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1.1 Introduction

The aim of the Coln approach (Component-Interaction Automata approach) is
to create a framework for formal analysis of behavioural aspects of large scale
component-based systems. For the modelling purpose, we use the Component-
interaction automata language [1]. For the verification, we employ a parallel
model-checker DiVinE [2], which is able to handle very large, hence more realis-
tic, models of component-based systems. Verified properties, like consequences of
service calls or fairness of communication, are expressed in an extended version
of the Linear Temporal Logic CI-LTL.

1.1.1 Goals and scope of the component model

The Component-interaction automata model behaviour of each component (both
basic and composite) as a labelled transition system. The language builds on
a simple, yet very powerful, composition operator that is able to reflect hier-
archical assembly of the system and various communication strategies among
components. Thanks to this operator, the language can be used for modelling
the behaviour of components designed for or implemented in various component
frameworks and models.

1.1.2 Modeled cutout of CoCoME

While modelling the CoCoME, we have focused on the aspect of communi-
cational behaviour of components. Hence we did not treat aspects like non-
functional properties or data manipulation. However in terms of component in-
teraction, we have modelled the CoCoME completely in fine detail, based on
the provided Java implementation of the system. We modelled also parts like
GUI, Event Channels, or the Product Dispatcher component. The final model
was verified using the DiVinE verification tool. We have checked the compliance
of the model to the Use Cases from chapter 3, we have verified the Test Cases,
and various other CI-LTL properties.
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1.1.3 Benefit of the modeling

One of our main benefits is that we use a general formal modelling language
that is, thanks to its flexible composition operator, able to capture behaviour
of various kinds of component-based systems. The created model is in fact a
labelled transition system, which is a format that can be directly verified using
a large variety of existing methods.

1.1.4 Effort and lessons learned

For the full modelling of the CoCoME, we needed two person months. The veri-
fication was then performed automatically using the DiVinE tool. This exercise
helped us to discover the limits and capabilities of our modelling language and
verification methods. In particular, we have found general solutions to various
modelling issues, like creation and destruction of instances, modelling of global
shared state, or exception handling. In terms of verification, we have examined
the efficiency of our verification methods on a large model of a real system.

1.2 Component Model

Our framework is represented by the Component-interaction automata language
[1,3]. It should be emphasized that Component-interaction automata are not
meant to support implementation of component-based systems. They are in-
tended as a modelling language that can be used to create detailed models of
behaviour of component-based systems to support their formal analysis.

The language is very general, which follows from two things. First, the
Component-interaction automata language does not explicitly associate action
names used in the labels of automata with interfaces/services/events/etc., which
allows the designers to make the association themselves. The association must
only respect that if the same action name is used in two components, in one as an
input and in the other one as an output, it marks a point on which the compo-
nents may communicate. Second, the language defines one flexible composition
operator that can be parametrized to simulate several communication strate-
gies used in various component models. In this manner, Component-interaction
automata can be instantiated to a particular component model by fixing the
composition operator and semantics of actions.

1.2.1 Definition of a component-interaction automaton

Component-interaction automata capture each component as a labelled tran-
sition system with structured labels (to remember components which commu-
nicated on an action) and a hierarchy of component names (which represents
the architectural structure of the component).

A hierarchy of component names is a tuple H = (Hy,...,H,), n € N, of one
of the following forms, Sy denotes the set of component names corresponding to



H. The first case is that Hq, ..., H, are pairwise different natural numbers; then
St = U;—,{H;}. The second case is that Hi,..., H, are hierarchies of compo-
nent names where Sy, , ..., Sy, are pairwise disjoint; then Sy = U?Zl SH,.

A component-interaction automaton (or a CI automaton for short) is a 5-
tuple C = (Q, Act, 6,1, H) where @) is a finite set of states, Act is a finite set of
actions, ¥ = ((SpU{=}) x Act x (SgU{=}))\ ({—} x Act x {-}) is a set of
labels, 6§ C Q x X' x @ is a finite set of labelled transitions, I C @ is a nonempty
set of initial states, and H is a hierarchy of component names.
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Fig. 1. Examples of CI automata

The labels have semantics of input, output, or internal, based on their struc-
ture. In the triple, the middle item represents an action name, the first item
represents a name of the component that outputs the action, and the third item
represents a name of the component that inputs the action. Examples of three
CI automata are in figure 1. Here (—,a,1) in C; signifies that a component with
a numerical name 1 inputs an action a, (1,¢,—) in C; signifies that a compo-
nent 1 outputs an action ¢, (4,c,3) in C3 represents an internal communication
of components 4 (sender) and 3 (receiver) on ¢, and (1,b,1) in C; an internal
communication on b inside the component 1 (it abstracts from the names of the
sub-components of 1 that participated in the communication).

1.2.2 Composition of component-interaction automata

CI automata (a set of them) can be composed to form a composite CI automa-
ton. The language of Component-interaction automata allows us to compose any
finite set of CI automata (not necessarily two of them as usual in related lan-
guages) that have disjoint sets of component names. This guarantees that each
primitive component in the model of the system has a unique name, which we
use to identify the component in the model.

Informal description of the composition follows. For formal definitions see
[1]. You can consult the description with a composite automaton of {C;,C2} in
fig. 2; the automata Cy,Cs are in fig. 1. The states of the composite automaton are
items of the Cartesian product of states of given automata. Among the states, the
syntactically possible transitions (we call the set of them a complete transition
space) are all transitions capturing that either (1) one of the automata follows
its original transition or (2) two automata synchronize on a complementary
transition (input of the first one, output of the second one, both with the same
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Fig. 2. A possible composition of the set {Ci,C2}

action). Finally, we decide which of these transitions we really want to be part of
the composite automaton, and remove the rest. The inscription C = @ 7{Cy,C2},
where 7' is a set of transitions, means that C is a composite automaton created by
composition of Cy,C> and it consists of only those transitions from the complete
transition space, that are included in T'.

The automaton in fig. 2 is ®7{C1,Cs2} where T contains all transitions from
the complete transition space. We write this as ®{C;,C2}. In addition to ®,
along the text we use the following shortcuts for various types of ®7. Denote
A the complete transition space (set of all syntactically possible transitions) for
the set of automata that enters the composition. Then

— ®q is equivalent to ® A\
The parameter T in this case specifies the forbidden transitions.
— ®7 is equivalent to @7 where T = {(¢q,z,q¢') € A |z € F}

The parameter F specifies allowed labels — only the transitions with these

labels may remain.

— ®7 is equivalent to @7 where T = {(q,z,q¢') € A |z ¢ F}

The parameter F specifies forbidden labels — no transition with any of these

labels can remain in the composition.

Remember that the labels and transitions represent items of behaviour of the
component-based system. Each internal label represents communication between
two components, and each external label a demand for such communication. A
transition signifies a specific communication (represented by the label) that takes
place in the context given by the respective states.

1.2.3 Textual notation

For linear transcription of CI automata, we have defined the following textual
notation, which was used for writing the CoCoME models. To introduce the
notation, we rewrite some of the automata from the text above into the notation.
The fig. 3 a) presents the automaton C; from fig. 1. The keyword automaton
states that we are going to define a new automaton by describing its state space.
This is followed by the name of the automaton and the hierarchy of component
names the automaton represents. The keyword state is followed by a list of
states, init by a list of initial states, and trans by a list of transitions.



automaton C1 (1) {
state p, q, r;
init p;

| composite C {

|

|
trans |

|

|

|

I

C1, C2;
}

| composite C {

| C1, C2;

| restrictL

| (-,a,1), (2,a,-),
|

|

|

|

p ->q (-,a,1), 1,c,-), (-,c,2);

q ->r (1,b,1),
r ->p (1,c,-);
}

Fig. 8. a) Automaton C: (left); b) Composition C = ®{C1,(C2} (center); ¢) Composi-
tion C = ®}-{Cl762} where F = {(_7 a, 1)7 (2,@, _)7 (17 C, _)7 (_707 2)} (I‘lght)

The composite automaton C = ®{C1,Cz} from fig. 2 is rewritten in fig. 3 b).
No parameter T needs to be given here. For restricted composition we include
a keyword representing the type of composition and the list of transitions or
labels (see 1.2.2). Example of such composite is in fig. 3 ¢). For ®7 the keyword
is onlyT (only the Transitions given), for ®; the keyword is restrictT, for @7
the keyword is onlyL (only the Labels given), for ®” the keyword is restrictL.

1.3 Modelling the CoCoME

In this section, we present our modelling approach on the CoCoME system,
the Trading System, which we have modelled completely in fine detail (models
available in [4]). First, we describe the input and output of the modelling process.

Input. The Coln modelling process has two inputs: specification of the behaviour
of primitive components and description of the static structure of the system
(assembly and interconnection of components). The specification of behaviour
of primitive components can be given e.g. as an informal description (used in
preliminary design phase for estimating/predicting the future behaviour of the
system) or as the implementation of the system (used for verification or formal
analysis of an existing system). In our approach we use the implementation to
derive CI automata of primitive components. The static structure of the sys-
tem reveals the hierarchy of components, their interfaces and interconnections
between them. This can be given in any syntactic form that allows a modeller
to extract the information about the actions that can be communicated among
the components and the restrictions on the communication, if any. The struc-
tural description is used to arrange the automata of primitive components into
a hierarchy, and to parameterize the composition operator for each level of the
hierarchy.

Output. The output of the modelling process is basically a CI automaton that
represents the whole system (composition of the components that make up the
system). In the Coln approach, this automaton is used as an input of verification
methods that will be discussed in section 1.5.

1.3.1 Static View

In our approach, the model of the static structure is an input (not an output)
of the modelling process. In the case of this modelling example, we derive the



basic information about the components, their interconnection, and system’s
hierarchy from the UML component diagrams presented in chapter 3. The infor-
mation about the actions that can be communicated among components is ex-
tracted from the Java implementation, namely from the interfaces of the classes.
Fig. 4 reprints the hierarchical structure of the components and assigns each
primitive component a unique numerical name that will be used to identify it.
This diagram, in addition to the provided ones, includes the ProductDispatcher
component that is also part of the implementation, and excludes the Database
because we do not model it as a component. We decided to abstract from the
Database, because the logic of data manipulation is already part of the Data
component that we do model.
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CashDesk gl Dat @
a
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Fig. 4. Trading System overview

1.3.2 Behavioural View

For the behavioural view modelling, which is of our main interest, we use the
Component-interaction automata language discussed in section 1.2. We decided
to use the Java implementation as the main source for the modelling because it
allows us to present a complex and interesting model of the system that is suit-
able for automatic analysis. Before we proceed to the models of the components,
we present general modelling decision we did with respect to the implementation.

Initial decisions The components of the static view can be easily identified in
the implementation as packages/classes. However we do not consider all pack-



ages and classes to be components. We omit modelling of classes that have no
interesting interaction behaviour and act rather as data types than interaction
entities. These include classes for different kinds of events, transfer objects and
database entries. The same applies to Java library classes and supportive classes
of the Trading System, like DatalfFactory or ApplicationFactory. Interfaces of
the components and their parts can be identified as Java interfaces, resp. the
sets of public methods constituting the parts.

We do not model the start of the system — the process of initial creation of all
components and execution of their main () methods. We model the system from
the point where everything is ready to be used. However we do model creation
and destruction of the components that may be initialised during the run of the
system, because in such case it is a part of system’s behaviour.

Modelling components as CI automata The main idea for creating the
automaton of a component is that we first capture component’s behaviour on
each service as a separate automaton, and then compose the automata for all
the services into the model of the component. The services of components are
represented by methods of the classes that implement the components. Therefore
we will use the term method when referring to the implementation of a service
that we model.

An automaton for a method. We assign each method, say doIt(), a tuple of
actions where the first one represents the call of the method (we write it as doIt)
and the second one the return (we write it as doIt’). These two determine the
start and the end of the method’s execution. Each method is modelled as a loop,
which means that each of its behaviours starts and finishes in the same state,
the initial one. Fig. 5 shows automata for two simple methods. The automaton
C1 models a method doA() that does not call other methods to compute the
result, the automaton Cy models a method doB() that calls the method doA()
and when doA() returns, doB() also returns. More interesting examples follow
in the text, see fig. 18 for an automaton of a complex method changePrice().
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Fig. 5. Automata for simple methods

An automaton for a primitive (basic) component. Having automata for all the
methods of a component, we can use the composition operator ®7 to automat-
ically create the automaton for the whole component. The composition opera-
tor allows us to compose the methods in various ways. When we apply ®, the
resulting automaton simulates a component that can serve its methods (ser-
vices) concurrently (modelled by interleaving of method parts). For example



see C3 = ®{C1,Cs} in fig. 6 (doA, doB, computeA, computeB are shortened to
dA, dB, cA, ¢B respectively). As the component constitutes of two methods, its
state space is in fact a two-dimensional grid. In case of three methods, it would
be three-dimensional, and so forth. For this reason, we sometimes refer to this
interleaving-like notion of composition as a cube-like composition.

Note, that the component C3 in fig. 6 may handle the methods doA() and
doB() concurrently, but cannot accept a new call to a method that is currently
executed. If we would like to model concurrent execution of several copies of one
method, we would need to include the corresponding number of the automaton
copies in the composition.

Another notion of composition that is common for composing models of
methods, is the star-like composition, which reflects that from the initial state,
the component may start executing any of its methods, but cannot start a new
one before the previous method is finished. This can be found in GUI compo-
nents where the calls on their (GUI-based) methods are serialized by the event
dispatching thread. For example see Cy = ®@1{C1,C2} in fig. 6. The star-like no-
tion of composition can be realized by the ®+ where T" consists of the transitions
that represent start of a method-call from other than the initial state.

Ci: Csy:
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/_\ /_\
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Fig. 6. Examples of the cube-like C3 and the star-like C4 composition of {C1,C2}

In a similar way, the composition gives us possibility to design other com-
positional strategies that would e.g. permit only specific ordering of services.
For modelling of the CoCoME Trading System we use the cube-like and star-



like compositions most of the time to create the models of basic components by
composing automata of their methods or other parts.

An automaton for a composite component. The situation is different for models
of composite components. These are composed from the automata that usu-
ally interact with each other. Here, the most common notion of composition is
the handshake-like composition which proceeds with a principle that anytime
a component inside the composite is ready to perform an action that has its
counterpart at one of the other components, it waits for this component to syn-
chronize on the action. This kind of composition can be realized by ®” where F
consists of (1) all internal labels of components that enter the composition, (2)
all new internal labels that may emerge from the composition, and (3) all ex-
ternal labels that have no counterpart at any other component. In the CoCoME
modelling process, we use a modified version of this kind of composition where
we manually, for each composite component, create F as a set consisting of (1)
all internal labels of components that enter the composition, (2) only the new
internal labels emerging from the composition that are supported by a binding
between the components in the static view, and (3) all external labels that repre-
sent methods provided/required on interfaces of the composite component we are
creating the model for, no matter if they synchronized inside the component or
not.

Ezxample. Imagine a ComponentC consisting of a ComponentA and ComponentB
as in fig. 7. Suppose that the automaton of ComponentA has a set of labels L4 =
{ (=, serviceA, 1), (1, serviceA’, ), (—, serviceC, 1), (1, serviceC', —), (1, service B, —),
(—, serviceB', 1), (1, internalA, 1) } and the ComponentB Lp = { (-, serviceB,?2),
(2, serviceB', —), (2, serviceD, —), (—, serviceD', 2), (2, internal B,2) }. Such sets of
labels can be intuitively guessed from the figure. Then the automaton rep-
resenting behaviour of ComponentC can be constructed as AutomatonC =
@7 { Automaton A, AutomatonB} where F = { (1, internalA, 1), (2, internal B, 2),
(1, serviceB, 2), (2, service B', 1), (—, serviceC, 1), (1, serviceC’, —), (2, serviceD, —),
(—, serviceD',2) }.

ServiceC componentc g'
- —>C)— ComponentA @ ComponentB \f‘- ] C
ServiceC O_ E E ~ _>E
ServiceB ServiceD ServiceD
ServiceA

Fig. 7. A composite component

The static view given in fig. 7 is important here. Note that if the interfaces
of ComponentA and ComponentB on serviceB() were not connected, the la-
bels (1, serviceB, 2), (2, serviceB’,1) would not represent feasible interactions and
could not be part of F. Analogically, the labels (—, serviceA, 1), (1, serviceA’, —)
cannot be part of F because serviceA() is not provided on the interface of
ComponentC.



In the rest of this section, we demonstrate the capabilities of Component-
interaction automata to model various kinds of interaction scenarios that we
have faced when creating the model of the Trading System. We start with the
models of primitive components (see fig. 4) and then present the composition
anytime we have described all components needed for the composition. For space
reasons, we do not describe all components completely. We just emphasize our
solutions to interesting modelling issues when used for the first time. After read-
ing this section, we believe that the reader would able to understand the whole
CI automata model of the Trading System, even if some parts are not discussed
here. The complete model of the Trading System is available in [4].

1.3.3 Specification of the CashDeskApplication (level 3)

The CashDeskApplication (component id 100) is the main sub-component of the
CashDesk composite component (see fig. 4). It is subscribed to receive events
from two event channels, handles the events, and publishes new ones to control
cash-desk devices. We start with the automata representing behaviour of its
services, represented by the methods of the ApplicationEventHandlerImpl class.
We have modelled all methods with only two exceptions. First, we omit the
onMessage () method because it only delegates messages from event channels
to onEvent () methods, which we decided to model as direct calls. Second, we
skip the constructor ApplicationEventHandlerImpl () which is called only once
when the system is started (and never during system’s execution).

private void makeSale(PaymentMode mode) throws JMSException {
SaleTD saleTO = new SaleT0();
saleT0.setProductTOs (products) ;
appPublisher.publish(topicSession
.createObjectMessage (new SaleSuccessEvent()));
externalPublisher.publish(topicSession
.createObjectMessage (new AccountSaleEvent(saleT0)));
externalPublisher.publish(topicSession
.createObjectMessage (new SaleRegisteredEvent(
topicName, saleT0.getProductTOs().size(), mode)));

Fig. 8. Java source of the makeSale() method

The component as a publisher The makeSale() (fig. 8, numerical name 2)
is one of the methods that demonstrate the capability of the CashDeskApplica-
tion to publish events to event channels, the CashDeskChannel (200) and the
EztCommChannel (300) in particular. Each publication of an event (underlined
in fig. 8) is identified by the event channel and the type of the event. We reflect
both in the action names that we associate with each publish(). For instance
the first publish () in fig. 8 is referred to as publishSaleSuccessEvent whereas
the second one as publishExtAccountSaleEvent.

CI automata model of the method is in fig. 9. For short, makeSale is written as
mS, publishSaleSuccessEvent as pSSE, publishExtAccountSaleEvent as pEASE,
and publishExtSaleRegisteredEvent as pESRE.
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Fig. 9. CI automaton of the makeSale() method

First consider only the states 00 — 07 and transitions among them. They
represent three subsequent calls of publish() methods as one may expect from
the Java code. The rest of the model captures that each of the publish() meth-
ods may throw an exception which is not caught by makeSale(). Consider the
first publication. If an exception is thrown when publishSaleSuccessEvent
is executed! (state 02), makeSale() synchronizes with it (—,ezceptionPublish-
SaleSuccessEvent,2), written as (—,ePSSE,2), and moves to the state 08 where
it forwards the exception (2, exceptionMakeSale, —), finishes the publication and
returns. We model makeSale() to forward the exception via catch and throw
because it enables it to change its state and return when the exception occurs.
Additionally, the exception is renamed because it makes it easier in the models
of other methods to catch the exceptions of makeSale().

The component as a subscriber The CashDeskApplication implements a va-
riety of onEvent() methods, which handle the events the component is sub-
scribed to. We assign each of them a unique tuple of action names reflecting the
type of their argument to distinguish them. For instance the onEvent (Cash-
AmountEnteredEvent) method (fig. 10) is referred onEventCashAmountEntered.

In fig. 10, the interesting behaviour is again underlined. It shows that the
behaviour of the method differs significantly based on its argument. For this
reason we decided to split this method into two, which can be done in our
approach. We get onEventCashAmountEntered, which is called whenever a digit
button is pressed, and onEventCashAmountEntered Enter, which is called only
when the Enter button is used. See fig. 11 for the automata of both of them. In
the model, the onEventCashAmountEntered is shortened to oECAE, onEvent-
CashAmountEntered_Enter to oECAFEE, publishChange AmountCalculated Event
to pCACE, and exception PublishChange AmountCalculated Event to ePCACE. If

! The automaton of the event channel performs (200, exceptionPublishSaleSuccess-
Event, —) when serving publishSaleSuccessEvent.



public void onEvent(CashAmountEnteredEvent cashAmountEnteredEvent) {

if (currState.equals(PAYING_BY_CASH)) {
switch (cashAmountEnteredEvent.getKeyStroke()) {
case ONE: total = total.append("1"); break;
case TWO: total = total.append("2"); break;
case ENTER:
try {
appPublisher.publish(topicSession

.createObjectMessage (new ChangeAmountCalculatedEvent(changeamount)));

currState = PAID;
} catch (JMSException e) {
}

break;
}r}

Fig. 10. Java source of the onEvent (CashAmountEnteredEvent) method

we did not want to split the method into two, we would finish with one model
that non-deterministically allows for both behaviours.

(3oECAE’m (4,0ECAEE',4)
(_,0ECAE,3) (3, oECAE” ) m
0 @ © 2

0 @) L)
\ (4,pCACE,—)
(4,0ECAEE’,4
(1)

4

(—,ePCACE,4)
Hierarchy: (3) Hierarchy: (4)

Fig.11. CI automata of the onEvent (CashAmountEnteredEvent) method parts

The onEvent () methods are called asynchronously with a notification (rep-
resented by the action onEventCashAmountEntered”, or oEC AE" in the figure).
Asynchronous methods start with getting the request as the synchronous ones
(=, onEventCashAmountEntered,3), but returns internally because the caller is
not interested in their response (3, onEventCashAmountEntered’,3).

Exception handling The onEvent (CashAmountEnteredEvent) method (fig. 10)
calls the publish() method inside a try block, which means that if the method
throws an exception, onEvent (CashAmountEnteredEvent) catches it and moves
to an appropriate catch block that handles the exception.

This principle is realized in the automaton of onEventCashAmountEnter-
ed_Enter (fig. 11 on the right). Here the execution after calling publishChange-
AmountCalculatedEvent moves to the state 3 where it waits for publish()
to return (—, publishChange AmountCalculatedEvent',4) to get to the state 4. If
an exception arrives before the return does (—, exception PublishChange Amount-
CalculatedEvent,4), the execution moves to the state 5, confirms the return of



the publication, and possibly continues with the exception handling provided by
the catch block, which is empty in this case. Then this exceptional branch joins
the normal execution flow in state 4. The execution between this join and the
end of the method is again empty here.

For more complex example of exception handling see the description of the
changePrice () method in section 1.3.11.

Full model of a method provided on the interface Using the approach dis-
cussed above, we have created models of all methods constituting the CashDeskAp-
plication. However, not all the methods are finally provided on the interface,
some methods have only supportive character. One of the provided methods is
the onEvent (CashBoxClosedEvent), fig. 12, which uses two private methods —
makeSale(), fig. 9, and reset (), which has the same structure as C; in fig. 5
and a hierarchy (1).

(—,onEventCashBoxzClosed,5) (5,0nEventCashBoxzClosed'" ,—)

— ® 2

(5,0nEventCashBozClosed’,5)

ﬁo

(5,makeSale,—)

(—,exceptionMakeSale,5)
(5,onE‘ventCashBozClosed’,5) @

3

(—,makeSale’,5)
~ makeSale’,5)

()
® !

(5,reset,—)
Hierarchy: (5)

(—,reset’,5)

Fig. 12. CI automaton of the onEvent (CashBoxClosedEvent) method

The complete model of onEvent (CashBoxClosedEvent) is simply the com-
position of the automaton in fig. 12 with the automata of makeSale() and
reset (). The composition is the handshake-like composition described in sec-
tion 1.3.2. The composite automaton for onEvent (CashBoxClosedEvent) is in
fig. 13. The actions are again shortened in the usual way.

Full model of the CashDeskApplication When we create the full models
of all the methods available on the CashDeskApplication’s interface (which are
exactly all the onEvent () methods), we compose them into the automaton rep-
resenting the model of the CashDeskApplication. In this case, we must use the
star-like composition because the access to the onEvent () methods is controlled
by a Java session that serializes them.

Note that the resulting model is a composite automaton where the basic units
(represented by the component names in labels) are its methods. However, we are
not interested in the interaction of methods, we want to model the interaction of
primitive components, where the CashDeskApplication is one of them. Hence we
transforms the automaton into a primitive one. This only means, that we rename
all the component names used in the labels and transitions to a new numerical
name 100 representing the CashDeskApplication, and change the hierarchy of
component names to (100). See [1] for the definition of a primitive automaton
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Fig. 13. Full model of the onEvent (CashBoxClosedEvent) method

and the relation of being primitive to a composite automaton. From now on, we
suppose this final step of making the automaton primitive as implicit, and when
presenting models of component parts, we use directly the numerical name of
the resulting component in the labels.

Remember that by making an automaton primitive, we do not lose any in-
formation about its behaviours, we only lose the information about the names
of component parts that participated in the behaviour.

Internal state of a component In this modelling example, we decided to de-
termine the state of a component only with the interactions that the component
is ready to perform. We do not take its internal state? into account. When a
component decides, based on its state, whether it performs one interaction or
another one, we model this basically as a non-deterministic choice. However this
is just a modelling decision for the CoCoME. We are able to regard the internal
state of a component (in case the number of internal states is finite). The basic
idea of our approach follows.

PAYING_BY_CASH

INITIALIZED

SALE_STARTED NISHED

j CREDIT_CARD_SC'ANNEIQ(—Q’.BY.CREDITCARD}

Fig. 14. Internal states of the CashDeskApplication
2 We understand the internal state of a component as a current assignment of values
to its attributes.




Suppose that the internal state of the CashDeskApplication is represented
only by the states defined as CashDeskStates (see the implementation for de-
tails), which are: INTTTALIZED, SALE_STARTED, SALE_FINISHED, PAYING_BY_CREDITCARD,
CREDIT_CARD_SCANNED, PAYING_BY_CASH, PAID. Possible transitions between the states
are depicted in fig. 14. Now consider for instance the onEvent (CashAmount-
EnteredEvent) method and its onEventCashAmountEntered Enter model in
particular (fig. 11 on the right). In its behaviour in between receive of the call and
return, it either performs nothing, or tries to publish a ChangeAmountCalculat-
edFvent. The choice is non-deterministic here. However in reality, the choice is de-
termined by the state of the component which can be seen in fig. 10. If we wanted

to reflect the state, we would remodel onEventCashAmountEntered Enter as in
fig. 15.

(4,0ECAEE' ,4)

—,0ECAEE ,4) (4,0ECAEE' —) (-,iNPBC,%
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Fig. 15. Modified model of the onEventCashAmountEntered_Enter

The automaton first asks if the state equals to PAYING_BY_CASH — represented
by (—,isPAYING_BY _CASH,4) and (—,isNotPAYING_BY .CASH, 4) (in fig. 15
(—,iPBC,4) and (—,iNPBC,4)) — and then follows the corresponding way. The
automaton may also change the internal state of the component by asking it to
do so via (4, goToPAID,—), in the figure (4, gT P, —). Last, the information about
the component’s state is added to the model of the CashDeskApplication itself.
We do it by the handshake-like composition of the model of the CashDeskAp-
plication with an additional automaton representing its states. The additional
automaton is basically the automaton in fig. 14, where each transition is labeled
with (—,goT0X,1000), where X is the name of the state the transition is go-
ing to, and each state is additionally equipped with a self-transition with label
(1000, isX, —), where X is again the name of the state, and self-transitions with
(1000, isNotY, —) for all states Y different from X.

1.3.4 Specification of the CashBoxControllerComposite (level 3)

The CashBoxzController component from fig. 4 is in fact a composite compo-
nent that consists of two primitive components, the CashBoz (111) and the
CashBoxController (112). Hence we refer to the composite as the CashBoxCon-
trollerComposite to avoid confusion. The CashBox component represents the
user interface to the cash box device while the CashBozController handles the
communication of the CashBox with the rest of the system. We have assigned a
different number to each of them, because they are distinguished also in the Use
Cases presented in chapter 3.



CashBox (111). The CashBox consists of two kind of methods, the GUI-based
methods that represent response to pressing a button by the Cashier, and regular
methods that can be called by the rest of the system. These are openCashBox ()
and closeCashBox (). Methods of both kinds are modelled in a usual way. The
difference between these two is that while openCashBox () and closeCashBox ()
can be called concurrently with other methods, the calls on the GUI-based meth-
ods are serialized by the event dispatching thread and hence no two GUI-based
methods may execute at the same time.

In CI automata, we are able to respect this restriction when creating the
composite automaton for the CashBox. We first create an auxiliary automaton
CashBoxGUI with the star-like composition of GUI-based methods, and then
compose this with the rest of the methods using the cube-like composition. This
gives us exactly the result we want to have.

CashBoxController (112). The same applies to the CashBozController model.
Here, again two types of methods can be identified. The onEvent () methods,
that are accessed serially, and the others that may be accessed in parallel. How-
ever in this case, there is only one onEvent () method, so we can apply the
cube-like composition directly.

CashBoxControllerComposite. For the composition of the CashBozx and Cash-
BoxController, we use the handshake-like composition with synchronization on
the sendX () methods. This composition results in the model of the CashBoz-
ControllerComposite with only 555 states in total, even if the automaton of the
CashBoxController has more than 390.000 states. This means that a compos-
ite component has nearly 1000-times less states than one of its sub-components.
This is caused by the synchronization on common actions, which the handshake-
like composition necessitates. In effect, the sendX() methods of the CashBoz-
Controller (modelled as callable in parallel) are serialized by the calls from the
GUI-based methods of the CashBoz, which are callable only in a serial order.
Hence, all the states that represent concurrent execution of several sendX()
methods disappear from the composition.

Models of the remaining CashDesk components, namely the ScannerCon-
trollerComposite (121, 122), CardReaderControllerComposite (131, 182), Print-
erControllerComposite (141, 142), LightDisplayController Composite (151, 152),
and CashDeskGUIComposite (161, 162) were created using the principles al-
ready discussed above. Therefore we decided to not to include their description
here. The complete models of all of them can be found in [4].

1.3.5 Specification of the CashDesk (level 2)

The CashDesk component is a composite component that consists of all the
components discussed above. Its model is a cube-like composition (with no re-
striction on transitions) because the components do not communicate with each
other directly. They communicate via the CashDeskChannel, which is outside



the CashDesk component. As there is exactly one CashDeskChannel for each
CashDesk, it would be better design decision to move the CashDeskChannel
inside the CashDesk, which would make the CashDesk component more coher-
ent while not influencing the model of the whole system. Only the hierarchy of
component names would be different.

We decided to do it. We have created the model of the CashDesk using
the handshake-like composition of the components discussed above with the
CashDeskChannel (discussed below) with synchronization on the publish() and
onEvent () methods that involve the CashDeskChannel, which can now happen
only internally.

1.3.6 Specification of the CashDeskChannel (level 2)

The purpose of the CashDeskChannel (200) is in general to broadcast events that
it receives from publishers to all subscribers that are interested in the events.
The publication of an event is initiated by a publisher via calling publish().
The publish() method returns whenever the event is received by the channel.
The channel then broadcasts the event to all subscribers that are interested
in the event. We model this broadcast as a set of asynchronous calls to the
onEvent () methods of the subscribers. These calls must be asynchronous to
permit concurrent execution of the onEvent () methods. Based on this notes,
the automaton for handling one event, namely the SaleStartedEvent (written as
SSEvent for short) with three subscribers interested in it, is in fig. 16.

(—,publishSSEvent,200) (200,publishSS Event',—)
1

(200,exception PublishS S Event,—)

%0

(—,onEventSS'",200) (200 = £55,)
,onEven ,—
(200,publishSSEvent

(200,o0nEventSS,—)
(— ,onEventSS' ,200)

(—,onEventSS' ,200) ~ (200,0onEventSS,—)
6 5

Hierarchy: (200)

Fig. 16. CI automaton for SaleStartedEvent

The delivery of the event consists of two parts, the channel first initiates an
onEvent () method of a subscriber (200, onEventSaleStarted,—) and then waits
for the notification from it (—,onEventSaleStarted”’,200). The reason for this
notification is only auxiliary. It guarantees that none of the subscribers acquires
the event twice because it must first wait for the channel to take the notification
from it. And the channel starts accepting the notifications after all the copies of
the event are delivered. See fig. 11 for a model of an onEvent () method.

The drawback of this solution is that the channel needs to know the number
of the subscribers in advance. If it was not possible to know the number in
advance, we could model the transitions with (200, onEventSaleStarted, —) and
(—,onEventSaleStarted”,200) as two subsequent loops. However in such case we



could not guarantee that all the subscribers really get the event, because of not
having the information of the actual number of them.

In the same way, we create an automaton for every event that can be handled
by the channel, and compose them together using the cube-like composition.

The EztCommChannel (300) is modelled in exactly the same way as the
CashDeskChannel, therefore we do not discuss its model here.

1.3.7 Specification of the Coordinator (level 2)

The Coordinator (400) component is used for managing express checkouts. For
this purpose, it keeps a list of sales that were done during last 60 minutes,
which helps it to decide whether an express cash desk is needed. The component,
consists of two classes, the CoordinatorEventHandler (410) and the Sale (420).
Anytime a new sale arrives, the CoordinatorEventHandler creates a new instance
of the Sale class to represent it in the list. Whenever the sale represented by an
instance expires, the CoordinatorEventHandler removes the instance from the
list which causes its destruction. We use this example to demonstrate, how we
can model the dynamic creation and destruction of instances.

Before we explain our approach, remember that CI automata are finite state.
This means, that we will never be able to model a system with unlimited number
of instances. However this does not mean that we cannot verify such systems. In
[5] we have proposed a verification approach addressing this issue. The solution
there is based on getting the value k, dependent on the system and the property
we want to verify, such that it guarantees that if we verify the system with
0,1,2,...,k instances, we can conclude that the property holds on the system
no matter how many instance are in use.

Now we come back to the modelling of the Coordinator component with a
bounded number of Sale instances. For example let us set the maximum number
of active instances to 10. First, we create the models of the Sale and the Coordi-
natorEventHandler in a usual way. In the model of the CoordinatorEventHandler
we also model actions that cause the creation and destruction of Sale instances.
In the case of creation, the code new Sale(numberofitems, paymentmode, new
Date()) is represented by the sequence (410, Sale, —), (—, Sale’, 410), in the case of
destruction, the code i.remove () is represented by the sequence (410, SaleD, —),
(—, SaleD',410).

Second, we create a model of an instance of the Sale. It is an extension of
the model of the Sale we have (fig. 17 on the left) with an initial activation part
(fig. 17 on the right). The path p— ¢— 0 represents a call of the constructor of
the component, and the way back 0 — r — p represents the destruction, which
could start also from other states than 0. However it should not be possible for
it to start in states p or ¢ to guarantee that the system can destruct only the
instances that have been created before.

The model of the Coordinator is a handshake-like composition of the set con-
sisting of the model of the CoordinatorEventHandler and 10 copies of the au-
tomaton for the Sale instance. In the composite, all the Sale-instance automata
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Fig. 17. CI automata of the Sale class and the Sale instance

start in the state p, which means that they are inactive at the beginning — the
CoordinatorEventHandler cannot access their behaviour which starts to be avail-
able in state 0. However, when the CoordinatorEventHandler calls a constructor
of the Sale (410, Sale, —), (—, Sale’, 410), one of the instances synchronizes with it
and moves to the state that makes its functionality available. When the Coordi-
natorEventHandler removes the Sale from its list (410, SaleD, —), (—, SaleD', 410),
it returns back to the state p and waits for another call of its constructor. Note
that if the Sale performed some calls inside its constructor or destructor, these
calls could be included in the paths p -+ ¢ — 0 and 0 — r — p as one may
intuitively think.

We have experimented with different numbers of Sale instances in the system
and realized that no matter how many of them we allow, the external behaviour
of the Coordinator component remains the same. For this reason, we finally
decided to regard the Sale class as something internal to the Coordinator and
not to include it in the final model of the Coordinator.

1.3.8 Specification of the CashDeskLine (level 1)

The model of the CashDeskLine component is a composition of the CashDesk,
ExtCommChannel and Coordinator components using the handshake-like com-
position.

1.3.9 Specification of the Persistence (level 3)

The Persistence (510) is the first component belonging to the Inventory part
of the Trading System. It consists of three parts, that we interpret as sub-
components. That are Persistencelmpl, PersistenceContextImpl and Transac-
tionContextImpl.

Both PersistenceContextImpl and TransactionContextImpl are modelled with
the initial activation part, because they may be created and destructed. Their
creation is managed by getPersistenceContext () (in the Persistencelmpl) and
getTransactionContext() (in the PersistenceContextImpl) methods that call
the constructors in their bodies. However their destruction is not managed inside
the Persistence component. We will discuss the destruction when describing the
StoreApplication, which uses these components.

The PersistenceContextImpl and TransactionContextImpl are used in the
way that at any time, only one instance of each is needed to be active. Therefore



we create the model of the Persistence as a composition of the Persistencelmpl,
one instance of the PersistenceContextImpl and one instance of the Transaction-
ContextImpl. In section 1.5 you may see how we can verify that one instance of
each is really sufficient.

The Store (520) and the Enterprise (530) components are created in a usual
way. Hence we do not discuss them here.

1.3.10 Specification of the Data (level 2)

The Data component is a composition of the Persistence, Store and Enterprise
components. However, there are not only one of each. The Data component
is used by the StoreApplication, ReportingApplication and ProductDispatcher
where each of them requires its own Persistence, Store and Enterprise according
to the Java implementation. Hence also in the model, we include three copies
of the Persistence (511, 512, 513), Store (521, 522, 523), and Enterprise (531,
532, 533). The copies differ only in the name of the automata and the compo-
nent name that identifies them. Currently, the copies are created via copy-paste,
however we aim to support the type-instance treatment in future.

During the composition, we need to take care of the communication among
these. For instance, the Store component calls the getEntityManager () method
of the Persistence. And we want the first Store (521) to call just the first Persis-
tence (511), event if it is syntactically possible to call also the second (512) and
the third one (513). Our composition is able to respect such restrictions. We only
state that the labels (521, get Entity Manager, 512), (512, get Entity Manager', 521),
(521, get Entity M anager, 513), (513, get Entity M anager', 521) do not represent feasi-
ble behaviour of the composite system and hence all transitions with such labels
must be removed during the composition.

1.3.11 Specification of the StoreApplication (level 3)

For the StoreApplication (610), we present a model of one method to illustrate,
what structure these methods have. It is the changePrice () method (automaton
in fig. 18, implementation in fig. 19).

The automaton of the method (fig. 18) has 35 states. The states 00 — 17
form the main execution flow (if no exception occurs), which is typeset in bold-
face. The execution starts with asking for a new instance of the Persistence-
ContextImpl by calling getPersistenceContext (), and analogically for a new
instance of the TransactionContextImpl via getTransactionContext(). The
changePrice (), which owns the only reference to these instances, loses the refer-
ence when its execution finishes. And so the instances get destructed eventually.
We model this by calling PersistenceContextImplDand TransactionContext-
ImplD at the end of each possible execution flow of the method.

The path between states 03 — 11 corresponds to a try block in the code. If
an exception occurs in any of these states (which may happen in 08 and 10), the
execution of the methods that thrown the exception is finished and the flow goes
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Fig. 18. CI automaton of the changePrice () method
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public ProductWithStockItemTO changePrice(StockItemTO stockItemTO) {
ProductWithStockItemTO result = new ProductWithStockItemT0();
PersistenceContext pctx = persistmanager.getPersistenceContext();
TransactionContext tx = null;
try {
tx = pctx.getTransactionContext();
tx.beginTransaction();
StockItem si = storequery.queryStockItemById(stockItemT0.getId(), pctx);
si.setSalesPrice(stockItemTO.getSalesPrice());
result = FillTransferObjects.fillProductWithStockItemTO(si);
tx.commit();
} catch (RuntimeException e) {
if (tx !'= null && tx.isActive())
tx.rollback();
e.printStackTrace();
throw e; // or display error message
} finally {
pctx.close();
}

return result;

Fig.19. Java source of the changePrice() method

to the state 20 where the exception handling starts. The execution between states
20 — 25 corresponds to the catch block in the code. Along this way two methods
are called, isActive() and rollback(). Both of them may throw an exception.
In such a case, the exception is not caught, it is propagated higher up. We model
this as an output of a new exception that is caused by input of the existing one.
If any of these paths finished correctly (without throwing an exception), the
flow would continue to the finally block, which is represented by the states 11
— 13. However all paths resulting from the catch block do throw an exception,
therefore all lead to an exceptional finally block (after which the method is
finished immediately, whereas after the normal finally block the execution may
continue). This is represented by the states 25 — 27.

The model of the ReportingApplication (620) component is similar to the one
of the StoreApplication, therefore we do not discuss it here.

1.3.12 Specification of the ProductDispatcher (level 3)

The ProductDispatcher (630) component manages the exchange of low running
goods among stores. It uses an AmplStarter sub-component that computes opti-
mizations, and itself implements a variety of methods to support the only method
it provides on its interface, the orderProductsAvailableAtOtherStores().
We comment only on the markProductsAvailableInStockPD() method,
which calls a markProductsAvailableAInStock() method on selected Stores
to mark the products that are a subject of product exchange. In the model,
we are naturally not able to find out, what Stores should be addressed at
the time the method is called. The Stores are selected by a complicated al-
gorithm. For this reason, we model the call of Stores in a loop (see fig. 20),
which may synchronize with any subset of the Stores that are currently active



in the model. This is a simple solution that does not assure that the Product-
Dispatcher calls each Store at most once, but we decided to accept this over-
approximation. In fig. 20 the markProductsAvailableInStockPD is shortened to
mPAISPD, compute Product Movements to cPM, and markProductsAvailableIn-
Stock to mPAIS.
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Fig. 20. CI automaton of the markProductsAvailableAInStockPD () method

The models of the Application, GUI and finally also Inventory composite
components are created in a usual way.

1.3.13 Specification of the TradingSystem (level 0)

The last thing to do is to compose the CashDeskLine component and the Inven-
tory component into the TradingSystem which is done using the handshake-like
composition. The resulting model of the TradingSystem is not closed (containing
internal transitions only). It has a lot of external transitions representing receive
of input on the GUI of both CashDeskLine and Inventory. And it has a few
external transitions representing communication with the Bank. We can decide
if we want to analyse the TradingSystem as it is (no restriction on the usage
profile), or create automata of the Cashier, Manager, and Bank and compose
them with the TradingSystem into a closed model with internal transitions only.
It is up to the designer to choose one of these strategies.

1.4 Transformations

In the context of the CoCoME, there are two types of transformations that can
be helpful during the process. The first one is the transformation of a composite
automaton into a primitive one. See the end of the section 1.3.3 for its descrip-
tion. This transformation is used as a final step of modelling of any primitive
component that is created as a composition of its parts.

The second one is the reduction of the model with respect to an equivalence
that overlooks unimportant labels. In [6] we have defined various kinds of such re-
lations for CI automata. The relations are designed to indicate situations where a
substitution of components preserves properties of the whole model. At the same
time, they can be exploited to minimize the model by substituting a component
by a smaller yet equivalent one. In the CoCoME project, we have not used this
transformation because our tool was able to analyse the whole model. However



if the model was larger, we would use it to reduce the models of primitive com-
ponents, which consist of a significant number of transitions representing inner
interaction with private methods, which is not very important in the context of
the whole system.

1.5 Analysis

Each modelling process is driven by the purpose the model is used for. In the case
of our approach, the purpose is the automatic verification of temporal properties
of component-based system. Verification can be used in the design phase to
predict the behaviour of the system that we are going to assemble, or after it
when we want to analyse properties of an existing system.

Moreover, verification techniques may help also in the modelling process to
find modelling errors, or to evaluate whether the simplifications that were done
during modelling do not introduce unexpected behaviours, like deadlocks. In the
project, we found this very helpful when evaluating various modelling decisions.

In this section, we demonstrate the capability of the formal verification on
analysis of the model created in the previous section. First, we focus on checking
general temporal properties and on searching deadlock situations in the model.
Next, we discuss how the use cases and test cases presented in chapter 3 can be
evaluated on the model.

1.5.1 Temporal-logic properties

For verification of temporal properties, we use the model checking technique [7].
The input of the technique is the model of the system (a CI automaton in our
case) and a temporal property we want to check. For properties specification, we
use an extended version of the linear temporal logic LTL [8] which we refer to
as CI-LTL along the text. CI-LTL is designed to be able to express properties
about component interaction (i.e. labels in automata), but also about possible
interaction (i.e. label enableness). Therefore, it is both state-based and action-
based. CI-LTL uses all standard LTL operators, namely the next-step X , and
the until &/ operator, as well as the standard boolean operators. It has, however,
no atomic propositions as their role is played by two operators, £(I) and P(I),
where [ is a label. Their meaning is informally given as follows.

— &(I) means “Label [ is Enabled” and is true in all states of the system such
that the interaction represented by label [ can possibly happen.

— P(I) means “Label I is Proceeding” and is true whenever the interaction
represented by label [ is actually happening.

Syntaz. Formally, for a given set of labels, formulas of CI-LTL are defined as

1. P(l) and £(I) are formulas, where [ is a label.
2. If @ and ¥ are formulas, then also @AY, - &, X & and & U ¥ are formulas.



3. Every formula can be obtained by a finite number of applications of steps
(1) and (2).

Other operators can be defined as shortcuts: V¥ = (~PA-Y), d=>V =
S (PA-W), Fé=trued®, GP=-F-P where F is the future and G
the globally operator.

Semantics. Let C = (Q, Act,d,1, H) be a CI automaton. We define a run of C as
an infinite sequence o = qo, lo, 1,11, g2, - . - where ¢; € @, and Vi . (¢;, i, qi+1) € 0.
We further define:

— o(i) = ¢; (i-th state of o)

— o' =q;,li, qiv1,liv1,Qivo, - . - (i-th sub-run of o)

— L(o,i) =1; (i-th label of )

CI formulas are interpreted over runs where the satisfaction relation |= is defined
inductively as

o= &) < 3q.0(0) 5 ¢q

o =P(I) <~ L(0,0) =1

ocEDPANY < oEdando ¥

oE-9 = oED

cEX® — o'

cE®UW —= FjeNy.ol EPandVkeENy, k< j.of =&

Properties expressed in CI-LTL The logic enables us to specify many in-
teresting properties about component-based systems. Let us consider the model
resulting from the composition of the Trading System with a Manager who per-
forms some operations on the Inventory. Here are some properties of the model
we may want to check.

1. Whenever the StoreApplication (610) calls getTransactionContext() on the
Persistence (511), it gets a response at some point in the future. This can
be used to check that a new instance of the TransactionContextImpl can be
activated when demanded.

G (P(610, getTransactionContext, 511)
= F P(511, get TransactionContext’, 610))

2. If the Persistence (511) receives a call from the Store (521), it returns a
result to it. And before it does so, it is not able to deliver the result to
someone else - to Store (522).

G (P(521, getEntityManager, 511)
= X (= &(511, getEntityManager’, 522) U P (511, getEntityManager', 521)))



3. If the StoreApplication (610) starts a transaction with the Persistence (511),
it correctly closes the transaction before it is able to start another one.

G (P(610, beginTransaction, 511)
= X (= £(610, beginTransaction, 511) U P(610, close, 511)))

Another type of interesting properties are deadlock situations. Deadlocks are the
states from which in the model it is not possible to perform any step further.
On the level of the system, they do not necessarily need to represent halting of
the system. They may also reflect other kinds of failures, like breakdown, infinite
cycling, or just return of a warning message. In the context of component-based
systems, it is useful to check the model for local deadlocks, which we define as
deadlocks of a single component. A deadlock of a component in the model may be
very difficult to find, because even if a component cannot move, the system may
continue its execution because other components are running. CI-LTL allows us
to capture local deadlocks in the following way.

4. It cannot happen that the StoreApplication (610) is ready to call queryStock-
ItemById() but never can do so because its counterpart is never ready to
receive the call.

G (£(610, queryStockItemByld, —)
= F £(610, queryStockItemByld, 521))

5. It cannot happen that the StoreApplication (610) wants to begin a trans-
action, but the Persistence (511) is not right in the current state ready to
serve it (stricter version of local deadlock).

G - (8(610,begin’I‘ransacti0n,—) A~ 5(610,beginTransaction,511))

For the above mentioned model all the properties were automatically verified
with the help of the verification tool DiVinE (see section 1.6). The verification
confirmed that the model has all listed properties.

1.5.2 Use cases

Chapter 3 presents a set of sequence diagrams showing the behavioural scenarios
of the Trading System in terms of component interaction. However, we have
created our model independently on these scenarios. Now we show how we can
check that the model complies to them.

Each scenario is in fact a sequence of execution steps driven by the user-
given inputs. If we describe the scenarios as sequences of Cl-automata labels,
the model-checking method enables us to automatically explore the model and
find out whether the behaviours are present in it. We demonstrate the process
on the UC 1: ProcessSale :: CashPayment. For all other use cases it can be
done analogically.

First, we define the model that will be checked. It is a composition of the
Trading System with the automaton representing the usage profile determined by
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the Cashier (fig. 21). We model a finite behaviour of the cashier as an infinite one
(with a loop in the end) not to introduce deadlock states into the composition.

Second, we capture the use case scenario of UC 1: ProcessSale :: Cash-
Payment (chapter 3, fig. 77 and ?7) as a sequence of labels and check that such
a behaviour is really present in the model. Part of the scenario is rewritten in
table 1, where each line corresponds to a label in the sequence, e.g. the first line
to the label (910, btnStart NewSale,111).

No. | SENDER AcTION RECEIVER

1.| Cashier (910) btnStartNewSale CashBox (111)

2. | CashBox (111) sendSaleStartedEvent CashBoxController (112)

3. | CashBoxController (112) publishSaleStarted Event CashDeskChannel (200)

4. | CashDeskChannel (200) onEventSaleStarted CashDeskApplication (100)

5. | CashDeskChannel (200) onEventSaleStarted PrinterController (142)

6. | CashDeskChannel (200) onEventSaleStarted CashDeskGUI (162)

7. | CashBoxController (112) sendSaleStartedEvent’ CashBox (111)

8. | Cashier (910) btnScanltem Scanner (121)

9. | Scanner (121) sendProductBarcodeScannedEvent ScannerController (122)
10. | ScannerController (122) publishProductBarcodeScannedEvent | CashDeskChannel (200)
75. | Cashier (910) btnClose CashBox (111)

76. | CashBox (111) sendCashBoxClosedEvent CashBoxController (112)
77. | CashBoxController (112) publishCashBoxClosedEvent CashDeskChannel (200)
78. | CashDeskChannel (200) onEventCashBoxClosed CashDeskApplication (100)
79. | CashDeskChannel (200) onEventCashBoxClosed PrinterController (142)
80. | CashBoxController (112) sendCashBoxClosedEvent’ CashBox (111)

81. | CashDeskApplication (100) | publishSaleSuccessEvent CashDeskChannel (200)
82. | CashDeskChannel (200) onEventSaleSuccess PrinterController (142)
83. | CashDeskChannel (200) onEventSaleSuccess CashDeskGUI (162)

84. | CashDeskApplication (100) | publishExtAccountSaleEvent ExtCommChannel (300)
85. | ExtCommChannel (300) onEventExtAccountSale StoreApplication (610)
86. | CashDeskApplication (100) | publishExtSaleRegisteredEvent ExtCommChannel (300)
87. | ExtCommChannel (300) onEventExtSaleRegistered Coordinator (400)

Table 1. UC 1: ProcessSale :: CashPayment scenario

Last, we automatically verify that there is such a sequence present in the
model, possibly interleaved with other labels (execution of other components or
fine-grained interaction which is not captured on the sequence diagram). In case
it is, the verification process reports a run which shows this. From the run, one
can get the full interaction scenario which can be used later on to improve the
sequence diagram of the use case.

1.5.3 Test cases

Besides the use cases, chapter 3 provides formalization of use case behaviour by
way of test scenarios, which can be also evaluated on the model. The scenarios
are of two types: the informal ones that prospect for the existence of a good
behaviour, and the formal ones, given as Java test classes, that check that all
behaviours of the system are good in some sense. For both of them, we formulate
a corresponding CI-LTL formula that can be verified on the model.



Informal scenarios The informal scenarios are verified in a negative way.
The formula states that all the behaviours are bad, and we want to prove it
false — there is a behaviour that is not bad. We present this on the ShowProd-
uctsForOrdering scenario, which states that: Store shall provide functionality to
generate a report about products which are low on stock.

This functionality is represented by the getProductsWithLowStock () method
of the StoreApplication (610) component. So the formula is

- F £(610, getProductsWithLowStock', —)

and it states that from the initial state of the model we cannot reach a transition
that represents successful return of the getProductsWithLowStock() method.
The verification reported a run that does not satisfy this and hence represents
the good behaviour we have searched for.

Formal scenarios The Java test cases are specified by sequences of method calls
that should be correctly processed by the system. This can be interpreted in two
ways: the test passes if (1) the sequence of methods always finishes (possibly by
throwing an exception), or (2) it always finishes correctly (with no exceptions).
For both alternatives we present the formula that expresses it and verify it on
the model. Consider the test case ProcessSaleCase, which is represented by the
following sequence of methods:

initializeCashDesk(0,0); startNewSale(); enterAllRemainingProducts();
finishSale(); handleCashPayment(); updateInventory();

Alternative (1). We say that the test passes if each fair run in the model,
corresponding to the scenario given by the test case, comes to the end (is finite).
This can be expressed by the formula

Ypsc = (YINF = “YFAIR)

where

— Ypgsc is satisfied iff the usage profile of the system corresponds to the se-
quence given by the ProcessSaleCase.
— YINF = Q( V P(n,act,m))
(n,act,m)eSY ST
is satisfied on all runs on which all steps correspond to the steps of the
system (SY ST). Those runs model exactly the infinite runs of the system.
—vramn=_ A G((GEmact,m) = (F V Pln,act’,m))
(n,act,m)eL act’,m’
is satisfied on all fair runs. We say that a run is not fair iff in any of its states
one of the components is able to send an action, but never does anything,
because it is preempted by others.



Alternative (2). The test passes if it finishes in the sense of the alternative (1)
and no exception occurs during the execution. This can be expressed by the
formula

Ypsc = (—'1/JEXO A (Yrink = —'1/JFA1R))

where
- Yexc = f( V P(n,exc,m))
(n,exc,m)eE
is satisfied on all runs where an exception occurs, E represents the labels for
all exceptions.

The verification of the properties showed that the test alternative (2) fails,
because exceptions may occur during the scenario, but (1) passes successfully.

1.6 Tools

To accomplish automated verification we use the DiVinE tool [2] (http://anna.
fi.muni.cz/divine/) which implements distributed-memory LTL model-checking
and state-space analysis. Our language (described in subsection 1.2.3, referred
as the Coln language) is however slightly different from the standard input lan-
guage of DiVinE, therefore we actually use a modified version of DiVinE, with
added support for Coln models. This is not a part of the official release at this
moment, but will be included in the coming release.

The input to the tool consists of two parts. The first is a text file with the
model of the system. The file contains the specification of all basic components
and the composition operations. The second part of the input is the property
to be verified. It can be given either as a formula of CI-LTL (which is to be
preprocessed into a property automaton and added to the input file) or a hand-
written property automaton. The tool automatically verifies the model against
the given property and reports its validity. If the property is not valid, the tool
returns a run of the model that violates the property. The verification process
itself is performed in parallel on a cluster of processors and hence the tool is
capable of verifying even extremely large models.

1.7 Summary

The text discusses the capabilities of Component-interaction automata for cre-
ation of a detailed model of component-based system behaviour, which can be
later on used for formal analysis and verification. Component-interaction au-
tomata are very general and can be used for modelling of various kinds of
component-based systems.

In the CoCoME project, we have applied it to the modelling of a component-
based system given as Java implementation. For this type of systems, we have
defined the mapping of Java methods and events to the actions in the model,
and we have identified three basic types of composition (the cube-like, star-like,



and handshake-like) that we have realized by the parameterizable composition
operator the language provides.

During the modelling process, we have faced many modelling issues. These
include exception handling, dynamic creation and destruction of instances, reflec-
tion of the internal state of a component, and simulation of the publish-subscriber
communicational model. We have realized that thanks to the generality of the
Component-interaction automata language, we are able to handle all of these in
an elegant way.

For the analysis of the model, we have employed the parallel model check-
ing tool DiVinE (see section 1.6), which is able to automatically verify system
models, namely the communicational behaviour and interactions of individual
components. The tool can be used both for checking the properties of the sys-
tem and compliance of the model with the specification. The tool support for the
analysis has shown to be very capable. However we currently miss tool support
for the modelling phase. The models are written directly in the textual nota-
tion. In future, we aim to support the modelling with a user-friendly interface,
or some automatization in form of transformation from other formalisms, which
would allow other approaches to take advantage of our verification methods.
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