-Bühi, ourrene Streett, o-Bühi,Bühi, or Streett automaton respetively (see Table 1).Proof. For eah lass from the hierarhy a �-automaton is de�ned in [18℄ byposing spei� restritions on transition funtions and aeptane onditionsof deterministi Streett prediate automata. Using an adjustment of aeptingonditions and a opy onstrution one an effetively transform �-automatato above mentioned automaton and vie versa. (Details an be found in the fullversion of the paper [3℄.)To make the piture omplete we have examined other types of automataas well (see Table 1). For every possible ombination of transition funtion andaeptane ondition the lass of spei�able properties exatly oinides withone lass in the hierarhy. Results for in�nite ourrene aeptane onditionsfollow from [16℄. Universal ourrene Bühi and nondeterministi ourreneo-Bühi automata an be determinised through the power set onstrution andthus they reognise the same lasses as their deterministi ounterparts. Theother results for ourrene aeptane ondition follow from [17℄.2.2 Linear Temporal Logi ViewIn this setion we haraterise the hierarhy of properties through a new hier-arhy of LTL formulas based on an alternation depth.The set of LTL formulas is de�ned indutively starting from a ountableset AP of atomi propositions, Boolean operators, and the temporal operatorsX (Next), U (Until) and R (Release):	 := a j :	 j 	 _ 	 j 	 ^ 	 j X	 j 	 U	 j 	 R	LTL formulas are interpreted in the standard way on in�nite words over thealphabet 2AP . A property P is de�ned to be spei�able by LTL if there is an LTLformula ' suh that w j= ' if and only if w 2 P .



In reent years, onsiderable effort has been devoted to the study of LTLhierarhies whih were de�ned with respet to the number of nested tempo-ral operators Until, Sine, and Next ([10, 22, 14℄). These hierarhies provide in-teresting haraterizations of LTL de�nable languages. However, they do notseem to have a diret onnetion to the model heking problem. We proposea new hierarhy whih is based on alternation depth instead of nested depth,and establish its onnetion with the hierarhy of properties. In the next Se-tion we demonstrate that this lassi�ation diretly re�ets the hardness of theveri�ation problem for partiular properties.Let us de�ne hierarhies �LTLi and �LTLi , whih re�et alternations of Un-til and Release operators in formulas. We use the �/� notation sine the waythe hierarhy is de�ned strongly resembles the quanti�er alternation hierarhyof �rst-order logi formulas or �xpoints alternation hierarhy of �-alulus for-mulas.De�nition 2.The lass�LTL0 = �LTL0 is the least set ontaining all atomi propositions and losedunder the appliation of boolean and Next operators.The lass �LTLi+1 is the least set ontaining �LTLi and losed under the appliation ofonjuntion, disjuntion, Next and Until operators.The lass �LTLi+1 is the least set ontaining �LTLi and losed under the appliation ofonjuntion, disjuntion, Next and Release operators.The following theorem shows that the type of a property and alternationdepth of its spei�ation are losely related.Theorem 2. A property that is spei�able by LTL is a guarantee (safety, persistene,reurrene respetively) property if and only if it is spei�able by a formula from thelass �LTL1 (�LTL1 , �LTL2 , �LTL2 respetively) (see Fig. 1).Proof. The proof makes use of the lassi�ation of LTL formulas by Chang,Manna, and Pnueli [4℄. Here every �-property is syntatially haraterisedwith the help of a �-formula. We an transform any guarantee (safety, persis-tene, reurrene respetively) formula into an equivalent �LTL1 (�LTL1 , �LTL2 ,�LTL2 respetively) formula.Theorem 3. A property is spei�able by LTL if and only if it is spei�able by a positiveboolean ombination of �LTL2 and �LTL2 formulas. Therefore both �LTLi and �LTLihierarhies ollapse in the sense that every LTL formula is spei�able both by a �LTL3and�LTL3 formula.3 Model Cheking and Hierarhy of PropertiesThe model heking problem is to determine for a given reative system Kand a temporal formula ' whether the system satis�es the formula. A om-mon approah to model heking of �nite state systems and LTL formulas is to



onstrut an automaton A:' for the negation of the property and to model thesystem as an automatonK. The produt automatonK�A:' is then heked fornon-emptiness. The produt automaton is a nondeterministi Bühi automaton.For the formal de�nition of the problem and detailed desription of the algo-rithm we refer to [5℄.Our aim is to analyse the omplexity of the non-emptiness hek dependingon the type of the veri�ed property. As the omplexity of the non-emptinesshek is determined by attributes of an automaton, the question is whether fordifferent types of formulas one an onstrut different types of automata. Wegive a omprehensive answer to this question in this setion. In the next se-tion we demonstrate how the omplexity of the non-emptiness hek variesdepending on the type of automata.To lassify nondeterministi Bühi automata we adopt the riteria proposedby Bloem, Ravi, and Somenzi [1℄. They differentiate general, weak, and termi-nal automata aording to the following restritions posed on their transitionfuntions:- general: no restritions- weak: there exists a partition of the set Q into omponents Qi and an ordering� on these sets, suh that for eah q 2 Qi; p 2 Qj , if 9a 2 � : q 2 Æ(p; a) thenQi � Qj . Moreover for eah Qi, Qi \ � = ;, in whih ase Qi is a rejetingomponent, or Qi � �, in whih ase Qi is an aepting omponent.- terminal: for eah q 2 �; a 2 � it holds Æ(q; a) 6= ; and Æ(q; a) � �.Eah transition of a weak automaton leads to a state in either the same orlower omponent. Consequently eah run of a weak automaton gets eventu-ally trapped within one omponent. The run is aepting iff this omponentis aepting. The transition funtion of a terminal automaton is even more re-strited � one a run of a terminal automaton reahes an aepting state the runis aepting regardless of the suf�x. Terminal and weak automata are jointlyalled speialised automata. It shows up that the lasses of properties spei�ableby weak and terminal automata oinide with lasses of the hierarhy.Theorem 4. A property P spei�able by automata is a guarantee (persistene) prop-erty if and only if it is spei�able by a terminal (weak) automaton.Theorem 4 raises a natural question whether and how effetively one anonstrut for a given guarantee (persistene) formula the orresponding ter-minal (weak) automaton. A onstrution of an automaton for an LTL formulawas �rst proposed by Wolper, Vardi, and Sistla [24℄. This basi onstrutionhas been improved in several papers ([12, 21, 9℄) where various heuristis havebeen used to produe automaton as small and as �weak� as possible. Althoughthese heuristis are quite sophistiated, they do not provide any insight into therelation between the formula and the �weakness� of the resulting automaton.Construtions for speial types of properties an be found in [19, 15℄.We present a new modi�ation of the original onstrution whih yields fora formula from the lass �LTL1 and �LTL2 a speialised automaton.



Theorem 5. For every �LTL1 (�LTL2 ) formula ' we an onstrut a terminal (weak)automaton aepting the property de�ned by '.Proof. States of the automaton are sets of subformulas of the formula '. Thetransition funtion is onstruted in suh a way that the following invariant isvalid: if the automaton is in a state S then the remaining suf�x of the wordshould satisfy all formulas in S. The aeptane ondition is used to enforethe ful�llment of Until operators. For �LTL1 and �LTL2 formulas the aeptaneondition an be simpli�ed thanks to the speial struture of alternation of Untiland Release operators in the formula.4 Non-Emptiness AlgorithmsIn the previous setion we showed that we an effetively onstrut speialisedautomata for formulas from lower lasses of the hierarhy. Sine the veri�edsystemK an be modelled as an automaton without aeptane onditions, thetype of the produt automaton is determined entirely by the type of the automa-ton A:', that is even the produt automaton is speialised. In this setion werevise both expliit and symboli non-emptiness algorithms for different typesof automata.General AutomataFor general automata the non-emptiness hek is equivalent to the reaha-bility of an aepting yle (i.e. yle ointaining an aepting state). The mostef�ient expliit algorithm is the nested depth-�rst searh (DFS) algorithm [6,13℄. With the symboli representation one has to use nested �xpoint omputa-tion (e.g. Emerson-Lei algorithm) with a quadrati number of symboli steps(for an overview of symboli algorithms see [11℄).Weak AutomataStates of a weak automaton are partitioned into omponents and thereforestates from eah yle are either all aepting (the yle is fully aepting) or allnon-aepting. The non-emptiness problem is equivalent to the reahability ofa fully aepting yle. The expliit algorithm has to use only a single DFS [8℄in this ase. With the symboli representation single �xpoint omputation [1℄with a linear number of steps is suf�ient.Terminal AutomataOne a terminal automaton reahes an aepting state, it aepts the wholeword. Thus the non-emptiness of a terminal automaton an be deided by asimple reahability analysis.With the symboli representation there is even asymptotial differene be-tween the algorithms for general and speilized ases. All expliit algorithmshave linear time omplexity, but the use of speialized algorithms still bringsseveral bene�ts. Time and spae optimalizations, �Guided searh� heuristis [8℄,and the partial-order redution [13℄ an be employed more diretly for speial-ized algorithms. Algorithms for speialized automata an be more effetivelytransformed to distributed ones [2℄.



These bene�ts were already experimentally demonstrated. Edelkamp, La-fuente, and Leue [8℄ extended the expliit model heker SPIN by a non-empti-ness algorithm whih to a ertain extent takes the type of an automaton intoonsideration. Bloem, Ravi, and Somenzi [1℄ performed experiments with sym-boli algorithms and in [2℄ experiments with distributed algorithms are pre-sented.5 ConlusionsThe paper provides a new lassi�ation of temporal properties through deter-ministi !-automata and through the Until-Release hierarhy. It provides effe-tive transformation of the �LTL1 (�LTL2 ) formula into terminal (weak) automa-ton and it argues that the non-emptiness problem for these automata an besolved more ef�iently.It is deidable whether given formula spei�es property of type � [3℄. In aase that it is guarantee (persistene) formula it is possible to transform it intoan equivalent �LTL1 (�LTL2 ) formula. Thus the new lassi�ations provide uswith exat relationship between the type of a formula and the type of the non-emptiness problem.The determination of the type of a formula and the transformation are ratherexpensive (even deiding whether a given formula spei�es a safety propertyis PSPACE-omplete [20℄). However, formulas are usually quite short and itis typial to make many tests for one �xed formula. In suh a ase, the workneeded for determining the type of the formula is amortised over its veri�a-tion.Moreover, most of the pratially used formulas are simple. We have stud-ied the Spei�ation Patterns System [7℄ that is a olletion of the most oftenveri�ed properties. It shows up that most of the properties an be easily trans-formed into terminal (41%) or weak (54%) automata. We onlude that modelhekers should take the type of the property into aount and use the speial-ized non-emptiness algoritms as often as possible.Referenes1. R. Bloem, K. Ravi, and F. Somenzi. Ef�ient deision proedures for model hekingof linear time logi properties. In Pro. Computer Aided Veri�ation, volume 1633 ofLNCS, pages 222�235. Springer, 1999.2. I. �Cerná and R. Pelánek. Distributed expliit fair yle detetion. In Pro. SPINWorkshop onModel Cheking of Software, volume 2648 of LNCS, pages 49�73. Springer,2003.3. I. �Cerná and R. Pelánek. Relating hierarhy of linear temporal properties to modelheking. Tehnial Report FIMU-RS-2003-03, Faulty of Informatis, Masaryk Uni-versity, 2003.4. E. Y. Chang, Z.Manna, andA. Pnueli. Charaterization of temporal property lasses.In Pro. Automata, Languages and Programming, volume 623 of LNCS, pages 474�486.Springer, 1992.
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