
Enhancing Random Walk State Space
Exploration?

Radek Pelánek, Tomáš Hanžl, Ivana Černá, and Luboš Brim

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic

{xpelanek,xhanzl,cerna,brim}@fi.muni.cz

Abstract. We study the behaviour of the random walk method in the
context of model checking and its capacity to explore a state space.
We describe the methodology we have used for observing the random
walk and report on the results obtained. We also describe many possible
enhancements of the random walk and study their behaviour and lim-
its. Finally, we discuss some practically important but often neglected
issues like counterexamples, coverage estimation, and setting of param-
eters. Similar methodology can be used for studying other state space
exploration techniques like bit-state hashing, partial storage methods, or
partial order reduction.

1 Introduction

In this work, we are concerned with verification of closed systems (i.e., sys-
tems given together with their environment). Verification of such system can be
viewed as a search in the state space of the system for an error state. There are
two basic approaches to the verification problem. Testing explores some paths
through the state space; the selection is almost exclusively based on informal and
heuristical methods or on a random choice. This approach is fast, has low mem-
ory requirements and is successful at finding obvious bugs. The disadvantages
are that it is incomplete and it often misses corner case bugs. Model checking
explores all paths through the state space. This approach can find corner case
bugs and can guarantee the correctness of the system. The disadvantage is that
it is very computationally expensive. In this work we try to combine advantages
of both approaches: we take the random walk method (testing approach) and try
to enhance it with some exhaustiveness (model checking approach). Particularly,
we address the following issues:

– How successful is random walk at exploring state spaces? How large portion
of the state space can be effectively explored by the basic random walk
method? What is the behaviour of random walk on practical examples? Can
it be theoretically explained and predicted?

? Supported by the Grant Agency of Czech Republic grant No. 201/03/0509

– How can we enhance random walk method by using additional memory?
Should the available memory be used rather for local exhaustive searches or
for caching already visited states? What are the other possible ways how to
use the memory?

We use experimental approach to address these issues. We performed exper-
iments on a large set of graphs corresponding to state spaces of real systems as
well as on random and regular graphs. Our results are both positive and negative.
On the positive side, we find that with the enhanced random walk it is feasible
to visit most states in the state space with reasonable memory requirements (up
to 20 times smaller than for classical exhaustive search). On the negative side,
we find that the behaviour of random walk methods is very dependent on the
specific state space, that it is very difficult to predict and that 100% state space
coverage is not usually possible.

Related Work The random walk method was first applied to model checking
by West [24] who demonstrated on a case study that the random walk could be a
reasonable technique for finding bugs in real models. Recently, random walk has
been used for verification in the model checker Lurch [18, 17]. Formal foundation
for model checking by random walk were given by Grosu and Smolka [9].

There is an extensive theoretical work about random walks (in the mathemat-
ical setting a special case of Markov chains). However, most of the results concern
undirected graphs whereas the state spaces encountered in model checking are
represented as directed graphs. For directed graphs just pessimistic, exponential
time bound on the expected coverage time, is known. There have been several
attempts to restrict the class of models in order to guarantee the effectiveness
of the random walk, e.g. Eulerian directed graph [10] and systems of symmet-
ric dyadic flip flops [16]. Unfortunately, the resulting classes of models are very
small and are not of practical interest in model checking.

Pure random walk does not use any memory at all working with an actual
state only and does not store any information about previously visited parts of
the state space. Partial search methods presented in [12, 15, 13, 22, 21] can be
seen as enhancing the random walk by some additional memory. Other partial
search methods are based on bit-state hashing [11] and on genetic manipula-
tions [7].

The probabilistic approach is also employed by partial storage methods.
These methods cover the whole state space and terminate. However, during
the exploration only some states are stored reducing thus the overall memory
requirements. Partial storage methods include state space caching [6, 23, 5], se-
lective storing [2], and sweep line method [3].

Guided search combines the random exploration with the static analysis of
the model. This approach has been used for guiding toward an error state in A∗

search algorithm [14, 8, 4, 20] mainly.
A general experience based on all the above mentioned works is that there

is no an universal solution in the framework of the random walk based partial

2

methods. The right choice of a method and/or its parameters depends on the
application and its specific properties. In addition, most of these papers propose a
new single heuristic and demonstrate its potential on a small set of examples. The
experimental results reported are neither explained nor the proposed method is
compared to others.

The possible way how to make the random walk based partial search univer-
sally applicable is thus not to come up with ”just another heuristic”. What is
really needed is a formation of a systematic framework for comparing existing
methods accompanied with their exact evaluation on real-life models. The bene-
fit of having such a sound basis should be a (semi-automatic or even automatic)
method guiding the user in tuning the random walk based search for the given
model.

Contributions In this work we try to make a first step toward the above stated
goals. We thoroughly study the behaviour of the random walk method in model
checking and its capacity to explore the state space. We describe the method-
ology used for comparing known heuristics and the obtained results. We also
describe many possible enhancements of the random walk and study their be-
haviour and limits. Based on our experimental work we formulate guidelines for
using the random walk method in model checking, state its limits, and detail
what can and cannot be expected from the method. Finally, we discuss some
practically important but often neglected issues like generating the counterex-
amples, coverage estimation, and setting of various parameters. Similar method-
ology can be used for other state space exploration techniques like bit-state
hashing, partial storage methods, or partial order reduction.

2 Experimental Setting

The work presented in this paper relies on experiments. It contains observations
based on results of measuring various characteristics related to the random walk
technique, rather than formal analytical theorems and statements. Therefore, we
start by describing the types of graphs that have been used in our experiments.
The graphs can be grouped into the following three categories.

Random graphs Random graphs have been used quite often to demonstrate
the behaviour of model checking algorithms and techniques. In [19] we have
argued that graphs which occur in model checking applications have different
structural properties than random graphs. Our experience is that the behaviour
of the random walk on random graphs significantly differs from that on model
checking graphs (see Section 3). Therefore we have used random graphs for
comparisons only.

Regular graphs Regular graphs (e.g. grids, chains, circles) are also unsatisfac-
tory as models of real-life systems. Nevertheless, regular graphs are quite suitable

3

for understanding the behaviour of algorithms. In our experiments we have used
manually constructed regular graphs for testing (and usually falsifying) hypoth-
esizes about the behaviour of the random walk.

Model checking graphs Most of the experiments have been conducted on
graphs originated from real-life state spaces. We have used a large set of graphs
from our previous work [19]. These graphs have been attained from six explicit
model checking tools. The list of all the models is given in Table 1, and all the
graphs can be downloaded from [1]. These graphs do not contain any information
about the model (neither atomic propositions in states nor labels on edges). We
have used the model checking graphs to evaluate how much does the random
walk depend on structural properties of graphs.

Moreover, we have also performed several experiments on graphs with nodes
labeled by atomic propositions and action names added to the edges. These state
spaces have been generated using our own explicit model checking tool DiVinE.
The graphs have been used in experiments focused on the evaluation of the
correspondence between the behaviour of the random walk and the properties
of the models.

All the graphs used in experiments as well as details of measurements can be
found on the web page http://fi.muni.cz/~xpelanek/random_walk/.

3 Pure Random Walk

In this section we consider the basic form of the random walk to perform the
simple reachability task on a state space graph. The algorithm starts in the
initial state of the graph. In each step it randomly chooses a successor of the
current state and visits it. If the current state does not have any successors
the algorithm re-starts from the initial state. The algorithm terminates when
a target state is found or when some in advance given limit on the number of
steps is exceeded. Similarly to other randomised algorithms, we always run the
random walk several times to obtain expected behaviour.

From the theoretical point of view the most relevant characteristic of the
random walk is the covering time, i.e. the expected number of steps after which
all vertexes of the graph are visited. For undirected graphs the covering time
is polynomial. For directed graphs the covering time can be exponential. For
restricted classes of directed graphs, like Eulerian graphs or models of special
protocols [16], the covering time is polynomial. These classes are too restrictive
to be of any practical interest for model checking.

Our goal is to find out how the random walk behaves on graphs resulting
from verification problems. Although the covering time is not really exponential
in practise, it is still too high to be measured experimentally even for medium
sized graphs (hundreds of states). For this reason we have measured the cover-
age, i.e. the ratio of vertexes which were visited after a given number of steps
to all states. In order to get a deeper insight, we have investigated how various

4

graph properties can influence the coverage. Here we summarise our observa-
tions. Unless stated otherwise, the observations relates to experiments on model
checking graphs.

Coverage The coverage increases with the number of computation steps in a
log-like fashion, i.e. at the beginning of the computation the number of newly
visited states is high and it rapidly decreases with time. After a threshold point
is reached the number of newly visited states drops nearly to zero. After this
point it is meaningless to continue in the exploration. Our experience indicates
that this happens when the number of steps is about ten times the size of the
graph. This is the basic limit on the number of steps that we have used in our
experiments.

Table 1 summarises the coverage achieved by the pure random walk on our set
of model checking graphs. Note that the resulting coverage is very much graph
dependent. In some cases the pure random walk can cover the whole graph,
sometimes it covers less than 1% of states.

Correlation with graph properties In [19] we have studied typical structural
properties of state spaces. A natural question is whether there is any correlation
between the efficiency (coverage) of the random walk and these properties. For
example, we have examined the relation between the coverage of the random
walk an the number of strongly connected components, the average degree, the
ratio of back level edges, and the frequency of diamonds.

We have found out that there is no straightforward correlation with any of
these graph properties. The behaviour of the random walk is not determined by
a single characteristic of the given graph but rather by an interplay of several
of them. This means that it might not be possible to predict the efficiency of
the random walk just from the knowledge of global properties of the state space.
The intuition why this is so is illustrated in Fig. 1. The two graphs have similar
global graph properties, but the efficiency of the random walk is very different.
While the first graph is easily covered, the random walk will behave poorly on
the second one. Note that graphs possessing the demonstrated properties occur
naturally in model checking.

Fig. 1. Graphs with similar properties but different random walk coverage.

5

Another point we would like to stress is that using random graphs for testing
specific random walk based model checking heuristics can be very misleading.
Fig. 2 demonstrates the correlation between the average vertex degree and the
random walk coverage both for random graphs and model checking graphs. There
is a clear correlation for random graphs. For model checking graphs such a
correlation has not been observed.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 1.5 2 2.5 3 3.5 4

C
o
v
e
r
a
g
e

Average degree

Random graphs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

C
o
v
e
r
a
g
e

Average degree

Model checking graphs

Fig. 2. Correlation between the average degree and coverage for random graphs and
model checking graphs.

Distribution of visits Our next goal is to find out whether the probability
of visiting a given state has an uniform distribution or whether some states are
visited more frequently than the others. We have found out that the frequency of
visits has the power law distribution. Thus the probability that a given state is
visited is far from being uniform. This leads to the conclusion that the subgraph
visited by the random walk cannot be considered to be a random sample of the
whole graph!

We have tried to figure out reasons why some states are visited much more
often than the others. Similarly to the global coverage, it turns out that there is
no single reason. The following explanations come from our experiments.

– If the graph contains many deadlock states, then states with small depth
(distance from the initial state) are frequently visited as the random walk
returns to the initial state very often.

– If the random walk gets trapped in a small terminal strongly connected
component it continues visiting states in this component only.

– Another scenario leading to frequent visits of states with small depth is the
presence of many long back level edges.

– An uneven number of visits can be caused by the presence of diamond-like
structures in the graph (see Fig. 3). For the random walk it is very unlikely
to get into the corner of the diamond, but at the same time the probability

6

54

79
80

42
78

39

23
61

59
16

10
43

62
37

7

6
28

51
49

20
5

5
16

38
52

32
13

3

2
11

24
52

39
21

9
1

0
8

15
40

42
31

18
5

0

0
5

10
29

39
32

26
15

3
0

2
10

19
33

35
27

22
9

2

8
15

27
29

35
26

13
5

12
21

27
33

36
17

7

20
22

29
38

28
12

27
23

35
33

24

31
38

32
35

48
35

45

57
58

10
4

Fig. 3. Behaviour of the random walk on a diamond-like structure; darker vertices are
visited more often

of visiting the middle states is high. The diamond-like structures are quite
frequent in state spaces due to the interleaving semantics.

We conclude that the power law distribution of visits is a negative feature
of the random walk. It means that the random walk spends most of the time
repeatedly visiting just a few states. Several of the random walk enhancements
presented in the next section try to improve on this.

4 How to Enhance the Random Walk?

In this section we describe several methods for improving the performance of the
random walk. Generally, the enhancements make more effective use of memory
and/or employ various heuristics to decide on the next direction of the explo-
ration. Most of the methods have been presented previously, but usually in an
ad hoc manner and without any rationale. We provide a systematic overview
of these methods and give grounds for particular methods. Typically, the meth-
ods are intended to eliminate some of the negative features of the random walk
method in model checking. We discuss experimental results and experiences as
well.

4.1 Enhancement Methods

Re-initialisation Re-initialisation helps to avoid the situation when the ran-
dom walk is getting trapped in a small terminal strongly connected component.
To this end the computation is periodically stopped and the walk returns to (is
re-initialised from) the initial state. The question is how to choose the number
of computation steps after which the random walk should be re-initialised. If
this limit is too small the algorithm returns to the initial state too often and
redundantly revisits states with small depth. On the other hand, with a large re-
initialisation limit we risk that the algorithm gets trapped. In situations where

7

the limit cannot be derived from the model a randomly chosen limit performs
better than a fixed one.

In order to avoid revisits of states with small depth one can use some of
the available memory and store a set of states from which the algorithm will
be re-initialised. The set can be for example computed as a frontier of a partial
breadth-first search. After re-initialisation the algorithm is re-started from a
randomly chosen state from the stored set.

Local Exhaustive Search Experiments with the model checking graphs pro-
vide an evidence that the number of visits of individual states during the random
walk is distributed non-uniformly. To improve on this it may be useful to com-
bine the random walk with a local exhaustive search. There are many possibilities
how to implement the idea.

At first, we have to decide when to start a local search. The basic two possi-
bilities are: after a predefined number of computation steps and after a randomly
chosen number of steps (respecting a fixed probability distribution). Yet another
possibility is to use a heuristic to determine a stage in the computation where
the walk is near to a target state.

At second, we have to decide how to do the local search. We can use breadth-
first search, depth-first search, or their clever combination. During the local
search we either store the respective data structure (queue, stack), or we tempo-
rally store all visited states. After finishing the local search the random walk can
either be re-initialised from the state where the local search has been started, or
from a state saved in the respective data structure. The later possibility gives
for example a higher chance to get into diamond corners.

Some of the ideas presented above have been employed by Sivaraj and Gopalakr-
ishnan in [21] where the authors combine the random walk and the breadth-first
local search in a distributed environment.

Caching Caching helps to avoid too frequent re-visits of individual states. Fre-
quently visited states are stored in the cache with a high probability. Again,
there are several issues to be considered here.

– How to manipulate the states in the cache? A state in the cache either can
be revisited by the random walk with a smaller probability than the other
states or cannot be revisited at all.

– How is the cache updated? There are two items to be decided: what is the
strategy for selecting a state to be stored in and to be removed from the
cache. The most straightforward way is to use a randomised management
but it is also possible to make use of some heuristics.

– How is the cache implemented? The basic option is a standard hash table.
Since the method is probabilistic anyway there is no need to solve collisions
and a lossy compression to store states can be employed.

The caching method has been investigated mainly in connection with the full
exploration [6, 5, 23]. It is used in situations where the available memory is not
sufficient to store all states. Tronci et al. [22] use caching with partial search.

8

Pseudo-Parallel Walks The pure random walk search maintains only one cur-
rently visited state. Its performance can be increased if several random searches
are performed simultaneously in an interleaving manner. In this case the method
maintains an array of current states and iteratively selects their successors. This
idea is closely related to the breadth-first search with a restricted size of queue
(sometimes called beam search). Again, there are several issues to be decided
here. Should individual random walks try to avoid each other e.g. with some
kind of look-ahead? Are individual searches interleaved in a regular or random
fashion?

Parallelisation of the random walk method has been examined in several
papers under different names. Tronci et al. [22] combine caching with a breadth-
first search with fixed sized queue. Sivaraj and Gopalakrishnan [21] combine
parallel walks and breadth-first search. Groce and Visser [8] call their technique
beam search and combine it with heuristics based on source code. Jones and
Sorber [13] use parallel random walks enhanced with a biological motivated
heuristic for verification of LTL properties.

Traces Traces provide yet another way how to enhance the random walk method
via more effective usage of the available memory. The concept is to store not just
the currently visited state but also the trace (path) from the initial state to the
current state. Though the traces are primarily useful for reporting counterexam-
ples, they can be used for effective search. With the help of traces the search can
move both in forward and backward directions. This is useful for example for
models with many deadlock states where instead of re-initialisation the search
can just move one step backward and continue through another successor.

There are several possibilities how to store the traces during the search.

– The full trace is stored as a list of states.
– A fragment of the full trace (e.g. each k-th state from the full trace) is stored

as a list of states.
– The full trace or its fragment are stored in a compressed way. The possibilities

are to store list of actions, changes with respect to the predecessor, or the
ordinal of the successor (for most state spaces the maximal out-degree is less
than sixteen [19] and for these spaces it is sufficient to use four bits per state
to record the ordinal).

The compressed representation increases the time needed for manipulating
the trace, however it can extremely decrease the space requirements (in fact the
size of a trace can be approximately the same as the size of the current state).

Guiding Guiding is a heuristic which helps to decide on the next direction of
the exploration. The idea is to use the semantics of the model to prioritise some
of the current state successors. This information can be used for guiding the
search. It helps to

– select a successor to be visited next,

9

– decide when to do a local exhaustive search,
– decide when and what to store into the cache, and
– select a current state which successor is to be visited next (for parallel walks).

As usually, there are many ways how to gain the information from the model.

– Measure the code coverage (e.g. branch, state, path coverage) and prefer
decisions leading to a higher coverage [8].

– For highly concurrent models try to maximise/minimise the number of pro-
cess inter-leavings and the number of messages in buffers. Assign different
probabilities to individual concurrent processes [4, 8].

– Estimate the distance of the currently visited state from the target state
and use this estimation for decisions. This estimation can be computed by
analysing components of the model [4, 14] or it can be approximated from
the state space of a more abstract model [20].

– Alternatively, the user can provide some indications, e.g. by assigning fixed
preferences to particular branches in the code.

The guiding technique has been frequently used for guiding the full search
(A∗ search).

4.2 Experiments

All of the above mentioned enhancements can be combined in a huge number
of ways. A combination is determined by a choice of methods and allocation
strategy (how to allocate the available memory among different objectives like
local exhaustive search, cache, pseudo-parallel walks etc.).

It is clear that it is not feasible to perform exhaustive comparison of all poten-
tial combinations. For our experiments we have chosen combinations of methods
and allocation strategies which seem to be intuitively plausible. Afterwards we
have manually tuned some of the parameters. A complete list of measurements
and results is available at http://fi.muni.cz/~xpelanek/random_walk/.

The main message gained from the experiments is that there is no superior
enhancement of the random walk method. Each combination works well for
different type of graphs. Sometimes it happens that the enhanced method, which
uses relatively large amount of memory, performs worse then the pure random
walk. For practical verification it is therefore very important not to stick to just
one method!

Table 1 provides an overview of our observations. The table compares the
coverage accomplished by the pure random walk with the best coverage we have
been able to achieve using limited resources. The best coverage has been achieved
for different graphs by different methods. The results reported in Table 1 have
been obtained without any kind of guiding. Note that for most graphs it is
feasible to cover more than 70% of states with memory consumption between
3% and 6% of the memory needed to perform the full search. We believe that it
is not possible to get much further without very good guiding heuristics (which

10

T
a
b
le

1
.

R
es

u
lt

in
g

co
v
er

a
g
e

a
ft

er
n
u
m

b
er

o
f

st
ep

s
1
0
×

si
ze

o
f

th
e

g
ra

p
h
.
F
o
r

ea
ch

m
o
d
el

th
e

ta
b
le

g
iv

es
th

e
co

v
er

a
g
e

o
f

p
u
re

ra
n
d
o
m

w
a
lk

a
n
d

th
e

co
v
er

a
g
e

o
f

b
es

t
m

et
h
o
d

w
it

h
m

em
o
ry

co
n
su

m
p
ti

o
n

re
st

ri
ct

ed
to

3
%

(B
es

t3
),

6
%

(B
es

t6
),

a
n
d

1
5
%

(B
es

t1
5
)

o
f

m
em

o
ry

re
q
u
ir

em
en

ts
o
f
fu

ll
se

a
rc

h
.

M
o
d
el

P
u
re

R
W

B
es

t3
B

es
t6

B
es

t1
5

M
o
d
el

P
u
re

R
W

B
es

t3
B

es
t6

B
es

t1
5

d
iv

in
e/

fa
rm

er
2

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

m
u
rp

h
i/

m
cs

lo
ck

1
4
7
.4

8
5
.8

8
6
.5

8
7
.1

m
a
so

/
p
a
k
o

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

sp
in

/
p
et

er
so

n
N

4
7
.1

8
1
.6

8
9
.2

9
0
.3

m
cr

l/
ch

a
tb

ox
1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

d
iv

in
e/

a
b
p

4
5
.2

7
3
.4

7
9
.8

8
4
.4

d
iv

in
e/

sh
u
ffl

e-
3
x
3

9
9
.8

1
0
0
.0

1
0
0
.0

1
0
0
.0

m
u
rp

h
i/

sc
i3

4
4
.9

5
6
.7

6
6
.4

7
2
.4

m
u
rp

h
i/

n
s

9
9
.4

9
9
.4

9
9
.5

9
9
.7

ca
d
p
/
si

te
1
2
3
m

ed
iu

m
4
3
.7

5
5
.4

6
5
.9

7
5
.8

m
u
rp

h
i/

so
rt

5
9
9
.4

9
9
.4

9
9
.4

9
9
.4

ca
d
p
/
H

A
V

i
a
sy

n
4
3
.4

4
8
.8

6
0
.2

7
0
.0

m
cr

l/
h
ef

w
ro

n
g

9
9
.2

9
9
.3

9
9
.4

9
9
.4

sp
in

/
te

st
2
-r

w
6

4
3
.0

5
6
.9

1
0
0
.0

1
0
0
.0

d
iv

in
e/

p
h
il
-b

a
si

c-
6

9
5
.7

9
7
.3

9
9
.3

9
9
.5

m
cr

l/
o
n
eb

it
4
2
.9

9
7
.2

9
8
.0

9
9
.2

sp
in

/
le

a
d
er

9
3
.5

9
8
.9

9
9
.6

9
9
.6

sp
in

/
p
ft

p
.r

ed
3
7
.5

4
0
.6

8
7
.9

9
2
.9

sp
in

/
sl

id
in

g
2

9
3
.1

9
3
.3

9
5
.1

9
5
.1

sp
in

/
te

st
2
-r

in
g
-5

3
5
.0

7
6
.1

8
8
.2

9
1
.6

ca
d
p
/
b
it

a
lt

9
1
.4

9
3
.3

9
5
.9

9
7
.0

ca
d
p
/
ov

er
ta

k
in

g
3
4
.6

8
8
.1

9
1
.7

9
1
.7

m
u
rp

h
i/

ca
ch

e4
8
7
.7

9
0
.7

9
2
.6

9
4
.2

d
iv

in
e/

sm
a
ll

3
3
.3

7
9
.1

8
2
.2

8
3
.8

d
iv

in
e/

b
ri

d
g
e-

4
-5

1
0
2
0
2
5

8
6
.8

9
1
.1

9
3
.7

9
5
.6

sp
in

/
te

st
2
-a

b
p

2
6
.4

5
2
.7

9
2
.0

9
8
.6

m
u
rp

h
i/

ea
d
a
sh

8
4
.4

8
6
.7

8
6
.7

9
1
.7

ca
d
p
/
in

v
2
d
-p

0
-r

2
-a

1
2
1
.3

2
3
.7

7
1
.8

7
6
.5

sp
in

/
sn

o
o
p
y.

re
d

7
8
.7

8
9
.0

9
6
.0

9
6
.0

sp
in

/
n
-s

-o
ri

g
in

a
l.
re

d
1
9
.7

9
3
.1

9
9
.8

9
9
.8

ca
d
p
/
sc

en
1

o
ri

g
3

7
6
.8

9
2
.4

9
8
.9

9
9
.7

m
a
so

/
p
u
zz

le
5
0

1
6
.5

4
8
.6

7
8
.4

8
0
.5

m
u
rp

h
i/

p
et

er
so

n
3

7
2
.2

7
2
.2

7
2
.2

8
5
.6

sp
in

/
sm

cs
1
4
.7

6
2
.7

7
3
.2

9
0
.9

sp
in

/
fg

s
7
1
.0

7
2
.9

7
2
.9

7
2
.9

m
a
so

/
el

ev
a
to

r2
1
4
.6

7
1
.7

8
0
.1

8
3
.4

ca
d
p
/
b
rp

p
ro

to
co

l
7
0
.6

7
5
.6

8
2
.3

8
4
.3

sp
in

/
so

rt
1
3
.3

7
2
.3

8
2
.6

9
2
.9

sp
in

/
p
h
il
5

6
6
.7

6
6
.7

8
8
.0

9
1
.1

d
iv

in
e/

m
a
ch

in
e

1
2
.9

6
1
.6

9
0
.5

9
0
.5

d
iv

in
e/

el
fi
fo

3
6
5
.6

9
5
.1

9
6
.9

9
8
.5

m
u
rp

h
i/

a
rb

it
er

1
0
.4

3
5
.8

4
8
.9

6
2
.0

m
cr

l/
1
3
9
4
-fi

n
6
4
.0

7
2
.9

7
9
.2

8
2
.3

ca
d
p
/
in

re
s

p
ro

to
co

l
in

t
6

1
0
.2

5
4
.7

7
2
.4

7
3
.5

d
iv

in
e/

m
sm

ie
-1

-2
6
2
.3

6
3
.5

7
8
.0

8
9
.6

ca
d
p
/
co

4
-3

-1
9
.0

6
7
.7

7
5
.3

8
7
.7

d
iv

in
e/

b
rp

5
6
2
.0

9
4
.6

9
7
.0

9
9
.5

sp
in

/
m

o
b
il
e1

8
.2

9
4
.5

9
5
.0

9
5
.2

m
a
so

/
a
b
p

5
9
.4

6
8
.0

8
0
.1

9
5
.9

ca
d
p
/
re

l
re

l
3
.5

4
8
.2

5
9
.5

8
0
.7

m
a
so

/
ri

n
g
5

5
1
.0

5
7
.2

6
3
.9

8
5
.9

sp
in

/
b
rp

.r
ed

1
.0

8
1
.2

8
8
.7

8
8
.7

ca
d
p
/
ca

ch
e

5
0
.2

8
6
.8

8
9
.5

9
2
.8

sp
in

/
ca

m
b
ri

d
g
e0

0
0
.6

9
.5

2
1
.3

2
6
.4

m
cr

l/
li
ft

4
-m

o
d
if

4
9
.9

8
9
.2

8
9
.2

8
9
.2

11

are difficult to compute automatically). Our experience is that once we try a few
different methods we get quite close to the best coverage. Hence it seems that
there is no need to try large number of combinations.

Although there is no dominant combination of methods and no universal
way of choosing parameters, we can provide some general guidelines about how
to partition the available memory among different methods. The good starting
point is:

– 10% for re-initialization states
– 10% for pseudo-parallel walks
– 20% for cache
– 60% for local exhaustive search

5 Related Issues

In this section we address related issues concerning the practical applicability of
the random walk based methods in model checking.

5.1 How to find a (short) counterexample?

The goal of the reachability analysis is to decide reachability of some of the target
states. If a target state is reachable then the task is to find a path into it (so called
counterexample). The methods discussed so far only decide the reachability of a
target state. Since the diameters of the state spaces are typically small [19], the
are short counterexamples and the random walk method can be used for their
computations.

To find a counterexample one can use the trace technique, see Section 4. To
find a short counterexample one can either use the local exhaustive search, start
a new random walk, or tune the parameters of the searching procedure so that
the states with a small depth are preferred.

Our experience indicates that in the case where an error can be detected by
the random walk it is feasible to find a short counterexample by iterating the
search several times.

5.2 How to estimate the coverage?

In a case when the random walk does not find any target state the the user
cannot distinguish a correct model from an erroneous one. An estimate of the
searched fraction of the state space could be of great value. However, this is very
difficult to provide.

Tronci et al. [22] try to estimate the fraction of the visited states by saving
random samples of the state space and by measuring the number of visits of the
sample states. Though this routine works well on their few experiments, it is not
a generally valid technique. The part of the state space used for the estimation
is not a random sample, see Section 3. Based on an observation of the states

12

visited by a random walk one cannot work out properties of the whole state
space.

Grosu and Smolka [9] give a Monte Carlo algorithm for model checking which
for given ε guarantee that the probability that an error will be found by further
random walks is smaller than ε. But this does not mean that the probability
of existence of an error is smaller than ε. This discrepancy does occur in real
examples. Thus one may argue that the guarantee given by their Monte Carlo
algorithm can be rather misleading.

Coverage metrics as encountered in the white-box testing, e.g. statement,
branch, or path coverage, can be used for estimating the coverage. These metrics
have well known disadvantages: on the one side 100% statement coverage does
not imply 100% state space coverage, on the other side we can have 100% state
space coverage even with statement coverage less than 100%. Nevertheless, the
coverage metrcs can supply a useful information in practise.

5.3 How to choose a method and its parameters?

As we have already stated there is no superior method and combination of pa-
rameters. So the question is how to choose an appropriate method for a given
application. Here we can provide two recommendations.

– Similar models have similar state spaces and on similar state spaces the
methods have similar behaviour. It is meaningful to narrow the model (e.g.
by abstraction or by setting smaller parameter values), generate its full state
space, test different random walk methods on the narrowed state space,
choose the one with the best behaviour and use the chosen method for the
original model.

– Try several methods and hope.

6 Conclusions and Future Work

The paper provides an extensive overview of the random walk in model checking
and its possible enhancements and studies the behaviour of both the random
walk and its enhancements on realistic model checking examples.

Our reflections on the method are both positive and negative. On the positive
side, we have found out that with the random walk it is feasible to visit most of
the states in state spaces which are notably larger (up to 20 times) comparing
to those than can be managed by classical full search. Since there is no need
for communication, the random walk method can be performed in a distributed
environment very effectively. The distribution multiplies the feasibility of the
random walk by additional factor.

On the negative side, we indicate that the full 100% coverage is achievable
(in a reasonable time) only for a few models. Moreover, we argue that in the
case that the random walk fails to find an error it is not possible to provide an
accurate estimation of the coverage.

13

The comparison of different methods clearly shows that none of them is
superior. The choice of the best method is model-dependent.

Table 6 summarises the appropriateness of variants relative to the ratio of
the available memory to the size of the searched state space.

M/S Method Coverage

≥ 1 full search, full storage full coverage
[0.1, 1) full search, partial storage full coverage
[0.01, 0.1) partial search high coverage
< 0.1 partial search low coverage

Table 2. Appropriateness of methods relative to the ratio of the available memory M
to the size of the searched state space S.

Future work should aim at proposing of mechanisms for (semi)automatic
selection of appropriate methods and/or their parameters for a given applica-
tion. To this end even broader and more extensive case studies can be at hand.
Yet another area deserving a deep inside is the application of the random walk
method for the verification of more complex properties than just reachability
(particularly the accepting cycle detection and LTL model checking).

References

1. http://www.fi.muni.cz/~xpelanek/state_spaces.
2. G. Behrmann, K.G. Larsen, and R. Pelánek. To store or not to store. In Proc.

Computer Aided Verification (CAV’03), volume 2725 of LNCS, 2003.
3. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State

Space Exploration. In Proc. of Tools and Algorithms for Construction and Analysis
of Systems (TACAS’01), volume 2031 of LNCS, pages 450–464, 2001.

4. S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model checking with
HSF-SPIN. In Proc. SPIN workshop, volume 2057 of LNCS, pages 57–79, 2001.

5. J. Geldenhuys. State caching reconsidered. In SPIN Workshop, volume 2989 of
LNCS, pages 23–39, 2004.

6. P. Godefroid, G.J. Holzmann, and D. Pirottin. State space caching revisited. In
Proc. of Computer Aided Verification (CAV 1992), volume 663 of LNVS, pages
178–191, 1992.

7. P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic
algorithms. In Proc. of Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2002), volume 2280 of LNCS, pages 266–280, 2002.

8. A. Groce and W. Visser. Heuristics for model checking java programs. International
Journal on Software Tools for Technology Transfer (STTT), 2004. to appear.

9. R. Grosu and S. A. Smolka. Monte carlo model checking. In Proc. of Tools and
Algorithms for Construction and Analysis of Systems (TACAS 2005), volume 3440
of LNCS, pages 271–286. Springer, 2005.

10. P. Haslum. Model checking by random walk. In Proc. of ECSEL Workshop, 1999.

14

11. G. J. Holzmann. An analysis of bitstate hashing. In Proc. of Protocol Specification,
Testing, and Verification, pages 301–314, 1995.

12. G.J. Holzmann. Algorithms for automated protocol verification. AT&T Technical
Journal, 69(2):32–44, February 1990.

13. M.D. Jones and J.Sorber. Parallel random walk search for LTL violations. In Proc.
of Parallel and Distributed Model Checking (PDMC 2002), volume 68 of ENTCS,
pages 156–161, 2002.

14. A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Probabilistic state space
search. In Proc. of Computer-Aided Design (CAD 1999), pages 574–579. IEEE
Press, 1999.

15. F. Lin, P. Chu, and M. Liu. Protocol verification using reachability analysis: the
state space explosion problem and relief strategies. Computer Communication
Review, 17(5):126–134, 1987.

16. M. Mihail and C. H. Papadimitriou. On the random walk method for protocol
testing. In Proc. Computer-Aided Verification (CAV 1994), volume 818 of LNCS,
pages 132–141, 1994.

17. D. Owen and T. Menzies. Lurch: a lightweight alternative to model checking.
In Proc. of Software Engineering & Knowledge Engineering (SEKE’2003), pages
158–165, 2003.

18. D. Owen, T. Menzies, M. Heimdahl, and J. Gao. On the advantages of approximate
vs. complete verification: Bigger models, faster, less memory, usually accurate. In
Proc. of IEEE/NASA Software Engineering Workshop (SEW’03), pages 75–81.
IEEE, 2003.

19. R. Pelánek. Typical structural properties of state spaces. In Proc. of SPIN Work-
shop, volume 2989 of LNCS, pages 5–22, 2004.

20. K Qian and A. Nymeyer. Guided invariant model checking based on abstraction
and symbolic pattern databases. In Proc. of Tools and Algorithms for Construction
and Analysis of Systems (TACAS 2004), number 2988 in LNCS, pages 487–511,
2004.

21. H. Sivaraj and G. Gopalakrishnan. Random walk based heuristic algorithms for
distributed memory model checking. In Proc. of Parallel and Distributed Model
Checking (PDMC’03), volume 89 of ENTCS, 2003.

22. E. Tronci, G. D. Penna, B. Intrigila, and M. Venturini. A probabilistic approach
to automatic verification of concurrent systems. In Proc. of Asia-Pacific Software
Engineering Conference (APSEC 2001), 2001.

23. E. Tronci, G. D. Penna, B. Intrigila, and M. V. Zilli. Exploiting transition locality
in automatic verification. In Proc. of Correct Hardware Design and Verification
Methods (CHARME 2001), volume 2144, pages 259–274, 2001.

24. C. H. West. Protocol validation by random state exploration. In International
Symposium on Protocol Specification, Testing and Verification, 1986.

15

