
On Combining Partial Order Reduction with
Fairness Assumptions�

Luboš Brim, Ivana Černá, Pavel Moravec, and Jǐŕı Šimša

Department of Computer Science, Faculty of Informatics
Masaryk University, Czech Republic

{brim,cerna,xmoravec,xsimsa}@fi.muni.cz

Abstract. We present a new approach to combine partial order reduc-
tion with fairness in the context of LTL model checking. For this purpose,
we define several behaviour classes representing typical fairness assump-
tions and examine how various reduction techniques affect these classes.
In particular, we consider both reductions preserving all behaviours and
reductions preserving only some behaviours.

1 Introduction

Fairness and partial order reduction are often indispensable for the verification of
liveness properties of concurrent systems. The former is mostly needed in order
to eliminate some ”unrealistic” executions, while the latter is one of the most
successful techniques for alleviating the state space explosion problem.

In model-based verification the adequacy of the model is important. As the
model is a simplification of the system under consideration, some behaviours
exhibited by the model may not be real ones. To tackle this problem the model
can be refined or, alternatively, some assumptions that disqualify fictional be-
haviours in the model are used. For example, when modelling a multi-process
concurrent system with a shared exclusive resource we may want to assume, for
the sake of simplicity, that no process can starve though some behaviours of
the model may not satisfy this assumption. This concept is commonly known as
fairness assumptions or simply fairness.

The most common form of fairness [4,7] is unconditional fairness that consid-
ers only behaviours with some action occurring infinitely many times. Further it
is reasonable to take into account enabledness of actions. This gives rise to even
finer concepts. First, strong fairness that considers only behaviours where every
action enabled infinitely many times is taken infinitely many times. Second, weak
fairness that disqualifies behaviours with some action continuously enabled from
a certain moment and subsequently never taken.

It might appear that the reason for using fairness is that it allows for simpler
models. However, this simplicity is often outbalanced by the complexity of al-
gorithms operating on a model with fairness. In fact, the main reason for using
� This work has been partially supported by the Grant Agency of Czech Republic grant

No. GACR 201/06/1338. and by the Academy of Sciences of the Czech Republic
grant. No. 1ET408050503.

L. Brim et al. (Eds.): FMICS and PDMC 2006, LNCS 4346, pp. 84–99, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Combining Partial Order Reduction with Fairness Assumptions 85

fairness is that it simplifies the modelling process—work that has to be done by
a human and not by a computer.

By contrast, partial order reduction allows for reduction of a state space of
a modelled system [5,8,9,11]. A particular instance of the concept consists of a
set of conditions that the reduction must satisfy. The idea behind partial order
reduction is that it might not be necessary to consider all enabled transitions at
a given state, but only a certain ample subset.

The justification for such reduction varies and depends on the nature of prop-
erties being examined. For example, we may select only one of mutually in-
dependent actions if we are interested in deadlocks. In general, a behavioural
equivalence over a set of behaviours is defined and the reduction is required to
contain a representative of each equivalence class.

In our previous work [2] we have proposed a combination of distribution and
partial order reduction; concepts that push back the frontiers of practical verifi-
cation, both fighting the state space explosion in its own way. In this paper we
examine a combination of partial order reduction (and distribution) with fair-
ness—a concept used for simplifying the process of modelling. We define four
behaviour classes reflecting typical fairness assumptions and two partial order
reduction techniques. For each behaviour class and reduction technique we prove
or disprove that the reduction preserves behaviours of the class.

Closest to our work on combination of partial order reduction and fairness is
that of Peled [8]. Peled uses equivalence robustness of properties to ensure that
all fair runs in the original state space have at least one stuttering equivalent
fair run in the reduced state space. Since fairness assumptions are not generally
equivalently robust, one has to add more dependencies among transitions in
order to achieve equivalence robustness. In author’s later work [9] the discussion
continues and on-the-fly state space generation is taken into account.

To contrast with our results, Peled considers only strong and weak fairness
and aims at preservation of all behaviours. Whereas we examine more fairness
assumptions and also study possibilities for better reduction.

This paper is organized as follows. Section 2 lays theoretical foundations for
modelling of a system, reviews partial order reduction, and formulates two of its
instances. The main theoretical contribution of the paper follows in Section 3
where we identify four behaviour classes and resolve whether they are preserved
under the proposed reductions. After these results are established, we discuss
their practical use in Section 4.

2 Partial Order Reduction

As a model we use labelled transition system. Let S be a set of states and transi-
tion be a partial function α : S → S, that is, a transition “can be taken” between
different pairs of states. A labelled transition system (LTS) is then defined as a
tuple M = (S, s0, Δ, L), where s0 ∈ S is an initial state, Δ is a set of transitions
over S, and L : S → 2AP is a labelling function that assigns to each state a
subset of some set AP of atomic propositions.

86 L. Brim et al.

Furthermore, a set of transitions enabled at a state s, denoted enabled(s), is
a set of all α ∈ Δ such that α(s) is defined. A reduction of M is then defined as
a pair (M, ample) where ample is a function assigning to each state s a subset
of enabled(s).

A path in M from a state s1 is a finite or infinite sequence π = s1
α1−→ s2

α2−→
. . .

αn−1−→ sn
αn−→ . . . of states interleaved with transitions—ending with a state in

the finite case—such that si ∈ S, αi ∈ Δ and αi(si, si+1) for each index i.

Let η = r1
α1−→ r2

α2−→ . . .
αm−1−→ rm be a finite path and σ = s1

β1−→ s2
β2−→

. . .
βn−1−→ sn

βn−→ . . . a finite or infinite path. Then first(σ) = s1 denotes the first
state of σ and last(η) = rm denotes the last state of η. If last(η) = first(σ) then

the path η ◦ σ = r1
α1−→ r2

α2−→ . . .
αm−1−→ s1

β1−→ s2
β2−→ . . .

βn−1−→ sn
βn−→ . . . is the

concatenation of the paths η and σ.
Finally, let γ = (γ1, γ2, . . . , γn) be a sequence of transitions from Δ. We say

that γ is a cycle if for every state s, γ1 ∈ enabled(s), γ2 ∈ enabled(γ1(s)), . . . ,γn ∈
enabled(γn−1(. . . (γ1(s)) . . .)) implies γn(. . . (γ1(s)) . . .) = s.

In order to simplify the presentation of the particular instance of the partial
order reduction technique we are going to suggest, we define two relations which
will help to formulate conditions constituting the instance.

Definition 1. An independence relation ¬D ⊆ Δ × Δ is a symmetric, anti-
reflexive relation, satisfying the following three conditions for each state s ∈ S
and for each (α, β) ∈ ¬D:

1. Enabledness – If α, β ∈ enabled(s), then α ∈ enabled(β(s)).
2. Commutativity – If α, β ∈ enabled(s), then α(β(s)) = β(α(s)).
3. Neutrality – If α ∈ enabled(s) and β ∈ enabled(α(s)), then β ∈ enabled(s).

The dependency relation D is the complement of ¬D.

Note that our definition of ¬D differs from the standard definition of ¬D given
in the literature. In particular, we add the neutrality condition and therefore
our definition of ¬D is more strict. We argue that, in practice, the relation ¬D
is approximated using rules conforming to our definition, which allows for more
concise proofs.

Definition 2. An invisibility relation ¬V ⊆ Δ is a unary relation with respect
to a set of atomic propositions AP , where for each α ∈ ¬V and for each pair of
states s, s′ ∈ S such that α(s, s′), L(s) ∩ AP = L(s′) ∩ AP holds. The visibility
relation V is the complement of ¬V .

The reduction of a given state space is defined by providing a set of conditions the
ample function has to fulfil to guarantee that behaviours with certain properties
are preserved. In the case of properties expressed as formulas from a fragment
of Linear Temporal Logic without any next modalities (LTL−X) the following
conditions are used [3].

C0. ample(s) = ∅ iff enabled(s) = ∅.

On Combining Partial Order Reduction with Fairness Assumptions 87

C1. Along every path in the model starting from s, the following condition
holds: a transition that is dependent on a transition in ample(s) cannot
occur without a transition in ample(s) occurring first.

C2. If enabled(s) �= ample(s), then every α ∈ ample(s) is invisible.
C3. A cycle is not allowed if it contains a state in which some transition α is

enabled, but is never included in ample(s) for any state s on the cycle.

Theorem 1 ([3]). Let ϕ be a LTL−X formula, M = (S, s0, Δ, L) be a LTS and
M ′ = (M, ample) a reduction of M satisfying conditions C0 through C3. Then
M |= ϕ ⇔ M ′ |= ϕ.

We now formulate a new condition that is supposed to replace the condition C3
and consequently allow for better reduction. Downside of the new condition is
that reduction based on it may not preserve all behaviours.

C4. From every state s there is reachable a fully expanded state i.e. state such
that ample(s) = enabled(s).

In practice conditions C3 and C4 are ensured using provisos based on par-
ticular state space exploration algorithm. For example, when using depth first
search the following provisos are used.

P3. If ample(s) �= enabled(s), then none of ample(s) transitions points back to
stack.

P4. If ample(s) �= enabled(s), then at least one of ample(s) transitions does
not point back to stack.

It can be shown by a simple argument that provisos P3 and P4 indeed imply
conditions C3 and C4 respectively. Clearly, proviso P4 is weaker than proviso
P3 and thus generally yields better reductions. Further advantage of condition
C4 over condition C3 comes to light when combining partial order reduction
with distribution; to ensure condition C4 cycle detection is not necessary.

Based on the above conditions we can consider two reduction techniques. The
first one uses the original set of conditions and the second one makes use of
the new condition C4. In particular, when a reduction satisfies conditions C0
through C3 we say it is safe and when it satisfies conditions C0 through C2
and C4 we say it is aggressive.

3 Behaviour Classes

In this section we identify several behaviour classes and investigate whether
they are preserved by safe and/or aggressive reduction techniques. As we are
interested in preservation of properties expressed in LTL−X , we use stuttering
equivalence as the behavioural equivalence.

Definition 3. Two infinite paths η = r1
α1−→ r2

α2−→ . . .
αn−1−→ rn

αn−→ . . . and

σ = s1
β1−→ s2

β2−→ . . .
βn−1−→ sn

βn−→ . . . are stuttering equivalent, denoted σ ∼st η,

88 L. Brim et al.

if there are two strictly increasing infinite sequences of integers (i0, i1, i2, . . .) and
(j0, j1, j2, . . .) such that i0 = j0 = 0 and for every k ≥ 0:

L(sik
) = L(sik+1) = . . . L(sik+1−1) = L(rjk

) = L(rjk+1) = . . . L(rjk+1−1)

Definition 4. Let M is an LTS. An LTL−X formula ϕ is invariant under stut-
tering iff for each pair of paths π and π′ such that π ∼st π′, M, π |= ϕ iff
M, π′ |= ϕ.

Theorem 2 ([10]). Any LTL−X formula is invariant under stuttering.

3.1 Paths with Infinitely Many Visible Transitions

Let trans(π) denotes the sequence of transitions on a path π and vis(π) denotes
the sequence of visible transitions on a path π.

Theorem 3. Let M be an LTS and M ′ = (M, ample) be a safe reduction. Then
for each path σ in M such that |vis(σ)| = ∞ there is a path η in M ′ such that
σ ∼st η with |vis(η)| = ∞.

For the proof we refer to the construction of infinite sequence of infinite paths
π0,π1,π2,. . . from the proof of Theorem 1 (see [3], Section 10.6). For the hint on
the construction see appendix A.

Theorem 4. Let M be an LTS and M ′ = (M, ample) an aggressive reduction.
Then for each path σ in M such that |vis(σ)| = ∞ there is a path η in M ′ such
that σ ∼st η.

There are two key steps to prove Theorem 4. The first step is an observation that
it is sufficient to consider only paths without scattered cycles. The next step is
a construction of stuttering equivalent path for a path without scattered cycles.

Definition 5. A path σ contains a scattered cycle γ = (γ1, γ2, . . . , γn) iff:

– γ is a cycle
– every transition from γ is invisible
– there are paths θ1, . . . , θn+1 such that all transitions in θ1, θ2, . . . θi are in-

dependent on the transition γi and σ = θ1 ◦ (last(θ1)
γ1→ first(θ2)) ◦ θ2 ◦ . . . ◦

θn ◦ (last(θn)
γn→ first(θn+1)) ◦ θn+1.

Lemma 1. For each path σ in M with |vis(σ)| = ∞ there is an infinite path
σ′ in M such that σ ∼st σ′, first(σ) = first(σ′) and σ′ does not contain any
scattered cycle.

Proof: Let us suppose that σ contains a scattered cycle γ = (γ1, γ2, . . . , γn) and
σ = θ1 ◦ (last(θ1)

γ1→ first(θ2)) ◦ θ2 ◦ . . . ◦ θn ◦ (last(θn)
γn→ first(θn+1)) ◦ θn+1.

According to the definition of the scattered cycle, the transition γ2 is enabled
in the state first(θ2) and is independent on all transitions in θ2. Therefore there

On Combining Partial Order Reduction with Fairness Assumptions 89

is a path in M containing the scattered cycle γ and such that the transition γ2
precedes all transitions from θ2. Using the same argument repeatedly we show
that there is a path θ1 ◦(last(θ1)

γ1→ . . .
γn→ last(θ1))◦θ′2 ◦ . . . θ′n ◦θn+1 in M where

trans(θi) = trans(θ′i) for all i = 2, . . . , n.
As γ is a cycle, θ1 ◦ θ′2 ◦ . . . θ′n ◦ θn+1 is a path in M stuttering equivalent to

σ. It seems that in this manner we could iteratively remove all scattered cycles
appearing in σ. However, by removing a scattered cycle from a path we could
create a new one. Therefore to prove existence of stuttering equivalent path
without scattered cycles we consider all existing as well as potential scattered
cycles on the path σ simultaneously.

Let δ = (δ1, δ2, . . .) be a subsequence of trans(σ) such that either δi is a
transition of a scattered cycle in σ or there is a finite number of scattered cycles
that can be removed from σ—through the construction above—with δi becoming
a transition of a scattered cycle afterwards.

Let (α1, α2, . . .) be a sequence of transitions which remain in trans(σ) after
removing the subsequence δ. We prove that there is an infinite path σ′ in M such
that first(σ) = first(σ′) and trans(σ′) = (α1, α2, . . .) as these together guarantee
σ ∼st σ′.

We show that for all i, αi ∈ enabled(αi−1(. . . (α1(first(σ))) . . .)). Let δj occurs
in σ before αi. Then δj can be removed from the path together—with the cycle
it belongs to—and αi still remains enabled thanks to the arguments mentioned
above. Consequently, σ′ is a path in M and as vis(σ) = vis(σ′) and |vis(σ)| = ∞,
it is infinite. �

It can be shown that any aggressive reduction contains a path stuttering equiv-
alent to a given path in M without any scattered cycle. The construction of the
stuttering equivalent path is suspended until Appendix.

3.2 Process Fair Paths

In this subsection we assume, that LTS M is modelling a multi-process system
and P denotes the set of its processes. Further, let π≥i denotes the suffix of a
path π that is a subsequence of π starting at i-th state.

Definition 6. Let σ be an infinite path and M an LTS. Then for X ⊆ P,
trans(X , σ) denotes the set of all transitions on σ of a process from X .

For every X ⊆ P such that all α ∈ trans(X , σ) are independent on all β ∈
trans(P \ X , σ) that is (α, β) ∈ ¬D, we define a path proj(X , σ) as a path
resulting from σ after removing all transitions of processes from P \ X .

Definition 7. An infinite path σ is process fair if for every P ∈ P the number
of P’s transition on σ is infinite.

Theorem 5. Let M be an LTS and M ′ = (M, ample) a safe reduction. Then
for each process fair path σ in M there is a process fair path η in M ′ such that
π ∼st η.

Again, for the proof we refer to the construction of infinite sequence of infinite
paths π0,π1,π2,. . . , from the proof of Theorem 1 and we omit the rest.

90 L. Brim et al.

Theorem 6. Let M be an LTS and M ′ = (M, ample) an aggressive reduction.
Then for each process fair path σ in M there is a path η in M ′ such that π ∼st η.

Similarly to the proof of Theorem 4, there are two key steps to prove Theorem 6.
The first step is an observation that it is sufficient to consider only non-reducible
paths. The next step is the construction of stuttering equivalent path path for a
non-reducible path.

Definition 8. Let σ = s1
α1−→ s2

α2−→ . . .
αn−1−→ sn

αn−→ . . . be a path in M .
If exists k ∈ N and a non-empty set of processes X �= P such that

– all α ∈ trans(X , σ≥k) are independent on all β ∈ trans(P \ X , σ≥k),
– all transitions from trans(P \ X , σ≥k) are invisible,
– both proj(X , σ≥k) and proj(P \ X , σ≥k) are infinite,

then σ is k-reducible and the path σ′ = s0
α1−→ . . .

αk−1−→ sk ◦ proj(X , σ≥k) is a
k-reduction of σ. If no such k and X exists then σ is called non-reducible.

Lemma 2. Let σ be a path in M and σ′ be a k-reduction of σ. Then σ′ is a
path in M and vis(σ) = vis(σ′).

Proof: By a simple argument from definition of ¬D and k-reducibility. �

Lemma 3. Let σ be a process fair path in M . Then there is an infinite path σ′

in M such that σ ∼st σ′ and σ′ is non-reducible.

Proof: We inductively construct a finite sequence of paths σ0, σ1, . . . , σn such
that σ0 = σ and σn = σ′ and show that σi is a k-reduction of σi−1 for every
i = 1, . . . , n.

We start with σ0 = σ. If σi is k-reducible for some k and X we take the smallest
k and subsequently smallest possible X and we let σi+1 to be the respective k-
reduction of σi. Otherwise, the construction is finished.

Note that the construction is deterministic – as we choose the smallest possible
k and X – and finite since the sequence is strictly decreasing in the number of
processes which take a transition infinitely many times. �

Let σ be a non-reducible path in M resulting from the process fair path trans-
formation outlined above. The construction of a path stutter equivalent to σ in
an aggressive reduction (M, ample) can be found in Appendix.

3.3 Weakly Fair Paths

Definition 9. Let σ = s1
α1−→ s2

α2−→ . . .
αn−1−→ sn

αn−→ . . . be a path. If there do
not exist i and β such that for all j ≥ i, β ∈ enabled(sj) and β �= αj, then σ is
weakly fair.

It can be shown by a simple argument using induction, that every weakly fair
path in a model has stuttering equivalent weakly fair path in any safe reduction

On Combining Partial Order Reduction with Fairness Assumptions 91

α 3 α 3

α 4 α 4

1αα 2 α 2α 1

... ...

β

β

β

β

... ...

α 3

α 4 α 4

α 1 α 2

β

β

Fig. 1. Model and its reduction

of the model. For the idea of the proof we refer once again to the construction
of infinite sequence of infinite paths π0,π1,π2,. . . , from the proof of Theorem 1.

As Figure 1 demonstrates, weakly fair behaviour does not have to be preserved
in aggressive reductions. On the left there is a part of the model state space and
on the right there is a part of its reduction state space. Let α transitions be
mutually dependent and transitions β and α4 be visible. Then weakly fair path
β · (α1 · α2)ω in the model has no stuttering equivalent path in the reduction.

3.4 Strongly Fair Paths

Definition 10. Let σ = s1
α1−→ s2

α2−→ . . .
αn−1−→ sn

αn−→ . . . be a path. If for every
β enabled in infinitely many states on σ there exists infinitely many j’s such that
β = αj then σ is strongly fair.

It can be shown by a simple argument using induction, that every strongly fair
path in a model has a stuttering equivalent path in a safe reduction. However,
this path may not be strongly fair as Figure 2 demonstrates.

On the left is a part of model state space and on the right is a part of its
reduction state space. Let α transitions be mutually dependent as well as β
transitions and γ be dependent on all α and β transitions. Further let α1, α2
and γ be visible transitions. For the strongly fair path (α1 · α2 · β1 · β2)ω in
the model state space, there is no stuttering equivalent strongly fair path in the
reduction state space.

Furthermore, Figure 3 demonstrates that a strongly fair behaviour does not
have to be preserved in aggressive reductions. On the left is a part of the model
state space and on the right is a part of its reduction state space. Let α transitions
be mutually dependent and transition β and α3 be visible. Then a strongly fair
path β ·(α1 ·α2)ω in the model has no stuttering equivalent path in the reduction.

92 L. Brim et al.

1α

β 2

β 1

2β
α 2 1α α 2

1α

β 2

2β
α 2 1α α 2

β 1

β 1

β 1

γ

......

... ...

1α

β 1

2β
α 2

1α
2β

α 2

β 1

β 1

2β

β 1

2β

γ

...

... ...

...

Fig. 2. Model and its reduction

1αα 2 α 2α 1

α 1 α 1

α 3 α 3

α 1 α 2

α 1

α 3 α 3

β

β

β

β

... ...

β

β

... ...

Fig. 3. Model and its reduction

4 Applications

In this section, we identify typical fairness assumptions and relate them, one by
one, to results established in the previous section. We try to point out situations
where either aggressive or safe reduction may be of use.

Another issue to be discussed is related to usage of fairness model check-
ing algorithms. Although a reduction may preserve all fair behaviours, it may

On Combining Partial Order Reduction with Fairness Assumptions 93

not preserve them “fairly”. Therefore, a fairness model checking algorithm may
return different results when applied on the model and on the reduction.

Situation 1. Certain subset of actions of modelled system is considered and
each of them is taken infinitely many times.

If at least one of the relevant actions is visible, we can apply an aggressive
reduction as every behaviour of our interest is preserved in such a reduction.
Moreover, the same fairness model checking algorithm can be applied on the
reduction.

Otherwise, aggressive reduction does not guarantee that the desired behav-
iours are preserved in the reduction. On the contrary, safe reductions preserve all
behaviours. Furthermore, as the respective construction of a stuttering equiv-
alent path for this set of conditions does not remove any transition from the
original path, the same fairness model checking algorithm can be applied.

Situation 2. Certain subset of processes of multi-process system is considered
and each of them performs some action infinitely many times.

First, if the subset is equal to the set of all processes, the result for process
fair paths can be applied. Unfortunately, a non-reducible representative of a
process fair path might not be fair. Consider the example on Figure 4. On the
left there is a part of model state space and on the right there is a part of its
reduction state space. Let α transitions be mutually dependent as well as β
transitions. Further let β1, β2 and α4 be visible transitions. Finally, let {α1, β1}
be the fairness assumption.

The path (β1 · β2 · α1 · α2)ω in the model state space satisfies the assumption.
However, there is no stuttering equivalent path in the reduction state space,
which would satisfy the assumption. Thus, one cannot use the same fairness

α 3 α 3 α 3

α 4 α 4 α 4 α 4

1αα 1 α 1

α 2α 2α 2

β 1

2β

β 2

β 2

β 1

β 2

β 1

β 1

β 2

β 2

β 1

β 1

......

Fig. 4. Model and its reduction

94 L. Brim et al.

model checking algorithm both for a model M and its aggressive reduction MR

and the equivalence M |=F ϕ ⇔ MR |=F ϕ does not hold in general.
Nevertheless, this approach can be used for checking validity of ϕ as MR |=

ϕ ⇒ M |=F ϕ. Actually, we find this result to be quite interesting, as checking
validity is generally more “space and time demanding” task than checking in-
validity—which can be partially dealt with using approximation and stochastic
techniques. Again, a safe reduction preserves all behaviours. Moreover, the re-
spective construction of a stutter equivalent path in a safe reduction does not
remove any transition from the original path and thus the original fairness model
checking algorithm can be used as well.

Alternatively, if we somehow guarantee that every time a process performs
infinitely many actions, it performs infinitely many visible actions as well, then
all desired behaviours are preserved even by an aggressive reduction and the same
fairness model checking algorithm can be applied. However, the more visible
actions there are, the smaller the reduction generally is.

Situation 3. Only weakly fair behaviours are considered.

As a weakly fair path might not have a stuttering equivalent path in an
aggressive reduction, we discuss this assumption in the context of safe reductions.

These reductions preserve all behaviours and as the respective construction
of a stuttering equivalent paths does not remove any transition from the original
path, the original fairness model checking algorithm can be applied.

Situation 4. Only strongly fair behaviours are considered.

In general aggressive reductions do not preserve strongly fair behaviours. On
the contrary, safe reductions preserve all strongly fair behaviours, but the re-
sulting stuttering equivalent paths do not have to be strongly fair. Therefore the
same fairness model checking algorithm cannot be applied.

In order to use the same fairness model checking algorithm the dependency
relation can be modified as described in [8]. Alternatively, any model checking
algorithm can be used for checking the validity of ϕ as MR |= ϕ ⇒ M |=F ϕ.

Finally, if the model represents a multi-process system where every process
has always enabled at least one action, strong fairness implies process fairness
and aggressive reductions can be used for checking validity.

5 Conclusions

The paper explores a combination of two concepts: partial order reduction and
fairness, both used in the context of LTL model checking. While the first one is
essential in alleviating the state space explosion, the second one simplifies the
modelling process.

For the partial order reduction we consider a well-known safe variant together
with a new variant represented by condition C4 which is supposed to replace
condition C3. It allows for better reduction in general and yet ensures that

On Combining Partial Order Reduction with Fairness Assumptions 95

certain subset of behaviours is preserved. We have defined safe reduction as
any reduction satisfying conditions C0 through C3 and we have used the new
condition to define aggressive reduction. Then we have defined four behavioural
classes motivated by typical fairness assumptions. The paper gives a detailed
analysis of fairness concepts and demonstrates how they are affected by safe and
aggressive reductions.

For several reductions we have encountered the following problem. Even
though fair behaviour is preserved by the reduction it does not have an equivalent
fair behaviour representative in the reduced model. This disables the possibility
to use the same fairness model checking algorithm. On the contrary, as all fair
behaviours in a model M have a stuttering equivalent behaviour in a reduction
MR and MR |= ϕ =⇒ M |=F ϕ, we can actually check formula validity under
fairness assumptions. Whether our results can be extended to checking invalidity
is left as an open problem.

References

1. D. Bosnacki. Partial order reduction in presence of rendez-vous communications
with unless constructs and weak fairness. In Theoretical and Practical Aspects of
SPIN Model Checking (SPIN 1999), volume 1680 of Lecture Notes in Computer
Science, pages 40–56. Springer, 1999.

2. L. Brim, I. Černá, P. Moravec, and J. Šimša. Distributed Partial Order Reduction.
Electronic Notes in Theoretical Computer Science, 128:63–74, April 2005.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

4. N. Francez. Fairness. Texts and Monographs in Computer Science. Springer, 1986.
5. P. Godefroid and D. Pirottin. Refining dependencies improves partial-order veri-

fication methods. In Proc. of the 5th Conference on Computer-Aided Verification,
volume 697 of LNCS, pages 438–449. Springer, 1992.

6. G.J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In Proc. 12th Int. Conf on Protocol Specifica-
tion, Testing, and Verification, INWG/IFIP, Orlando, Fl., June 1992.

7. T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Informati-
cae, pages 175–193, 2000.

8. D. Peled. All from one, one from all: on model checking using representatives. In
Proceedings of the 5th International Conference on Computer Aided Verification,
Greece, number 697 in Lecture Notes in Computer Science, pages 409–423, Berlin-
Heidelberg-New York, 1993. Springer.

9. D. Peled. Combining partial order reductions with on-the-fly model-checking. In
Proceedings of CAV’94, pages 377–390. Springer Verlag, LNCS 818, 1994.

10. D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible with-
out the nexttime operator. Information Processing Letters, 1997.

11. A. Valmari. A stubborn attack on state explosion. In Proc. of the 2nd Workshop
on Computer-Aided Verification, volume 531 of LNCS, pages 156–165. Springer,
1991.

96 L. Brim et al.

A Appendix

Proof of Theorems 4 and 6 follow the same direction. Thus, we present it just
once and we distinguish between different context only when necessary.

Our goal is the following. Given a path σ in M and a reduction M ′ =
(M, ample) satisfying conditions C0 through C2 and C4, show that there is
a path in M ′ stuttering equivalent to σ.

First, we inductively describe an infinite sequence of paths π0, π1, π2, . . . ,
where σ = π0 and for every i, πi = ηi ◦ θi is a path in M , ηi is a path in M ′,
and | ηi |= i.

Basic step. Let η0 = ε, θ0 = σ.
Inductive step. Let s0 = last(ηi) = first(θi), θi = s0

α1→ s1
α2→ s2 . . .

There are two possibilities:
A If α1 ∈ ample(s0) then ηi+1 = ηi ◦ (s0

α1→ s1), θi+1 = s1
α2→ s2 . . .

B The case α1 /∈ ample(s0) divides into two subcases:
B1 There is k such that αk ∈ ample(s0) and (αj , αk) are independent

for all 1 ≤ j < k. We choose the smallest possible k. Then ηi+1 =
ηi ◦ (s0

αk→ αk(s0)). As transitions αj are independent, αk(s0)
α1→

αk(s1)
α2→ αk(s2) . . . is a path in M . Let θi+1 = s0

αk→ αk(s0)
α1→

αk(s1)
α2→ . . .

αk−1→ αk(sk)
αk+1→ sk+2

αk+2→ . . .
B2 αk /∈ ample(s0) for any k. Then from the condition C1 all transitions

in ample(s0) are independent on all transitions in θi. Let ξ be the
shortest path in M ′ from s0 to a fully expanded state (the existence of
such a path is guaranteed by C4) and let β be the first transition of ξ.

Then ηi+1 = ηi ◦ (s0
β→ β(s0)), θi+1 = β(s0)

α1→ β(s1)
α2→ β(s2) . . .

Cases B1 and B2 cover all possibilities conforming to C1.

Notice that a simple argument based on the definition of ¬D yields that the
rule B1 cannot be applied after the rule B2 without the rule A being applied
in the meantime. This fact is implicitly employed in proof of Lemma 7.

Next, we characterise properties of the path η and then we prove the stuttering
equivalence between η and σ.

Properties of η

Lemma 4. For every i, πi = ηi ◦ θi is a path in M , ηi is a path in M ′, and
| ηi |= i.

Proof: By induction. Induction basis for i = 0 holds trivially. In induction
step, we first prove that πi is a path in M . It obviously holds for the case
A. In the case B1, (αj , αk) are independent, for all j < k. Hence there is a
path ξ = s0

αk→ αk(s0)
α1→ αk(s1)

α2→ . . .
αk−1→ αk(sk)

αk+1→ sk+2
αk+2→ . . . in M ,

where αk is moved before α1α2α3 . . . αk−1. Note that αk(sk) = sk+1. Therefore,
αk(sk)

αk+1→ sk+2 is the same as sk+1
αk+1→ sk+2. In the case B2 we execute a

transition which is independent on all transitions in θi−1, hence θi is obviously a
path in M . Certainly ηi is a path in M ′ and | ηi |= i in all cases, as we append
to ηi−1 exactly one transition from ample(last(ηi−1)). �

On Combining Partial Order Reduction with Fairness Assumptions 97

Lemma 5. Let η = limi→∞ ηi. Then η is a path in M ′.

Proof: By induction to i. �

Stuttering equivalence

Lemma 6. The following holds for all i, j such that j ≥ i ≥ 0.

1. πi ∼st πj .
2. vis(πi) = vis(πj).
3. Let ξi be a prefix of πi and ξj be a prefix of πj such that vis(ξi) = vis(ξj).

Then L(last(ξi)) = L(last(ξj)).

Proof: It is sufficient to consider the case where j = i + 1. Consider three ways
of constructing πi+1 from πi. In case A, πi+1 = πi and the statement holds
trivially.

In case B1, πi+1 is obtained from πi by executing a invisible transition αk

in πi+1 earlier than it is executed in πi. In this case, we replace the sequence
s0

α1→ s1
α2→ . . .

αk−1→ sk−1
αk→ sk by s0

αk→ αk(s0)
α1→ αk(s1)

α2→ . . .
αk−1→ αk(sk−1).

Because αk is invisible, corresponding states have the same label, that is, for
each 0 < l ≤ k, L(sl) = L(αk(sl)). Also, the order of the visible transitions
remains unchanged. Parts 1, 2, and 3 follow immediately.

Finally, consider case B2, where the difference between πi and πi+1 is that
πi+1 includes an additional invisible transition β. Thus, we replace some suffix

s0
α1→ s1

α2→ . . . by s0
β→ β(s0))

α1→ β(s1)
α2→ So, L(sl) = L(β(sl)) for l ≥ 0.

Again, the order of visible transitions remains unchanged and parts 1, 2, and 3
follow immediately. �

In the following lemma we have to differentiate between individual cases.

Lemma 7. During the construction of η, the case A is chosen infinitely often.

Proof: for paths with infinitely many visible transitions
First, we prove that for every i, θi does not contain any scattered cycle.
By induction to i. For θ0 = σ the statement holds trivially. If θi is constructed

applying A or B2 it does not contain any cycle as θi−1 does not contain any.
In case of B1, a presence of a scattered cycle in θi would imply a presence of a
scattered cycle in θi−1

Now, let us assume that there is an index j such that during the construction
of πj , πj+1, . . . only the rule B is applied. Then either B1 or B2 is applied
infinitely many times.

In case rule B1 is applied infinitely many times there is an infinite sequence
of transitions which are added to the prefix ηj−1. These transitions are invisible
and independent on all other transitions in θj . From finiteness of the set of states
we have that some of the considered transitions form a cycle, which is moreover
a scattered cycle in θj . Hence a contradiction.

This gives us an existence of an index k ≥ j such that for the construction
of πk, πk+1, . . . only the rule B2 is applied. But this is a contradiction to the

98 L. Brim et al.

fact that in B2 we always choose a transition from the shortest path to a fully
expanded state. �

Proof: for process fair paths
First, we prove that for every i, θi is non-reducible.
By induction to i. For θ0 = σ the statement holds trivially. If θi is constructed

applying A, B1 or B2 it is non-reducible as θi−1 is.
Now, let us assume that there is an index j such that during the construction

of πj , πj+1, . . . only the rule B is applied. Then either B1 or B2 is applied
infinitely many times.

In case rule B1 is applied infinitely many times there is an infinite sequence
of transitions which are added to the prefix ηj−1. These transitions are invisi-
ble and independent on all other transitions in θj . Let P be the process taking
α transition on θj . If | proj({P}, θj) |= ∞, then θj is 0-reducible and we get
a contradiction. Therefore | proj({P}, θj) | must be finite and θj is not re-
ducible for any k. Moreover, σ is a result of process fair path transformation
described in Lemma 3. The original process fair path contained infinitely many
P ’s transitions. Thus, during the construction of σ, P ’s transitions were removed
because of some k-reduction. But in that particular moment of the construction
a j-reduction removing transitions selected by B1 rule would be possible too.
Finally, as j is strictly smaller than k, this is a contradiction as well.

This gives us an existence of an index k ≥ j such that for the construction
of πk, πk+1, . . . only the rule B2 is applied. But this is a contradiction to the
fact that in B2 we always choose a transition from the shortest path to a fully
expanded state. �

Lemma 8. Let α be the first transition of θi. Then there exists j > i: α is the
last transition of ηj and ∀k : i ≤ k < j: α is the first transition of θk.

Proof: The rules B1 and B2 leave the first transition α of θi unchanged, the
rule A shifts the transition α to ηi. Thus it is sufficient to prove that during
the construction of η, the rule A is applied infinitely often. This follows from
Lemma 7. �

Lemma 9. Let δ be the first visible transition on θi, prefix δ(θi) be the maximal
prefix of trans(θi) that does not contain δ. Then either δ is the first transition of
θi and the last transition of ηi+1 or δ is the first visible transition of θi+1, the last
transition of ηi+1 is invisible and prefixδ(θi+1) is a subsequence of prefixδ(θi).

Proof:

– If θi+1 is constructed according to A, then δ is the last transition of ηi+1.
– If B1 is applied then an invisible transition αk from θi is appended to ηi

to form ηi+1 and δ is still the first visible transition of θi+1. The prefix
prefixδ(θi) is either unchanged or shortened by the transition αk.

– Otherwise an invisible transition β is appended to ηi to form ηi+1 and
prefixδ(θi+1) = prefixδ(θi). �

On Combining Partial Order Reduction with Fairness Assumptions 99

Lemma 10. Let v be a prefix of vis(σ). Then there exists a path ηi such that
v = vis(ηi).

Proof: By induction to the length of v. For the basic step | v |= 0 the statement
holds trivially. For the induction step we must prove that if v · δ is a prefix of
vis(σ) and there is a path ηi such that vis(ηi) = v, then there is a path ηj with
j > i such that vis(ηi+1) = v ·δ. Thus, we need to show that δ will be eventually
added to ηj for some j > i, and that no other visible transition will be added
to ηk for i < k < j. According to the case A in the construction, we may add
a visible transition to the end of ηk to form ηk+1 only if it appears as the first
transition of θk. Lemma 9 shows that δ remains the first visible transition in
successive paths θk after θi unless it is being added to some ηj . Moreover, the
sequence of transitions before δ can only shrink. Lemma 8 shows that the first
transition in each θk is eventually removed and added to the end of some ηl for
l > k. Thus, δ as well is eventually added to some sequence ηj . �

Proof: of Theorems 4 and 6
We will show that the described path η = limi→∞ ηi is stutter equivalent to

the original path σ.
First note that vis(σ) = vis(η). It follows from Lemma 10 that for every

prefix of σ there is a prefix of η with the same sequence of visible transitions.
The opposite follows from Lemma 6.

Next we construct two infinite sequences of indexes 0 = i0 < i1 < . . . and
0 = j0 < j1 < . . . that define corresponding stuttering blocks of σ and η, as
required in Definition 3. For every natural n, let in be the length of the smallest
prefix ξin of σ that contains exactly n visible transitions. Let jn be the length of
the smallest prefix ηjn of η that contains the same sequence of visible transitions
as ξin . Recall that ηjn is a prefix of πjn . Then by Lemma 6, L(sin) = L(rjn).
By the definition of visible transitions we also know that if n > 0, for in−1 ≤
k < in − 1, L(sk) = L(sin−1). This is because in−1 is the length of the smallest
prefix ξin−1 of σ that contains exactly n − 1 visible transitions. Thus, there is
no visible transition between in−1 and in − 1. Similarly, for jn−1 ≤ l < jn − 1,
L(rl) = L(rjn−1). �

	Introduction
	Partial Order Reduction
	Behaviour Classes
	Paths with Infinitely Many Visible Transitions
	Process Fair Paths
	Weakly Fair Paths
	Strongly Fair Paths

	Applications
	Conclusions
	Appendix

